// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_data_writer.h" #include "base/memory/scoped_ptr.h" #include "net/quic/quic_data_reader.h" #include "net/test/gtest_util.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace test { namespace { TEST(QuicDataWriterTest, WriteUInt8ToOffset) { char buffer[4]; QuicDataWriter writer(4, buffer); writer.WriteUInt32(0xfefdfcfb); EXPECT_TRUE(writer.WriteUInt8ToOffset(1, 0)); EXPECT_TRUE(writer.WriteUInt8ToOffset(2, 1)); EXPECT_TRUE(writer.WriteUInt8ToOffset(3, 2)); EXPECT_TRUE(writer.WriteUInt8ToOffset(4, 3)); EXPECT_EQ(1, writer.data()[0]); EXPECT_EQ(2, writer.data()[1]); EXPECT_EQ(3, writer.data()[2]); EXPECT_EQ(4, writer.data()[3]); } TEST(QuicDataWriterDeathTest, WriteUInt8ToOffset) { char buffer[4]; QuicDataWriter writer(4, buffer); EXPECT_DFATAL(EXPECT_FALSE(writer.WriteUInt8ToOffset(5, 4)), "offset: 4 >= capacity: 4"); } TEST(QuicDataWriterTest, SanityCheckUFloat16Consts) { // Check the arithmetic on the constants - otherwise the values below make // no sense. EXPECT_EQ(30, kUFloat16MaxExponent); EXPECT_EQ(11, kUFloat16MantissaBits); EXPECT_EQ(12, kUFloat16MantissaEffectiveBits); EXPECT_EQ(GG_UINT64_C(0x3FFC0000000), kUFloat16MaxValue); } TEST(QuicDataWriterTest, WriteUFloat16) { struct TestCase { uint64 decoded; uint16 encoded; }; TestCase test_cases[] = { // Small numbers represent themselves. { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, { 15, 15 }, { 31, 31 }, { 42, 42 }, { 123, 123 }, { 1234, 1234 }, // Check transition through 2^11. { 2046, 2046 }, { 2047, 2047 }, { 2048, 2048 }, { 2049, 2049 }, // Running out of mantissa at 2^12. { 4094, 4094 }, { 4095, 4095 }, { 4096, 4096 }, { 4097, 4096 }, { 4098, 4097 }, { 4099, 4097 }, { 4100, 4098 }, { 4101, 4098 }, // Check transition through 2^13. { 8190, 6143 }, { 8191, 6143 }, { 8192, 6144 }, { 8193, 6144 }, { 8194, 6144 }, { 8195, 6144 }, { 8196, 6145 }, { 8197, 6145 }, // Half-way through the exponents. { 0x7FF8000, 0x87FF }, { 0x7FFFFFF, 0x87FF }, { 0x8000000, 0x8800 }, { 0xFFF0000, 0x8FFF }, { 0xFFFFFFF, 0x8FFF }, { 0x10000000, 0x9000 }, // Transition into the largest exponent. { 0x1FFFFFFFFFE, 0xF7FF}, { 0x1FFFFFFFFFF, 0xF7FF}, { 0x20000000000, 0xF800}, { 0x20000000001, 0xF800}, { 0x2003FFFFFFE, 0xF800}, { 0x2003FFFFFFF, 0xF800}, { 0x20040000000, 0xF801}, { 0x20040000001, 0xF801}, // Transition into the max value and clamping. { 0x3FF80000000, 0xFFFE}, { 0x3FFBFFFFFFF, 0xFFFE}, { 0x3FFC0000000, 0xFFFF}, { 0x3FFC0000001, 0xFFFF}, { 0x3FFFFFFFFFF, 0xFFFF}, { 0x40000000000, 0xFFFF}, { 0xFFFFFFFFFFFFFFFF, 0xFFFF}, }; int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]); for (int i = 0; i < num_test_cases; ++i) { char buffer[2]; QuicDataWriter writer(2, buffer); EXPECT_TRUE(writer.WriteUFloat16(test_cases[i].decoded)); EXPECT_EQ(test_cases[i].encoded, *reinterpret_cast(writer.data())); } } TEST(QuicDataWriterTest, ReadUFloat16) { struct TestCase { uint64 decoded; uint16 encoded; }; TestCase test_cases[] = { // There are fewer decoding test cases because encoding truncates, and // decoding returns the smallest expansion. // Small numbers represent themselves. { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, { 15, 15 }, { 31, 31 }, { 42, 42 }, { 123, 123 }, { 1234, 1234 }, // Check transition through 2^11. { 2046, 2046 }, { 2047, 2047 }, { 2048, 2048 }, { 2049, 2049 }, // Running out of mantissa at 2^12. { 4094, 4094 }, { 4095, 4095 }, { 4096, 4096 }, { 4098, 4097 }, { 4100, 4098 }, // Check transition through 2^13. { 8190, 6143 }, { 8192, 6144 }, { 8196, 6145 }, // Half-way through the exponents. { 0x7FF8000, 0x87FF }, { 0x8000000, 0x8800 }, { 0xFFF0000, 0x8FFF }, { 0x10000000, 0x9000 }, // Transition into the largest exponent. { 0x1FFE0000000, 0xF7FF}, { 0x20000000000, 0xF800}, { 0x20040000000, 0xF801}, // Transition into the max value. { 0x3FF80000000, 0xFFFE}, { 0x3FFC0000000, 0xFFFF}, }; int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]); for (int i = 0; i < num_test_cases; ++i) { QuicDataReader reader(reinterpret_cast(&test_cases[i].encoded), 2); uint64 value; EXPECT_TRUE(reader.ReadUFloat16(&value)); EXPECT_EQ(test_cases[i].decoded, value); } } TEST(QuicDataWriterTest, RoundTripUFloat16) { // Just test all 16-bit encoded values. 0 and max already tested above. uint64 previous_value = 0; for (uint16 i = 1; i < 0xFFFF; ++i) { // Read the two bytes. QuicDataReader reader(reinterpret_cast(&i), 2); uint64 value; // All values must be decodable. EXPECT_TRUE(reader.ReadUFloat16(&value)); // Check that small numbers represent themselves if (i < 4097) EXPECT_EQ(i, value); // Check there's monotonic growth. EXPECT_LT(previous_value, value); // Check that precision is within 0.5% away from the denormals. if (i > 2000) EXPECT_GT(previous_value * 1005, value * 1000); // Check we're always within the promised range. EXPECT_LT(value, GG_UINT64_C(0x3FFC0000000)); previous_value = value; char buffer[6]; QuicDataWriter writer(6, buffer); EXPECT_TRUE(writer.WriteUFloat16(value - 1)); EXPECT_TRUE(writer.WriteUFloat16(value)); EXPECT_TRUE(writer.WriteUFloat16(value + 1)); // Check minimal decoding (previous decoding has previous encoding). EXPECT_EQ(i - 1, *reinterpret_cast(writer.data())); // Check roundtrip. EXPECT_EQ(i, *reinterpret_cast(writer.data() + 2)); // Check next decoding. EXPECT_EQ(i < 4096 ? i + 1 : i, *reinterpret_cast(writer.data() + 4)); } } } // namespace } // namespace test } // namespace net