// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_framer.h" #include "base/hash_tables.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/quic_data_reader.h" #include "net/quic/quic_data_writer.h" #include "net/quic/quic_utils.h" using base::StringPiece; using std::map; using std::numeric_limits; namespace net { QuicFramer::QuicFramer(QuicDecrypter* decrypter, QuicEncrypter* encrypter) : visitor_(NULL), fec_builder_(NULL), error_(QUIC_NO_ERROR), decrypter_(decrypter), encrypter_(encrypter) { } QuicFramer::~QuicFramer() {} bool QuicFramer::ConstructFrameDataPacket( const QuicPacketHeader& header, const QuicFrames& frames, QuicPacket** packet) { // Compute the length of the packet. We use "magic numbers" here because // sizeof(member_) is not necessarily the same as sizeof(member_wire_format). size_t len = kPacketHeaderSize; len += 1; // frame count for (size_t i = 0; i < frames.size(); ++i) { len += 1; // space for the 8 bit type len += ComputeFramePayloadLength(frames[i]); } QuicDataWriter writer(len); if (!WritePacketHeader(header, &writer)) { return false; } // frame count if (frames.size() > 256u) { return false; } if (!writer.WriteUInt8(frames.size())) { return false; } for (size_t i = 0; i < frames.size(); ++i) { const QuicFrame& frame = frames[i]; if (!writer.WriteUInt8(frame.type)) { return false; } switch (frame.type) { case STREAM_FRAME: if (!AppendStreamFramePayload(*frame.stream_frame, &writer)) { return false; } break; case PDU_FRAME: return RaiseError(QUIC_INVALID_FRAME_DATA); case ACK_FRAME: if (!AppendAckFramePayload(*frame.ack_frame, &writer)) { return false; } break; case RST_STREAM_FRAME: if (!AppendRstStreamFramePayload(*frame.rst_stream_frame, &writer)) { return false; } break; case CONNECTION_CLOSE_FRAME: if (!AppendConnectionCloseFramePayload( *frame.connection_close_frame, &writer)) { return false; } break; default: return RaiseError(QUIC_INVALID_FRAME_DATA); } } DCHECK_EQ(len, writer.length()); *packet = new QuicPacket(writer.take(), len, true, PACKET_FLAGS_NONE); if (fec_builder_) { fec_builder_->OnBuiltFecProtectedPayload(header, (*packet)->FecProtectedData()); } return true; } bool QuicFramer::ConstructFecPacket(const QuicPacketHeader& header, const QuicFecData& fec, QuicPacket** packet) { // Compute the length of the packet. We use "magic numbers" here because // sizeof(member_) is not necessairly the same as sizeof(member_wire_format). size_t len = kPacketHeaderSize; len += 6; // first protected packet sequence number len += fec.redundancy.length(); QuicDataWriter writer(len); if (!WritePacketHeader(header, &writer)) { return false; } if (!writer.WriteUInt48(fec.min_protected_packet_sequence_number)) { return false; } if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) { return false; } *packet = new QuicPacket(writer.take(), len, true, PACKET_FLAGS_FEC); return true; } bool QuicFramer::ProcessPacket(const IPEndPoint& self_address, const IPEndPoint& peer_address, const QuicEncryptedPacket& packet) { DCHECK(!reader_.get()); reader_.reset(new QuicDataReader(packet.data(), packet.length())); visitor_->OnPacket(self_address, peer_address); // First parse the packet header. QuicPacketHeader header; if (!ProcessPacketHeader(&header, packet)) { DLOG(WARNING) << "Unable to process header."; return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!visitor_->OnPacketHeader(header)) { reader_.reset(NULL); return true; } if (packet.length() > kMaxPacketSize) { DLOG(WARNING) << "Packet too large: " << packet.length(); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if ((header.flags & PACKET_FLAGS_FEC) == 0) { if (header.fec_group != 0) { StringPiece payload = reader_->PeekRemainingPayload(); visitor_->OnFecProtectedPayload(payload); } if (!ProcessFrameData()) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DLOG(WARNING) << "Unable to process frame data."; return false; } } else { QuicFecData fec_data; fec_data.fec_group = header.fec_group; if (!reader_->ReadUInt48( &fec_data.min_protected_packet_sequence_number)) { set_detailed_error("Unable to read first protected packet."); return RaiseError(QUIC_INVALID_FEC_DATA); } fec_data.redundancy = reader_->ReadRemainingPayload(); visitor_->OnFecData(fec_data); } visitor_->OnPacketComplete(); reader_.reset(NULL); return true; } bool QuicFramer::ProcessRevivedPacket(const QuicPacketHeader& header, StringPiece payload) { DCHECK(!reader_.get()); visitor_->OnRevivedPacket(); visitor_->OnPacketHeader(header); if (payload.length() > kMaxPacketSize) { set_detailed_error("Revived packet too large."); return RaiseError(QUIC_PACKET_TOO_LARGE); } reader_.reset(new QuicDataReader(payload.data(), payload.length())); if (!ProcessFrameData()) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DLOG(WARNING) << "Unable to process frame data."; return false; } visitor_->OnPacketComplete(); reader_.reset(NULL); return true; } bool QuicFramer::WritePacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer) { if (!writer->WriteUInt64(header.guid)) { return false; } if (!writer->WriteUInt48(header.packet_sequence_number)) { return false; } uint8 flags = static_cast(header.flags); if (!writer->WriteBytes(&flags, 1)) { return false; } if (!writer->WriteBytes(&header.fec_group, 1)) { return false; } return true; } bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header, const QuicEncryptedPacket& packet) { if (!reader_->ReadUInt64(&header->guid)) { set_detailed_error("Unable to read GUID."); return false; } if (!reader_->ReadUInt48(&header->packet_sequence_number)) { set_detailed_error("Unable to read sequence number."); return false; } if (header->packet_sequence_number == 0u) { set_detailed_error("Packet sequence numbers cannot be 0."); return false; } unsigned char flags; if (!reader_->ReadBytes(&flags, 1)) { set_detailed_error("Unable to read flags."); return false; } if (flags > PACKET_FLAGS_MAX) { set_detailed_error("Illegal flags value."); return false; } header->flags = static_cast(flags); if (!DecryptPayload(packet)) { DLOG(WARNING) << "Unable to decrypt payload."; return RaiseError(QUIC_DECRYPTION_FAILURE); } if (!reader_->ReadBytes(&header->fec_group, 1)) { set_detailed_error("Unable to read fec group."); return false; } return true; } bool QuicFramer::ProcessFrameData() { uint8 frame_count; if (!reader_->ReadBytes(&frame_count, 1)) { set_detailed_error("Unable to read frame count."); return RaiseError(QUIC_INVALID_FRAME_DATA); } for (uint8 i = 0; i < frame_count; ++i) { uint8 frame_type; if (!reader_->ReadBytes(&frame_type, 1)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } switch (frame_type) { case STREAM_FRAME: if (!ProcessStreamFrame()) { return RaiseError(QUIC_INVALID_FRAME_DATA); } break; case PDU_FRAME: if (!ProcessPDUFrame()) { return RaiseError(QUIC_INVALID_FRAME_DATA); } break; case ACK_FRAME: { QuicAckFrame frame; if (!ProcessAckFrame(&frame)) { return RaiseError(QUIC_INVALID_FRAME_DATA); } break; } case RST_STREAM_FRAME: if (!ProcessRstStreamFrame()) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } break; case CONNECTION_CLOSE_FRAME: if (!ProcessConnectionCloseFrame()) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } break; default: set_detailed_error("Illegal frame type."); DLOG(WARNING) << "Illegal frame type: " << (int)frame_type; return RaiseError(QUIC_INVALID_FRAME_DATA); } } return true; } bool QuicFramer::ProcessStreamFrame() { QuicStreamFrame frame; if (!reader_->ReadUInt32(&frame.stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } uint8 fin; if (!reader_->ReadBytes(&fin, 1)) { set_detailed_error("Unable to read fin."); return false; } if (fin > 1) { set_detailed_error("Invalid fin value."); return false; } frame.fin = (fin == 1); if (!reader_->ReadUInt64(&frame.offset)) { set_detailed_error("Unable to read offset."); return false; } if (!reader_->ReadStringPiece16(&frame.data)) { set_detailed_error("Unable to read frame data."); return false; } visitor_->OnStreamFrame(frame); return true; } bool QuicFramer::ProcessPDUFrame() { return false; } bool QuicFramer::ProcessAckFrame(QuicAckFrame* frame) { if (!ProcessReceivedInfo(&frame->received_info)) { return false; } if (!ProcessSentInfo(&frame->sent_info)) { return false; } if (!ProcessCongestionInfo(&frame->congestion_info)) { return false; } visitor_->OnAckFrame(*frame); return true; } bool QuicFramer::ProcessReceivedInfo(ReceivedPacketInfo* received_info) { if (!reader_->ReadUInt48(&received_info->largest_received)) { set_detailed_error("Unable to read largest received."); return false; } uint8 num_missing_packets; if (!reader_->ReadBytes(&num_missing_packets, 1)) { set_detailed_error("Unable to read num unacked packets."); return false; } for (int i = 0; i < num_missing_packets; ++i) { QuicPacketSequenceNumber sequence_number; if (!reader_->ReadUInt48(&sequence_number)) { set_detailed_error("Unable to read sequence number in unacked packets."); return false; } received_info->missing_packets.insert(sequence_number); } uint8 num_acked_packets; if (!reader_->ReadBytes(&num_acked_packets, 1)) { set_detailed_error("Unable to read num acked packets."); return false; } if (num_acked_packets > 0u) { uint64 smallest_ack; if (!reader_->ReadUInt48(&smallest_ack)) { set_detailed_error("Unable to read smallest ack."); return false; } uint64 time_received_us; if (!reader_->ReadUInt64(&time_received_us)) { set_detailed_error("Unable to read time received."); return false; } received_info->received_packet_times[smallest_ack] = QuicTime::FromMicroseconds(time_received_us); for (int i = 0; i < num_acked_packets - 1; ++i) { uint16 sequence_delta; if (!reader_->ReadUInt16(&sequence_delta)) { set_detailed_error("Unable to read sequence delta in acked packets."); return false; } int32 time_delta_us; if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) { set_detailed_error("Unable to read time delta in acked packets."); return false; } received_info->received_packet_times[smallest_ack + sequence_delta] = QuicTime::FromMicroseconds(time_received_us + time_delta_us); } } return true; } bool QuicFramer::ProcessSentInfo(SentPacketInfo* sent_info) { if (!reader_->ReadUInt48(&sent_info->least_unacked)) { set_detailed_error("Unable to read least unacked."); return false; } return true; } bool QuicFramer::ProcessCongestionInfo(CongestionInfo* congestion_info) { uint8 congestion_info_type; if (!reader_->ReadBytes(&congestion_info_type, 1)) { set_detailed_error("Unable to read congestion info type."); return false; } congestion_info->type = static_cast(congestion_info_type); switch (congestion_info->type) { case kNone: break; case kInterArrival: { CongestionFeedbackMessageInterArrival* inter_arrival = &congestion_info->inter_arrival; if (!reader_->ReadUInt16( &inter_arrival->accumulated_number_of_lost_packets)) { set_detailed_error( "Unable to read accumulated number of lost packets."); return false; } if (!reader_->ReadBytes(&inter_arrival->offset_time, 2)) { set_detailed_error("Unable to read offset time."); return false; } if (!reader_->ReadUInt16(&inter_arrival->delta_time)) { set_detailed_error("Unable to read delta time."); return false; } break; } case kFixRate: { CongestionFeedbackMessageFixRate* fix_rate = &congestion_info->fix_rate; if (!reader_->ReadUInt32(&fix_rate->bitrate_in_bytes_per_second)) { set_detailed_error("Unable to read bitrate."); return false; } break; } case kTCP: { CongestionFeedbackMessageTCP* tcp = &congestion_info->tcp; if (!reader_->ReadUInt16(&tcp->accumulated_number_of_lost_packets)) { set_detailed_error( "Unable to read accumulated number of lost packets."); return false; } if (!reader_->ReadUInt16(&tcp->receive_window)) { set_detailed_error("Unable to read receive window."); return false; } break; } default: set_detailed_error("Illegal congestion info type."); DLOG(WARNING) << "Illegal congestion info type: " << congestion_info->type; return RaiseError(QUIC_INVALID_FRAME_DATA); } return true; } bool QuicFramer::ProcessRstStreamFrame() { QuicRstStreamFrame frame; if (!reader_->ReadUInt32(&frame.stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader_->ReadUInt64(&frame.offset)) { set_detailed_error("Unable to read offset in rst frame."); return false; } uint32 error_code; if (!reader_->ReadUInt32(&error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } frame.error_code = static_cast(error_code); StringPiece error_details; if (!reader_->ReadStringPiece16(&error_details)) { set_detailed_error("Unable to read rst stream error details."); return false; } frame.error_details = error_details.as_string(); visitor_->OnRstStreamFrame(frame); return true; } bool QuicFramer::ProcessConnectionCloseFrame() { QuicConnectionCloseFrame frame; uint32 error_code; if (!reader_->ReadUInt32(&error_code)) { set_detailed_error("Unable to read connection close error code."); return false; } frame.error_code = static_cast(error_code); StringPiece error_details; if (!reader_->ReadStringPiece16(&error_details)) { set_detailed_error("Unable to read connection close error details."); return false; } frame.error_details = error_details.as_string(); if (!ProcessAckFrame(&frame.ack_frame)) { DLOG(WARNING) << "Unable to process ack frame."; return false; } visitor_->OnConnectionCloseFrame(frame); return true; } void QuicFramer::WriteSequenceNumber(QuicPacketSequenceNumber sequence_number, QuicPacket* packet) { QuicDataWriter::WriteUint48ToBuffer( sequence_number, packet->mutable_data() + kSequenceNumberOffset); } void QuicFramer::WriteFecGroup(QuicFecGroupNumber fec_group, QuicPacket* packet) { QuicDataWriter::WriteUint8ToBuffer( fec_group, packet->mutable_data() + kFecGroupOffset); } QuicEncryptedPacket* QuicFramer::EncryptPacket(const QuicPacket& packet) { scoped_ptr out(encrypter_->Encrypt(packet.AssociatedData(), packet.Plaintext())); if (out.get() == NULL) { RaiseError(QUIC_ENCRYPTION_FAILURE); return NULL; } size_t len = kStartOfEncryptedData + out->length(); char* buffer = new char[len]; // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt(). memcpy(buffer, packet.data(), kStartOfEncryptedData); memcpy(buffer + kStartOfEncryptedData, out->data(), out->length()); return new QuicEncryptedPacket(buffer, len, true); } size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { return encrypter_->GetMaxPlaintextSize(ciphertext_size); } bool QuicFramer::DecryptPayload(const QuicEncryptedPacket& packet) { StringPiece encrypted; if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) { return false; } DCHECK(decrypter_.get() != NULL); decrypted_.reset(decrypter_->Decrypt(packet.AssociatedData(), encrypted)); if (decrypted_.get() == NULL) { return false; } reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length())); return true; } size_t QuicFramer::ComputeFramePayloadLength(const QuicFrame& frame) { size_t len = 0; // We use "magic numbers" here because sizeof(member_) is not necessairly the // same as sizeof(member_wire_format). switch (frame.type) { case STREAM_FRAME: len += 4; // stream id len += 1; // fin len += 8; // offset len += 2; // space for the 16 bit length len += frame.stream_frame->data.size(); break; case PDU_FRAME: DLOG(INFO) << "PDU_FRAME not yet supported"; break; // Need to support this eventually :> case ACK_FRAME: { const QuicAckFrame& ack = *frame.ack_frame; len += 6; // largest received packet sequence number len += 1; // num missing packets len += 6 * ack.received_info.missing_packets.size(); len += 1; // num acked packets if (ack.received_info.received_packet_times.size() > 0) { len += 6; // smallest ack len += 8; // time // 2 bytes per sequence number delta plus 4 bytes per delta time. len += 6 * (ack.received_info.received_packet_times.size() - 1); } len += 6; // least packet sequence number awaiting an ack len += 1; // congestion control type switch (ack.congestion_info.type) { case kNone: break; case kInterArrival: len += 6; break; case kFixRate: len += 4; break; case kTCP: len += 4; break; default: set_detailed_error("Illegal feedback type."); DLOG(INFO) << "Illegal feedback type: " << ack.congestion_info.type; break; } break; } case RST_STREAM_FRAME: len += 4; // stream id len += 8; // offset len += 4; // error code len += 2; // error details size len += frame.rst_stream_frame->error_details.size(); break; case CONNECTION_CLOSE_FRAME: len += 4; // error code len += 2; // error details size len += frame.connection_close_frame->error_details.size(); len += ComputeFramePayloadLength( QuicFrame(&frame.connection_close_frame->ack_frame)); break; default: set_detailed_error("Illegal frame type."); DLOG(INFO) << "Illegal frame type: " << frame.type; break; } return len; } bool QuicFramer::AppendStreamFramePayload( const QuicStreamFrame& frame, QuicDataWriter* writer) { if (!writer->WriteUInt32(frame.stream_id)) { return false; } if (!writer->WriteUInt8(frame.fin)) { return false; } if (!writer->WriteUInt64(frame.offset)) { return false; } if (!writer->WriteUInt16(frame.data.size())) { return false; } if (!writer->WriteBytes(frame.data.data(), frame.data.size())) { return false; } return true; } // TODO(ianswett): Use varints or another more compact approach for all deltas. // TODO(ianswett): Deal with acks which are too large to fit into a packet. bool QuicFramer::AppendAckFramePayload( const QuicAckFrame& frame, QuicDataWriter* writer) { DCHECK_GE(numeric_limits::max(), frame.received_info.received_packet_times.size()); if (frame.received_info.received_packet_times.size() > numeric_limits::max()) { return false; } if (!writer->WriteUInt48(frame.received_info.largest_received)) { return false; } DCHECK_GE(numeric_limits::max(), frame.received_info.missing_packets.size()); uint8 num_missing_packets = frame.received_info.missing_packets.size(); if (!writer->WriteBytes(&num_missing_packets, 1)) { return false; } SequenceSet::const_iterator it = frame.received_info.missing_packets.begin(); for (; it != frame.received_info.missing_packets.end(); ++it) { if (!writer->WriteUInt48(*it)) { return false; } } // TODO(ianswett): Make num_unacked_packets a varint. uint8 num_acked_packets = frame.received_info.received_packet_times.size(); if (!writer->WriteBytes(&num_acked_packets, 1)) { return false; } if (num_acked_packets > 0) { TimeMap::const_iterator it = frame.received_info.received_packet_times.begin(); QuicPacketSequenceNumber lowest_sequence = it->first; if (!writer->WriteUInt48(lowest_sequence)) { return false; } QuicTime lowest_time = it->second; // TODO(ianswett): Use time deltas from the connection's first received // packet. if (!writer->WriteUInt64(lowest_time.ToMicroseconds())) { return false; } for (++it; it != frame.received_info.received_packet_times.end(); ++it) { QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence; DCHECK_GE(numeric_limits::max(), sequence_delta); if (sequence_delta > numeric_limits::max()) { return false; } if (!writer->WriteUInt16(static_cast(sequence_delta))) { return false; } int32 time_delta_us = it->second.Subtract(lowest_time).ToMicroseconds(); if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) { return false; } } } if (!writer->WriteUInt48(frame.sent_info.least_unacked)) { return false; } if (!writer->WriteBytes(&frame.congestion_info.type, 1)) { return false; } switch (frame.congestion_info.type) { case kNone: break; case kInterArrival: { const CongestionFeedbackMessageInterArrival& inter_arrival = frame.congestion_info.inter_arrival; if (!writer->WriteUInt16( inter_arrival.accumulated_number_of_lost_packets)) { return false; } if (!writer->WriteBytes(&inter_arrival.offset_time, 2)) { return false; } if (!writer->WriteUInt16(inter_arrival.delta_time)) { return false; } break; } case kFixRate: { const CongestionFeedbackMessageFixRate& fix_rate = frame.congestion_info.fix_rate; if (!writer->WriteUInt32(fix_rate.bitrate_in_bytes_per_second)) { return false; } break; } case kTCP: { const CongestionFeedbackMessageTCP& tcp = frame.congestion_info.tcp; if (!writer->WriteUInt16(tcp.accumulated_number_of_lost_packets)) { return false; } if (!writer->WriteUInt16(tcp.receive_window)) { return false; } break; } default: return false; } return true; } bool QuicFramer::AppendRstStreamFramePayload( const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (!writer->WriteUInt32(frame.stream_id)) { return false; } if (!writer->WriteUInt64(frame.offset)) { return false; } uint32 error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (!writer->WriteStringPiece16(frame.error_details)) { return false; } return true; } bool QuicFramer::AppendConnectionCloseFramePayload( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { uint32 error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (!writer->WriteStringPiece16(frame.error_details)) { return false; } AppendAckFramePayload(frame.ack_frame, writer); return true; } bool QuicFramer::RaiseError(QuicErrorCode error) { DLOG(INFO) << detailed_error_; set_error(error); visitor_->OnError(this); reader_.reset(NULL); return false; } } // namespace net