// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_framer.h" #include #include #include #include #include "base/containers/hash_tables.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/port.h" #include "base/stl_util.h" #include "net/quic/crypto/quic_decrypter.h" #include "net/quic/crypto/quic_encrypter.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/quic_framer_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/test/gtest_util.h" using base::hash_set; using base::StringPiece; using std::make_pair; using std::map; using std::numeric_limits; using std::pair; using std::string; using std::vector; using testing::Return; using testing::_; namespace net { namespace test { const QuicPacketSequenceNumber kEpoch = GG_UINT64_C(1) << 48; const QuicPacketSequenceNumber kMask = kEpoch - 1; // Index into the connection_id offset in the header. const size_t kConnectionIdOffset = kPublicFlagsSize; // Index into the version string in the header. (if present). const size_t kVersionOffset = kConnectionIdOffset + PACKET_8BYTE_CONNECTION_ID; // Size in bytes of the stream frame fields for an arbitrary StreamID and // offset and the last frame in a packet. size_t GetMinStreamFrameSize(QuicVersion version) { return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; } // Index into the sequence number offset in the header. size_t GetSequenceNumberOffset(QuicConnectionIdLength connection_id_length, bool include_version) { return kConnectionIdOffset + connection_id_length + (include_version ? kQuicVersionSize : 0); } size_t GetSequenceNumberOffset(bool include_version) { return GetSequenceNumberOffset(PACKET_8BYTE_CONNECTION_ID, include_version); } // Index into the private flags offset in the data packet header. size_t GetPrivateFlagsOffset(QuicConnectionIdLength connection_id_length, bool include_version) { return GetSequenceNumberOffset(connection_id_length, include_version) + PACKET_6BYTE_SEQUENCE_NUMBER; } size_t GetPrivateFlagsOffset(bool include_version) { return GetPrivateFlagsOffset(PACKET_8BYTE_CONNECTION_ID, include_version); } size_t GetPrivateFlagsOffset(bool include_version, QuicSequenceNumberLength sequence_number_length) { return GetSequenceNumberOffset(PACKET_8BYTE_CONNECTION_ID, include_version) + sequence_number_length; } // Index into the fec group offset in the header. size_t GetFecGroupOffset(QuicConnectionIdLength connection_id_length, bool include_version) { return GetPrivateFlagsOffset(connection_id_length, include_version) + kPrivateFlagsSize; } size_t GetFecGroupOffset(bool include_version) { return GetPrivateFlagsOffset(PACKET_8BYTE_CONNECTION_ID, include_version) + kPrivateFlagsSize; } size_t GetFecGroupOffset(bool include_version, QuicSequenceNumberLength sequence_number_length) { return GetPrivateFlagsOffset(include_version, sequence_number_length) + kPrivateFlagsSize; } // Index into the message tag of the public reset packet. // Public resets always have full connection_ids. const size_t kPublicResetPacketMessageTagOffset = kConnectionIdOffset + PACKET_8BYTE_CONNECTION_ID; // TODO(wtc): remove this when we drop support for QUIC_VERSION_13. // Index into the nonce proof of the public reset packet. // Public resets always have full connection_ids. const size_t kPublicResetPacketNonceProofOffset = kConnectionIdOffset + PACKET_8BYTE_CONNECTION_ID; // TODO(wtc): remove this when we drop support for QUIC_VERSION_13. // Index into the rejected sequence number of the public reset packet. const size_t kPublicResetPacketRejectedSequenceNumberOffset = kPublicResetPacketNonceProofOffset + kPublicResetNonceSize; class TestEncrypter : public QuicEncrypter { public: virtual ~TestEncrypter() {} virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Encrypt(StringPiece nonce, StringPiece associated_data, StringPiece plaintext, unsigned char* output) OVERRIDE { CHECK(false) << "Not implemented"; return false; } virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece plaintext) OVERRIDE { sequence_number_ = sequence_number; associated_data_ = associated_data.as_string(); plaintext_ = plaintext.as_string(); return new QuicData(plaintext.data(), plaintext.length()); } virtual size_t GetKeySize() const OVERRIDE { return 0; } virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; } virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE { return ciphertext_size; } virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE { return plaintext_size; } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } QuicPacketSequenceNumber sequence_number_; string associated_data_; string plaintext_; }; class TestDecrypter : public QuicDecrypter { public: virtual ~TestDecrypter() {} virtual bool SetKey(StringPiece key) OVERRIDE { return true; } virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { return true; } virtual bool Decrypt(StringPiece nonce, StringPiece associated_data, StringPiece ciphertext, unsigned char* output, size_t* output_length) OVERRIDE { CHECK(false) << "Not implemented"; return false; } virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, StringPiece associated_data, StringPiece ciphertext) OVERRIDE { sequence_number_ = sequence_number; associated_data_ = associated_data.as_string(); ciphertext_ = ciphertext.as_string(); return new QuicData(ciphertext.data(), ciphertext.length()); } virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } QuicPacketSequenceNumber sequence_number_; string associated_data_; string ciphertext_; }; class TestQuicVisitor : public ::net::QuicFramerVisitorInterface { public: TestQuicVisitor() : error_count_(0), version_mismatch_(0), packet_count_(0), frame_count_(0), fec_count_(0), complete_packets_(0), revived_packets_(0), accept_packet_(true), accept_public_header_(true) { } virtual ~TestQuicVisitor() { STLDeleteElements(&stream_frames_); STLDeleteElements(&ack_frames_); STLDeleteElements(&congestion_feedback_frames_); STLDeleteElements(&stop_waiting_frames_); STLDeleteElements(&ping_frames_); STLDeleteElements(&fec_data_); } virtual void OnError(QuicFramer* f) OVERRIDE { DVLOG(1) << "QuicFramer Error: " << QuicUtils::ErrorToString(f->error()) << " (" << f->error() << ")"; ++error_count_; } virtual void OnPacket() OVERRIDE {} virtual void OnPublicResetPacket( const QuicPublicResetPacket& packet) OVERRIDE { public_reset_packet_.reset(new QuicPublicResetPacket(packet)); } virtual void OnVersionNegotiationPacket( const QuicVersionNegotiationPacket& packet) OVERRIDE { version_negotiation_packet_.reset(new QuicVersionNegotiationPacket(packet)); } virtual void OnRevivedPacket() OVERRIDE { ++revived_packets_; } virtual bool OnProtocolVersionMismatch(QuicVersion version) OVERRIDE { DVLOG(1) << "QuicFramer Version Mismatch, version: " << version; ++version_mismatch_; return true; } virtual bool OnUnauthenticatedPublicHeader( const QuicPacketPublicHeader& header) OVERRIDE { public_header_.reset(new QuicPacketPublicHeader(header)); return accept_public_header_; } virtual bool OnUnauthenticatedHeader( const QuicPacketHeader& header) OVERRIDE { return true; } virtual bool OnPacketHeader(const QuicPacketHeader& header) OVERRIDE { ++packet_count_; header_.reset(new QuicPacketHeader(header)); return accept_packet_; } virtual bool OnStreamFrame(const QuicStreamFrame& frame) OVERRIDE { ++frame_count_; stream_frames_.push_back(new QuicStreamFrame(frame)); return true; } virtual void OnFecProtectedPayload(StringPiece payload) OVERRIDE { fec_protected_payload_ = payload.as_string(); } virtual bool OnAckFrame(const QuicAckFrame& frame) OVERRIDE { ++frame_count_; ack_frames_.push_back(new QuicAckFrame(frame)); return true; } virtual bool OnCongestionFeedbackFrame( const QuicCongestionFeedbackFrame& frame) OVERRIDE { ++frame_count_; congestion_feedback_frames_.push_back( new QuicCongestionFeedbackFrame(frame)); return true; } virtual bool OnStopWaitingFrame(const QuicStopWaitingFrame& frame) OVERRIDE { ++frame_count_; stop_waiting_frames_.push_back(new QuicStopWaitingFrame(frame)); return true; } virtual bool OnPingFrame(const QuicPingFrame& frame) OVERRIDE { ++frame_count_; ping_frames_.push_back(new QuicPingFrame(frame)); return true; } virtual void OnFecData(const QuicFecData& fec) OVERRIDE { ++fec_count_; fec_data_.push_back(new QuicFecData(fec)); } virtual void OnPacketComplete() OVERRIDE { ++complete_packets_; } virtual bool OnRstStreamFrame(const QuicRstStreamFrame& frame) OVERRIDE { rst_stream_frame_ = frame; return true; } virtual bool OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) OVERRIDE { connection_close_frame_ = frame; return true; } virtual bool OnGoAwayFrame(const QuicGoAwayFrame& frame) OVERRIDE { goaway_frame_ = frame; return true; } virtual bool OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) OVERRIDE { window_update_frame_ = frame; return true; } virtual bool OnBlockedFrame(const QuicBlockedFrame& frame) OVERRIDE { blocked_frame_ = frame; return true; } // Counters from the visitor_ callbacks. int error_count_; int version_mismatch_; int packet_count_; int frame_count_; int fec_count_; int complete_packets_; int revived_packets_; bool accept_packet_; bool accept_public_header_; scoped_ptr header_; scoped_ptr public_header_; scoped_ptr public_reset_packet_; scoped_ptr version_negotiation_packet_; vector stream_frames_; vector ack_frames_; vector congestion_feedback_frames_; vector stop_waiting_frames_; vector ping_frames_; vector fec_data_; string fec_protected_payload_; QuicRstStreamFrame rst_stream_frame_; QuicConnectionCloseFrame connection_close_frame_; QuicGoAwayFrame goaway_frame_; QuicWindowUpdateFrame window_update_frame_; QuicBlockedFrame blocked_frame_; }; class QuicFramerTest : public ::testing::TestWithParam { public: QuicFramerTest() : encrypter_(new test::TestEncrypter()), decrypter_(new test::TestDecrypter()), start_(QuicTime::Zero().Add(QuicTime::Delta::FromMicroseconds(0x10))), framer_(QuicSupportedVersions(), start_, true) { version_ = GetParam(); framer_.set_version(version_); framer_.SetDecrypter(decrypter_); framer_.SetEncrypter(ENCRYPTION_NONE, encrypter_); framer_.set_visitor(&visitor_); framer_.set_received_entropy_calculator(&entropy_calculator_); } // Helper function to get unsigned char representation of digit in the // units place of the current QUIC version number. unsigned char GetQuicVersionDigitOnes() { return static_cast ('0' + version_%10); } // Helper function to get unsigned char representation of digit in the // tens place of the current QUIC version number. unsigned char GetQuicVersionDigitTens() { return static_cast ('0' + (version_/10)%10); } bool CheckEncryption(QuicPacketSequenceNumber sequence_number, QuicPacket* packet) { if (sequence_number != encrypter_->sequence_number_) { LOG(ERROR) << "Encrypted incorrect packet sequence number. expected " << sequence_number << " actual: " << encrypter_->sequence_number_; return false; } if (packet->AssociatedData() != encrypter_->associated_data_) { LOG(ERROR) << "Encrypted incorrect associated data. expected " << packet->AssociatedData() << " actual: " << encrypter_->associated_data_; return false; } if (packet->Plaintext() != encrypter_->plaintext_) { LOG(ERROR) << "Encrypted incorrect plaintext data. expected " << packet->Plaintext() << " actual: " << encrypter_->plaintext_; return false; } return true; } bool CheckDecryption(const QuicEncryptedPacket& encrypted, bool includes_version) { if (visitor_.header_->packet_sequence_number != decrypter_->sequence_number_) { LOG(ERROR) << "Decrypted incorrect packet sequence number. expected " << visitor_.header_->packet_sequence_number << " actual: " << decrypter_->sequence_number_; return false; } if (QuicFramer::GetAssociatedDataFromEncryptedPacket( encrypted, PACKET_8BYTE_CONNECTION_ID, includes_version, PACKET_6BYTE_SEQUENCE_NUMBER) != decrypter_->associated_data_) { LOG(ERROR) << "Decrypted incorrect associated data. expected " << QuicFramer::GetAssociatedDataFromEncryptedPacket( encrypted, PACKET_8BYTE_CONNECTION_ID, includes_version, PACKET_6BYTE_SEQUENCE_NUMBER) << " actual: " << decrypter_->associated_data_; return false; } StringPiece ciphertext(encrypted.AsStringPiece().substr( GetStartOfEncryptedData(PACKET_8BYTE_CONNECTION_ID, includes_version, PACKET_6BYTE_SEQUENCE_NUMBER))); if (ciphertext != decrypter_->ciphertext_) { LOG(ERROR) << "Decrypted incorrect ciphertext data. expected " << ciphertext << " actual: " << decrypter_->ciphertext_; return false; } return true; } char* AsChars(unsigned char* data) { return reinterpret_cast(data); } void CheckProcessingFails(unsigned char* packet, size_t len, string expected_error, QuicErrorCode error_code) { QuicEncryptedPacket encrypted(AsChars(packet), len, false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)) << "len: " << len; EXPECT_EQ(expected_error, framer_.detailed_error()) << "len: " << len; EXPECT_EQ(error_code, framer_.error()) << "len: " << len; } // Checks if the supplied string matches data in the supplied StreamFrame. void CheckStreamFrameData(string str, QuicStreamFrame* frame) { scoped_ptr frame_data(frame->GetDataAsString()); EXPECT_EQ(str, *frame_data); } void CheckStreamFrameBoundaries(unsigned char* packet, size_t stream_id_size, bool include_version) { // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < GetMinStreamFrameSize(framer_.version()); ++i) { string expected_error; if (i < kQuicFrameTypeSize + stream_id_size) { expected_error = "Unable to read stream_id."; } else if (i < kQuicFrameTypeSize + stream_id_size + kQuicMaxStreamOffsetSize) { expected_error = "Unable to read offset."; } else { expected_error = "Unable to read frame data."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, include_version, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_STREAM_DATA); } } void CheckCalculatePacketSequenceNumber( QuicPacketSequenceNumber expected_sequence_number, QuicPacketSequenceNumber last_sequence_number) { QuicPacketSequenceNumber wire_sequence_number = expected_sequence_number & kMask; QuicFramerPeer::SetLastSequenceNumber(&framer_, last_sequence_number); EXPECT_EQ(expected_sequence_number, QuicFramerPeer::CalculatePacketSequenceNumberFromWire( &framer_, PACKET_6BYTE_SEQUENCE_NUMBER, wire_sequence_number)) << "last_sequence_number: " << last_sequence_number << " wire_sequence_number: " << wire_sequence_number; } test::TestEncrypter* encrypter_; test::TestDecrypter* decrypter_; QuicVersion version_; QuicTime start_; QuicFramer framer_; test::TestQuicVisitor visitor_; test::TestEntropyCalculator entropy_calculator_; }; // Run all framer tests with all supported versions of QUIC. INSTANTIATE_TEST_CASE_P(QuicFramerTests, QuicFramerTest, ::testing::ValuesIn(kSupportedQuicVersions)); TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearEpochStart) { // A few quick manual sanity checks CheckCalculatePacketSequenceNumber(GG_UINT64_C(1), GG_UINT64_C(0)); CheckCalculatePacketSequenceNumber(kEpoch + 1, kMask); CheckCalculatePacketSequenceNumber(kEpoch, kMask); // Cases where the last number was close to the start of the range for (uint64 last = 0; last < 10; last++) { // Small numbers should not wrap (even if they're out of order). for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(j, last); } // Large numbers should not wrap either (because we're near 0 already). for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(kEpoch - 1 - j, last); } } } TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearEpochEnd) { // Cases where the last number was close to the end of the range for (uint64 i = 0; i < 10; i++) { QuicPacketSequenceNumber last = kEpoch - i; // Small numbers should wrap. for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(kEpoch + j, last); } // Large numbers should not (even if they're out of order). for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(kEpoch - 1 - j, last); } } } // Next check where we're in a non-zero epoch to verify we handle // reverse wrapping, too. TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearPrevEpoch) { const uint64 prev_epoch = 1 * kEpoch; const uint64 cur_epoch = 2 * kEpoch; // Cases where the last number was close to the start of the range for (uint64 i = 0; i < 10; i++) { uint64 last = cur_epoch + i; // Small number should not wrap (even if they're out of order). for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(cur_epoch + j, last); } // But large numbers should reverse wrap. for (uint64 j = 0; j < 10; j++) { uint64 num = kEpoch - 1 - j; CheckCalculatePacketSequenceNumber(prev_epoch + num, last); } } } TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearNextEpoch) { const uint64 cur_epoch = 2 * kEpoch; const uint64 next_epoch = 3 * kEpoch; // Cases where the last number was close to the end of the range for (uint64 i = 0; i < 10; i++) { QuicPacketSequenceNumber last = next_epoch - 1 - i; // Small numbers should wrap. for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(next_epoch + j, last); } // but large numbers should not (even if they're out of order). for (uint64 j = 0; j < 10; j++) { uint64 num = kEpoch - 1 - j; CheckCalculatePacketSequenceNumber(cur_epoch + num, last); } } } TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearNextMax) { const uint64 max_number = numeric_limits::max(); const uint64 max_epoch = max_number & ~kMask; // Cases where the last number was close to the end of the range for (uint64 i = 0; i < 10; i++) { // Subtract 1, because the expected next sequence number is 1 more than the // last sequence number. QuicPacketSequenceNumber last = max_number - i - 1; // Small numbers should not wrap, because they have nowhere to go. for (uint64 j = 0; j < 10; j++) { CheckCalculatePacketSequenceNumber(max_epoch + j, last); } // Large numbers should not wrap either. for (uint64 j = 0; j < 10; j++) { uint64 num = kEpoch - 1 - j; CheckCalculatePacketSequenceNumber(max_epoch + num, last); } } } TEST_P(QuicFramerTest, EmptyPacket) { char packet[] = { 0x00 }; QuicEncryptedPacket encrypted(packet, 0, false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_INVALID_PACKET_HEADER, framer_.error()); } TEST_P(QuicFramerTest, LargePacket) { unsigned char packet[kMaxPacketSize + 1] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; memset(packet + GetPacketHeaderSize( PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), 0, kMaxPacketSize - GetPacketHeaderSize( PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP) + 1); QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); ASSERT_TRUE(visitor_.header_.get()); // Make sure we've parsed the packet header, so we can send an error. EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); // Make sure the correct error is propagated. EXPECT_EQ(QUIC_PACKET_TOO_LARGE, framer_.error()); } TEST_P(QuicFramerTest, PacketHeader) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(!kIncludeVersion)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(!kIncludeVersion)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWith4ByteConnectionId) { QuicFramerPeer::SetLastSerializedConnectionId( &framer_, GG_UINT64_C(0xFEDCBA9876543210)); unsigned char packet[] = { // public flags (4 byte connection_id) 0x38, // connection_id 0x10, 0x32, 0x54, 0x76, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_4BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(PACKET_4BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(PACKET_4BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(PACKET_4BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeader1ByteConnectionId) { QuicFramerPeer::SetLastSerializedConnectionId( &framer_, GG_UINT64_C(0xFEDCBA9876543210)); unsigned char packet[] = { // public flags (1 byte connection_id) 0x34, // connection_id 0x10, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_1BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(PACKET_1BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(PACKET_1BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(PACKET_1BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWith0ByteConnectionId) { QuicFramerPeer::SetLastSerializedConnectionId( &framer_, GG_UINT64_C(0xFEDCBA9876543210)); unsigned char packet[] = { // public flags (0 byte connection_id) 0x30, // connection_id // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_0BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(PACKET_0BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(PACKET_0BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(PACKET_0BYTE_CONNECTION_ID, !kIncludeVersion)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWithVersionFlag) { unsigned char packet[] = { // public flags (version) 0x3D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_TRUE(visitor_.header_->public_header.version_flag); EXPECT_EQ(GetParam(), visitor_.header_->public_header.versions[0]); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < kVersionOffset) { expected_error = "Unable to read ConnectionId."; } else if (i < GetSequenceNumberOffset(kIncludeVersion)) { expected_error = "Unable to read protocol version."; } else if (i < GetPrivateFlagsOffset(kIncludeVersion)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(kIncludeVersion)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWith4ByteSequenceNumber) { QuicFramerPeer::SetLastSequenceNumber(&framer_, GG_UINT64_C(0x123456789ABA)); unsigned char packet[] = { // public flags (8 byte connection_id and 4 byte sequence number) 0x2C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_4BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(!kIncludeVersion, PACKET_4BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(!kIncludeVersion, PACKET_4BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWith2ByteSequenceNumber) { QuicFramerPeer::SetLastSequenceNumber(&framer_, GG_UINT64_C(0x123456789ABA)); unsigned char packet[] = { // public flags (8 byte connection_id and 2 byte sequence number) 0x1C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_2BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(!kIncludeVersion, PACKET_2BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(!kIncludeVersion, PACKET_2BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, PacketHeaderWith1ByteSequenceNumber) { QuicFramerPeer::SetLastSequenceNumber(&framer_, GG_UINT64_C(0x123456789ABA)); unsigned char packet[] = { // public flags (8 byte connection_id and 1 byte sequence number) 0x0C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, // private flags 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_FALSE(visitor_.header_->fec_flag); EXPECT_FALSE(visitor_.header_->entropy_flag); EXPECT_EQ(0, visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); // Now test framing boundaries for (size_t i = 0; i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); ++i) { string expected_error; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) { expected_error = "Unable to read ConnectionId."; } else if (i < GetPrivateFlagsOffset(!kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read sequence number."; } else if (i < GetFecGroupOffset(!kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER)) { expected_error = "Unable to read private flags."; } else { expected_error = "Unable to read first fec protected packet offset."; } CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } } TEST_P(QuicFramerTest, InvalidPublicFlag) { unsigned char packet[] = { // public flags: all flags set but the public reset flag and version flag. 0xFC, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (padding) 0x00, 0x00, 0x00, 0x00, 0x00 }; CheckProcessingFails(packet, arraysize(packet), "Illegal public flags value.", QUIC_INVALID_PACKET_HEADER); // Now turn off validation. framer_.set_validate_flags(false); QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); }; TEST_P(QuicFramerTest, InvalidPublicFlagWithMatchingVersions) { unsigned char packet[] = { // public flags (8 byte connection_id and version flag and an unknown flag) 0x4D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (padding) 0x00, 0x00, 0x00, 0x00, 0x00 }; CheckProcessingFails(packet, arraysize(packet), "Illegal public flags value.", QUIC_INVALID_PACKET_HEADER); }; TEST_P(QuicFramerTest, LargePublicFlagWithMismatchedVersions) { unsigned char packet[] = { // public flags (8 byte connection_id, version flag and an unknown flag) 0x7D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', '0', '0', // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (padding frame) 0x00, 0x00, 0x00, 0x00, 0x00 }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0, visitor_.frame_count_); EXPECT_EQ(1, visitor_.version_mismatch_); }; TEST_P(QuicFramerTest, InvalidPrivateFlag) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x10, // frame type (padding) 0x00, 0x00, 0x00, 0x00, 0x00 }; CheckProcessingFails(packet, arraysize(packet), "Illegal private flags value.", QUIC_INVALID_PACKET_HEADER); }; TEST_P(QuicFramerTest, InvalidFECGroupOffset) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, // private flags (fec group) 0x02, // first fec protected packet offset 0x10 }; CheckProcessingFails(packet, arraysize(packet), "First fec protected packet offset must be less " "than the sequence number.", QUIC_INVALID_PACKET_HEADER); }; TEST_P(QuicFramerTest, PaddingFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (padding frame) 0x00, // Ignored data (which in this case is a stream frame) // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); // A packet with no frames is not acceptable. CheckProcessingFails( packet, GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), "Packet has no frames.", QUIC_MISSING_PAYLOAD); } TEST_P(QuicFramerTest, StreamFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(static_cast(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); // Now test framing boundaries CheckStreamFrameBoundaries(packet, kQuicMaxStreamIdSize, !kIncludeVersion); } TEST_P(QuicFramerTest, StreamFrame3ByteStreamId) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFE, // stream id 0x04, 0x03, 0x02, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(GG_UINT64_C(0x00020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); // Now test framing boundaries const size_t stream_id_size = 3; CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion); } TEST_P(QuicFramerTest, StreamFrame2ByteStreamId) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFD, // stream id 0x04, 0x03, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(static_cast(0x00000304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); // Now test framing boundaries const size_t stream_id_size = 2; CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion); } TEST_P(QuicFramerTest, StreamFrame1ByteStreamId) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFC, // stream id 0x04, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(static_cast(0x00000004), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); // Now test framing boundaries const size_t stream_id_size = 1; CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion); } TEST_P(QuicFramerTest, StreamFrameWithVersion) { unsigned char packet[] = { // public flags (version, 8 byte connection_id) 0x3D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(visitor_.header_.get()->public_header.version_flag); EXPECT_EQ(GetParam(), visitor_.header_.get()->public_header.versions[0]); EXPECT_TRUE(CheckDecryption(encrypted, kIncludeVersion)); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(static_cast(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); // Now test framing boundaries CheckStreamFrameBoundaries(packet, kQuicMaxStreamIdSize, kIncludeVersion); } TEST_P(QuicFramerTest, RejectPacket) { visitor_.accept_packet_ = false; unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); ASSERT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); } TEST_P(QuicFramerTest, RejectPublicHeader) { visitor_.accept_public_header_ = false; unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.public_header_.get()); ASSERT_FALSE(visitor_.header_.get()); } TEST_P(QuicFramerTest, RevivedStreamFrame) { unsigned char payload[] = { // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = true; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; // Do not encrypt the payload because the revived payload is post-encryption. EXPECT_TRUE(framer_.ProcessRevivedPacket(&header, StringPiece(AsChars(payload), arraysize(payload)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_EQ(1, visitor_.revived_packets_); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->public_header.connection_id); EXPECT_FALSE(visitor_.header_->public_header.reset_flag); EXPECT_FALSE(visitor_.header_->public_header.version_flag); EXPECT_TRUE(visitor_.header_->fec_flag); EXPECT_TRUE(visitor_.header_->entropy_flag); EXPECT_EQ(1 << (header.packet_sequence_number % 8), visitor_.header_->entropy_hash); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(0x00u, visitor_.header_->fec_group); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); } TEST_P(QuicFramerTest, StreamFrameInFecGroup) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x12, 0x34, // private flags (fec group) 0x02, // first fec protected packet offset 0x02, // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(IN_FEC_GROUP, visitor_.header_->is_in_fec_group); EXPECT_EQ(GG_UINT64_C(0x341256789ABA), visitor_.header_->fec_group); const size_t fec_offset = GetStartOfFecProtectedData(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER); EXPECT_EQ( string(AsChars(packet) + fec_offset, arraysize(packet) - fec_offset), visitor_.fec_protected_payload_); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]); } TEST_P(QuicFramerTest, AckFrameV13) { if (framer_.version() != QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packets 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame.sent_info.entropy_hash); EXPECT_EQ(0xBA, frame.received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.received_info.largest_observed); ASSERT_EQ(1u, frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = frame.received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); const size_t kSentEntropyOffset = kQuicFrameTypeSize; const size_t kLeastUnackedOffset = kSentEntropyOffset + kQuicEntropyHashSize; const size_t kReceivedEntropyOffset = kLeastUnackedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kLargestObservedOffset = kReceivedEntropyOffset + kQuicEntropyHashSize; const size_t kMissingDeltaTimeOffset = kLargestObservedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kNumMissingPacketOffset = kMissingDeltaTimeOffset + kQuicDeltaTimeLargestObservedSize; const size_t kMissingPacketsOffset = kNumMissingPacketOffset + kNumberOfMissingPacketsSize; const size_t kMissingPacketsRange = kMissingPacketsOffset + PACKET_1BYTE_SEQUENCE_NUMBER; // Now test framing boundaries const size_t ack_frame_size = kMissingPacketsRange + PACKET_1BYTE_SEQUENCE_NUMBER; for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) { string expected_error; if (i < kLeastUnackedOffset) { expected_error = "Unable to read entropy hash for sent packets."; } else if (i < kReceivedEntropyOffset) { expected_error = "Unable to read least unacked delta."; } else if (i < kLargestObservedOffset) { expected_error = "Unable to read entropy hash for received packets."; } else if (i < kMissingDeltaTimeOffset) { expected_error = "Unable to read largest observed."; } else if (i < kNumMissingPacketOffset) { expected_error = "Unable to read delta time largest observed."; } else if (i < kMissingPacketsOffset) { expected_error = "Unable to read num missing packet ranges."; } else if (i < kMissingPacketsRange) { expected_error = "Unable to read missing sequence number delta."; } else { expected_error = "Unable to read missing sequence number range."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_ACK_DATA); } } TEST_P(QuicFramerTest, AckFrame15) { if (framer_.version() != QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packets 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // Number of revived packets. 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame.sent_info.entropy_hash); EXPECT_EQ(0xBA, frame.received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.received_info.largest_observed); ASSERT_EQ(1u, frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = frame.received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); const size_t kSentEntropyOffset = kQuicFrameTypeSize; const size_t kLeastUnackedOffset = kSentEntropyOffset + kQuicEntropyHashSize; const size_t kReceivedEntropyOffset = kLeastUnackedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kLargestObservedOffset = kReceivedEntropyOffset + kQuicEntropyHashSize; const size_t kMissingDeltaTimeOffset = kLargestObservedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kNumMissingPacketOffset = kMissingDeltaTimeOffset + kQuicDeltaTimeLargestObservedSize; const size_t kMissingPacketsOffset = kNumMissingPacketOffset + kNumberOfMissingPacketsSize; const size_t kMissingPacketsRange = kMissingPacketsOffset + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketsLength = kMissingPacketsRange + PACKET_1BYTE_SEQUENCE_NUMBER; // Now test framing boundaries const size_t ack_frame_size = kRevivedPacketsLength + PACKET_1BYTE_SEQUENCE_NUMBER; for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) { string expected_error; if (i < kLeastUnackedOffset) { expected_error = "Unable to read entropy hash for sent packets."; } else if (i < kReceivedEntropyOffset) { expected_error = "Unable to read least unacked delta."; } else if (i < kLargestObservedOffset) { expected_error = "Unable to read entropy hash for received packets."; } else if (i < kMissingDeltaTimeOffset) { expected_error = "Unable to read largest observed."; } else if (i < kNumMissingPacketOffset) { expected_error = "Unable to read delta time largest observed."; } else if (i < kMissingPacketsOffset) { expected_error = "Unable to read num missing packet ranges."; } else if (i < kMissingPacketsRange) { expected_error = "Unable to read missing sequence number delta."; } else if (i < kRevivedPacketsLength) { expected_error = "Unable to read missing sequence number range."; } else { expected_error = "Unable to read num revived packets."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_ACK_DATA); } } TEST_P(QuicFramerTest, AckFrame) { if (framer_.version() <= QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packets 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // Number of revived packets. 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(0xBA, frame.received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.received_info.largest_observed); ASSERT_EQ(1u, frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = frame.received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter); const size_t kReceivedEntropyOffset = kQuicFrameTypeSize; const size_t kLargestObservedOffset = kReceivedEntropyOffset + kQuicEntropyHashSize; const size_t kMissingDeltaTimeOffset = kLargestObservedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kNumMissingPacketOffset = kMissingDeltaTimeOffset + kQuicDeltaTimeLargestObservedSize; const size_t kMissingPacketsOffset = kNumMissingPacketOffset + kNumberOfMissingPacketsSize; const size_t kMissingPacketsRange = kMissingPacketsOffset + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketsLength = kMissingPacketsRange + PACKET_1BYTE_SEQUENCE_NUMBER; // Now test framing boundaries const size_t ack_frame_size = kRevivedPacketsLength + PACKET_1BYTE_SEQUENCE_NUMBER; for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) { string expected_error; if (i < kLargestObservedOffset) { expected_error = "Unable to read entropy hash for received packets."; } else if (i < kMissingDeltaTimeOffset) { expected_error = "Unable to read largest observed."; } else if (i < kNumMissingPacketOffset) { expected_error = "Unable to read delta time largest observed."; } else if (i < kMissingPacketsOffset) { expected_error = "Unable to read num missing packet ranges."; } else if (i < kMissingPacketsRange) { expected_error = "Unable to read missing sequence number delta."; } else if (i < kRevivedPacketsLength) { expected_error = "Unable to read missing sequence number range."; } else { expected_error = "Unable to read num revived packets."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_ACK_DATA); } } TEST_P(QuicFramerTest, AckFrameRevivedPackets) { if (framer_.version() <= QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packets 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // Number of revived packets. 0x01, // Revived packet sequence number. 0xBE, 0x9A, 0x78, 0x56, 0x34, 0x12, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(0xBA, frame.received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.received_info.largest_observed); ASSERT_EQ(1u, frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = frame.received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter); const size_t kReceivedEntropyOffset = kQuicFrameTypeSize; const size_t kLargestObservedOffset = kReceivedEntropyOffset + kQuicEntropyHashSize; const size_t kMissingDeltaTimeOffset = kLargestObservedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kNumMissingPacketOffset = kMissingDeltaTimeOffset + kQuicDeltaTimeLargestObservedSize; const size_t kMissingPacketsOffset = kNumMissingPacketOffset + kNumberOfMissingPacketsSize; const size_t kMissingPacketsRange = kMissingPacketsOffset + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketsLength = kMissingPacketsRange + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketSequenceNumberLength = kRevivedPacketsLength + PACKET_1BYTE_SEQUENCE_NUMBER; // Now test framing boundaries const size_t ack_frame_size = kRevivedPacketSequenceNumberLength + PACKET_6BYTE_SEQUENCE_NUMBER; for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) { string expected_error; if (i < kReceivedEntropyOffset) { expected_error = "Unable to read least unacked delta."; } else if (i < kLargestObservedOffset) { expected_error = "Unable to read entropy hash for received packets."; } else if (i < kMissingDeltaTimeOffset) { expected_error = "Unable to read largest observed."; } else if (i < kNumMissingPacketOffset) { expected_error = "Unable to read delta time largest observed."; } else if (i < kMissingPacketsOffset) { expected_error = "Unable to read num missing packet ranges."; } else if (i < kMissingPacketsRange) { expected_error = "Unable to read missing sequence number delta."; } else if (i < kRevivedPacketsLength) { expected_error = "Unable to read missing sequence number range."; } else if (i < kRevivedPacketSequenceNumberLength) { expected_error = "Unable to read num revived packets."; } else { expected_error = "Unable to read revived packet."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_ACK_DATA); } } TEST_P(QuicFramerTest, AckFrameRevivedPackets15) { if (framer_.version() != QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packets 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // Number of revived packets. 0x01, // Revived packet sequence number. 0xBE, 0x9A, 0x78, 0x56, 0x34, 0x12, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame.sent_info.entropy_hash); EXPECT_EQ(0xBA, frame.received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.received_info.largest_observed); ASSERT_EQ(1u, frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = frame.received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); const size_t kSentEntropyOffset = kQuicFrameTypeSize; const size_t kLeastUnackedOffset = kSentEntropyOffset + kQuicEntropyHashSize; const size_t kReceivedEntropyOffset = kLeastUnackedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kLargestObservedOffset = kReceivedEntropyOffset + kQuicEntropyHashSize; const size_t kMissingDeltaTimeOffset = kLargestObservedOffset + PACKET_6BYTE_SEQUENCE_NUMBER; const size_t kNumMissingPacketOffset = kMissingDeltaTimeOffset + kQuicDeltaTimeLargestObservedSize; const size_t kMissingPacketsOffset = kNumMissingPacketOffset + kNumberOfMissingPacketsSize; const size_t kMissingPacketsRange = kMissingPacketsOffset + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketsLength = kMissingPacketsRange + PACKET_1BYTE_SEQUENCE_NUMBER; const size_t kRevivedPacketSequenceNumberLength = kRevivedPacketsLength + PACKET_1BYTE_SEQUENCE_NUMBER; // Now test framing boundaries const size_t ack_frame_size = kRevivedPacketSequenceNumberLength + PACKET_6BYTE_SEQUENCE_NUMBER; for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) { string expected_error; if (i < kLeastUnackedOffset) { expected_error = "Unable to read entropy hash for sent packets."; } else if (i < kReceivedEntropyOffset) { expected_error = "Unable to read least unacked delta."; } else if (i < kLargestObservedOffset) { expected_error = "Unable to read entropy hash for received packets."; } else if (i < kMissingDeltaTimeOffset) { expected_error = "Unable to read largest observed."; } else if (i < kNumMissingPacketOffset) { expected_error = "Unable to read delta time largest observed."; } else if (i < kMissingPacketsOffset) { expected_error = "Unable to read num missing packet ranges."; } else if (i < kMissingPacketsRange) { expected_error = "Unable to read missing sequence number delta."; } else if (i < kRevivedPacketsLength) { expected_error = "Unable to read missing sequence number range."; } else if (i < kRevivedPacketSequenceNumberLength) { expected_error = "Unable to read num revived packets."; } else { expected_error = "Unable to read revived packet."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_ACK_DATA); } } TEST_P(QuicFramerTest, AckFrameNoNacks) { if (framer_.version() <= QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (no nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x4C, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); QuicAckFrame* frame = visitor_.ack_frames_[0]; EXPECT_EQ(0xBA, frame->received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->received_info.largest_observed); ASSERT_EQ(0u, frame->received_info.missing_packets.size()); // Verify that the packet re-serializes identically. QuicFrames frames; frames.push_back(QuicFrame(frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(*visitor_.header_, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, AckFrameNoNacks15) { if (framer_.version() > QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (no nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x4C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); QuicAckFrame* frame = visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame->sent_info.entropy_hash); EXPECT_EQ(0xBA, frame->received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->received_info.largest_observed); ASSERT_EQ(0u, frame->received_info.missing_packets.size()); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame->sent_info.least_unacked); // Verify that the packet re-serializes identically. QuicFrames frames; frames.push_back(QuicFrame(frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(*visitor_.header_, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, AckFrame500Nacks) { if (framer_.version() <= QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x02, // missing packet delta 0x01, // 243 more missing packets in range. // The ranges are listed in this order so the re-constructed packet matches. 0xF3, // No gap between ranges 0x00, // 255 more missing packets in range. 0xFF, // No revived packets. 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); QuicAckFrame* frame = visitor_.ack_frames_[0]; EXPECT_EQ(0xBA, frame->received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->received_info.largest_observed); EXPECT_EQ(0u, frame->received_info.revived_packets.size()); ASSERT_EQ(500u, frame->received_info.missing_packets.size()); SequenceNumberSet::const_iterator first_missing_iter = frame->received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE) - 499, *first_missing_iter); SequenceNumberSet::const_reverse_iterator last_missing_iter = frame->received_info.missing_packets.rbegin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *last_missing_iter); // Verify that the packet re-serializes identically. QuicFrames frames; frames.push_back(QuicFrame(frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(*visitor_.header_, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, AckFrame500Nacks15) { if (framer_.version() != QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x02, // missing packet delta 0x01, // 243 more missing packets in range. // The ranges are listed in this order so the re-constructed packet matches. 0xF3, // No gap between ranges 0x00, // 255 more missing packets in range. 0xFF, // No revived packets. 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); QuicAckFrame* frame = visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame->sent_info.entropy_hash); EXPECT_EQ(0xBA, frame->received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->received_info.largest_observed); EXPECT_EQ(0u, frame->received_info.revived_packets.size()); ASSERT_EQ(500u, frame->received_info.missing_packets.size()); SequenceNumberSet::const_iterator first_missing_iter = frame->received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE) - 499, *first_missing_iter); SequenceNumberSet::const_reverse_iterator last_missing_iter = frame->received_info.missing_packets.rbegin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *last_missing_iter); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame->sent_info.least_unacked); // Verify that the packet re-serializes identically. QuicFrames frames; frames.push_back(QuicFrame(frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(*visitor_.header_, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, AckFrame500NacksV13) { if (framer_.version() != QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0xBA, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x02, // missing packet delta 0x01, // 243 more missing packets in range. // The ranges are listed in this order so the re-constructed packet matches. 0xF3, // No gap between ranges 0x00, // 255 more missing packets in range. 0xFF, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); QuicAckFrame* frame = visitor_.ack_frames_[0]; EXPECT_EQ(0xAB, frame->sent_info.entropy_hash); EXPECT_EQ(0xBA, frame->received_info.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->received_info.largest_observed); ASSERT_EQ(500u, frame->received_info.missing_packets.size()); SequenceNumberSet::const_iterator first_missing_iter = frame->received_info.missing_packets.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE) - 499, *first_missing_iter); SequenceNumberSet::const_reverse_iterator last_missing_iter = frame->received_info.missing_packets.rbegin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *last_missing_iter); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame->sent_info.least_unacked); // Verify that the packet re-serializes identically. QuicFrames frames; frames.push_back(QuicFrame(frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(*visitor_.header_, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, CongestionFeedbackFrameTCP) { if (framer_.version() == QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (tcp) 0x00, // ack_frame.feedback.tcp.receive_window 0x03, 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.congestion_feedback_frames_.size()); const QuicCongestionFeedbackFrame& frame = *visitor_.congestion_feedback_frames_[0]; ASSERT_EQ(kTCP, frame.type); EXPECT_EQ(0x4030u, frame.tcp.receive_window); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < 4; ++i) { string expected_error; if (i < 2) { expected_error = "Unable to read congestion feedback type."; } else if (i < 4) { expected_error = "Unable to read receive window."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONGESTION_FEEDBACK_DATA); } } TEST_P(QuicFramerTest, CongestionFeedbackFrameTCPV13) { if (framer_.version() != QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (tcp) 0x00, // ack_frame.feedback.tcp.accumulated_number_of_lost_packets 0x01, 0x02, // ack_frame.feedback.tcp.receive_window 0x03, 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.congestion_feedback_frames_.size()); const QuicCongestionFeedbackFrame& frame = *visitor_.congestion_feedback_frames_[0]; ASSERT_EQ(kTCP, frame.type); EXPECT_EQ(0x4030u, frame.tcp.receive_window); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < 6; ++i) { string expected_error; if (i < 2) { expected_error = "Unable to read congestion feedback type."; } else if (i < 4) { expected_error = "Unable to read accumulated number of lost packets."; } else if (i < 6) { expected_error = "Unable to read receive window."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONGESTION_FEEDBACK_DATA); } } TEST_P(QuicFramerTest, CongestionFeedbackFrameInterArrival) { if (framer_.version() == QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (inter arrival) 0x01, // num received packets 0x03, // lowest sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // receive time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0x07, // sequence delta 0x01, 0x00, // time delta 0x01, 0x00, 0x00, 0x00, // sequence delta (skip one packet) 0x03, 0x00, // time delta 0x02, 0x00, 0x00, 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.congestion_feedback_frames_.size()); const QuicCongestionFeedbackFrame& frame = *visitor_.congestion_feedback_frames_[0]; ASSERT_EQ(kInterArrival, frame.type); ASSERT_EQ(3u, frame.inter_arrival.received_packet_times.size()); TimeMap::const_iterator iter = frame.inter_arrival.received_packet_times.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABA), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59687), iter->second.Subtract(start_).ToMicroseconds()); ++iter; EXPECT_EQ(GG_UINT64_C(0x0123456789ABB), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59688), iter->second.Subtract(start_).ToMicroseconds()); ++iter; EXPECT_EQ(GG_UINT64_C(0x0123456789ABD), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59689), iter->second.Subtract(start_).ToMicroseconds()); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < 29; ++i) { string expected_error; if (i < 2) { expected_error = "Unable to read congestion feedback type."; } else if (i < 3) { expected_error = "Unable to read num received packets."; } else if (i < 9) { expected_error = "Unable to read smallest received."; } else if (i < 17) { expected_error = "Unable to read time received."; } else if (i < 19) { expected_error = "Unable to read sequence delta in received packets."; } else if (i < 23) { expected_error = "Unable to read time delta in received packets."; } else if (i < 25) { expected_error = "Unable to read sequence delta in received packets."; } else if (i < 29) { expected_error = "Unable to read time delta in received packets."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONGESTION_FEEDBACK_DATA); } } TEST_P(QuicFramerTest, CongestionFeedbackFrameInterArrivalV13) { if (framer_.version() != QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (inter arrival) 0x01, // accumulated_number_of_lost_packets 0x02, 0x03, // num received packets 0x03, // lowest sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // receive time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0x07, // sequence delta 0x01, 0x00, // time delta 0x01, 0x00, 0x00, 0x00, // sequence delta (skip one packet) 0x03, 0x00, // time delta 0x02, 0x00, 0x00, 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.congestion_feedback_frames_.size()); const QuicCongestionFeedbackFrame& frame = *visitor_.congestion_feedback_frames_[0]; ASSERT_EQ(kInterArrival, frame.type); ASSERT_EQ(3u, frame.inter_arrival.received_packet_times.size()); TimeMap::const_iterator iter = frame.inter_arrival.received_packet_times.begin(); EXPECT_EQ(GG_UINT64_C(0x0123456789ABA), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59687), iter->second.Subtract(start_).ToMicroseconds()); ++iter; EXPECT_EQ(GG_UINT64_C(0x0123456789ABB), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59688), iter->second.Subtract(start_).ToMicroseconds()); ++iter; EXPECT_EQ(GG_UINT64_C(0x0123456789ABD), iter->first); EXPECT_EQ(GG_INT64_C(0x07E1D2C3B4A59689), iter->second.Subtract(start_).ToMicroseconds()); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < 31; ++i) { string expected_error; if (i < 2) { expected_error = "Unable to read congestion feedback type."; } else if (i < 4) { expected_error = "Unable to read accumulated number of lost packets."; } else if (i < 5) { expected_error = "Unable to read num received packets."; } else if (i < 11) { expected_error = "Unable to read smallest received."; } else if (i < 19) { expected_error = "Unable to read time received."; } else if (i < 21) { expected_error = "Unable to read sequence delta in received packets."; } else if (i < 25) { expected_error = "Unable to read time delta in received packets."; } else if (i < 27) { expected_error = "Unable to read sequence delta in received packets."; } else if (i < 31) { expected_error = "Unable to read time delta in received packets."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONGESTION_FEEDBACK_DATA); } } TEST_P(QuicFramerTest, CongestionFeedbackFrameFixRate) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (fix rate) 0x02, // bitrate_in_bytes_per_second; 0x01, 0x02, 0x03, 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.congestion_feedback_frames_.size()); const QuicCongestionFeedbackFrame& frame = *visitor_.congestion_feedback_frames_[0]; ASSERT_EQ(kFixRate, frame.type); EXPECT_EQ(static_cast(0x04030201), frame.fix_rate.bitrate.ToBytesPerSecond()); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < 6; ++i) { string expected_error; if (i < 2) { expected_error = "Unable to read congestion feedback type."; } else if (i < 6) { expected_error = "Unable to read bitrate."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONGESTION_FEEDBACK_DATA); } } TEST_P(QuicFramerTest, CongestionFeedbackFrameInvalidFeedback) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (invalid) 0x03, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(encrypted)); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(QUIC_INVALID_CONGESTION_FEEDBACK_DATA, framer_.error()); } TEST_P(QuicFramerTest, StopWaitingFrame) { if (framer_.version() <= QUIC_VERSION_15) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x06, // entropy hash of sent packets till least awaiting - 1. 0xAB, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.stop_waiting_frames_.size()); const QuicStopWaitingFrame& frame = *visitor_.stop_waiting_frames_[0]; EXPECT_EQ(0xAB, frame.entropy_hash); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.least_unacked); const size_t kSentEntropyOffset = kQuicFrameTypeSize; const size_t kLeastUnackedOffset = kSentEntropyOffset + kQuicEntropyHashSize; const size_t frame_size = 7; for (size_t i = kQuicFrameTypeSize; i < frame_size; ++i) { string expected_error; if (i < kLeastUnackedOffset) { expected_error = "Unable to read entropy hash for sent packets."; } else { expected_error = "Unable to read least unacked delta."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_STOP_WAITING_DATA); } } TEST_P(QuicFramerTest, RstStreamFrameVersion13) { if (version_ > QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (rst stream frame) 0x01, // stream id 0x04, 0x03, 0x02, 0x01, // error code 0x01, 0x00, 0x00, 0x00, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.rst_stream_frame_.stream_id); EXPECT_EQ(0x01, visitor_.rst_stream_frame_.error_code); EXPECT_EQ("because I can", visitor_.rst_stream_frame_.error_details); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetMinRstStreamFrameSize(version_); ++i) { string expected_error; if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize) { expected_error = "Unable to read stream_id."; } else if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicErrorCodeSize) { expected_error = "Unable to read rst stream error code."; } else { expected_error = "Unable to read rst stream error details."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_RST_STREAM_DATA); } } TEST_P(QuicFramerTest, RstStreamFrameQuic) { if (version_ <= QUIC_VERSION_13) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (rst stream frame) 0x01, // stream id 0x04, 0x03, 0x02, 0x01, // sent byte offset 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // error code 0x01, 0x00, 0x00, 0x00, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.rst_stream_frame_.stream_id); EXPECT_EQ(0x01, visitor_.rst_stream_frame_.error_code); EXPECT_EQ("because I can", visitor_.rst_stream_frame_.error_details); EXPECT_EQ(GG_UINT64_C(0x0807060504030201), visitor_.rst_stream_frame_.byte_offset); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetMinRstStreamFrameSize(version_); ++i) { string expected_error; if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize) { expected_error = "Unable to read stream_id."; } else if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize + + kQuicMaxStreamOffsetSize) { expected_error = "Unable to read rst stream sent byte offset."; } else if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize + + kQuicMaxStreamOffsetSize + kQuicErrorCodeSize) { expected_error = "Unable to read rst stream error code."; } else { expected_error = "Unable to read rst stream error details."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_RST_STREAM_DATA); } } TEST_P(QuicFramerTest, ConnectionCloseFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (connection close frame) 0x02, // error code 0x11, 0x00, 0x00, 0x00, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0x11, visitor_.connection_close_frame_.error_code); EXPECT_EQ("because I can", visitor_.connection_close_frame_.error_details); ASSERT_EQ(0u, visitor_.ack_frames_.size()); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetMinConnectionCloseFrameSize(); ++i) { string expected_error; if (i < kQuicFrameTypeSize + kQuicErrorCodeSize) { expected_error = "Unable to read connection close error code."; } else { expected_error = "Unable to read connection close error details."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_CONNECTION_CLOSE_DATA); } } TEST_P(QuicFramerTest, GoAwayFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (go away frame) 0x03, // error code 0x09, 0x00, 0x00, 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.goaway_frame_.last_good_stream_id); EXPECT_EQ(0x9, visitor_.goaway_frame_.error_code); EXPECT_EQ("because I can", visitor_.goaway_frame_.reason_phrase); const size_t reason_size = arraysize("because I can") - 1; // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetMinGoAwayFrameSize() + reason_size; ++i) { string expected_error; if (i < kQuicFrameTypeSize + kQuicErrorCodeSize) { expected_error = "Unable to read go away error code."; } else if (i < kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicMaxStreamIdSize) { expected_error = "Unable to read last good stream id."; } else { expected_error = "Unable to read goaway reason."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_GOAWAY_DATA); } } TEST_P(QuicFramerTest, WindowUpdateFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (window update frame) 0x04, // stream id 0x04, 0x03, 0x02, 0x01, // byte offset 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); // WINDOW_UPDATE frame introduced in QUIC_VERSION_14. if (version_ <= QUIC_VERSION_13) { string expected_error = "Trying to read a WindowUpdateFrame in " + QuicVersionToString(version_); EXPECT_DFATAL(framer_.ProcessPacket(encrypted), expected_error); return; } EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.window_update_frame_.stream_id); EXPECT_EQ(GG_UINT64_C(0x0c0b0a0908070605), visitor_.window_update_frame_.byte_offset); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetWindowUpdateFrameSize(); ++i) { string expected_error; if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize) { expected_error = "Unable to read stream_id."; } else { expected_error = "Unable to read window byte_offset."; } CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_WINDOW_UPDATE_DATA); } } TEST_P(QuicFramerTest, BlockedFrame) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (blocked frame) 0x05, // stream id 0x04, 0x03, 0x02, 0x01, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); // BLOCKED frame introduced in QUIC_VERSION_14. if (version_ <= QUIC_VERSION_13) { string expected_error = "Trying to read a BlockedFrame in " + QuicVersionToString(version_); EXPECT_DFATAL(framer_.ProcessPacket(encrypted), expected_error); return; } EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.blocked_frame_.stream_id); // Now test framing boundaries for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetBlockedFrameSize(); ++i) { string expected_error = "Unable to read stream_id."; CheckProcessingFails( packet, i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), expected_error, QUIC_INVALID_BLOCKED_DATA); } } TEST_P(QuicFramerTest, PingFrame) { if (version_ <= QUIC_VERSION_17) { return; } unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (ping frame) 0x07, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(1u, visitor_.ping_frames_.size()); // No need to check the PING frame boundaries because it has no payload. } TEST_P(QuicFramerTest, PublicResetPacket) { unsigned char packet[] = { // public flags (public reset, 8 byte connection_id) 0x0E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // message tag (kPRST) 'P', 'R', 'S', 'T', // num_entries (2) + padding 0x02, 0x00, 0x00, 0x00, // tag kRNON 'R', 'N', 'O', 'N', // end offset 8 0x08, 0x00, 0x00, 0x00, // tag kRSEQ 'R', 'S', 'E', 'Q', // end offset 16 0x10, 0x00, 0x00, 0x00, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); ASSERT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.public_reset_packet_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.public_reset_packet_->public_header.connection_id); EXPECT_TRUE(visitor_.public_reset_packet_->public_header.reset_flag); EXPECT_FALSE(visitor_.public_reset_packet_->public_header.version_flag); EXPECT_EQ(GG_UINT64_C(0xABCDEF0123456789), visitor_.public_reset_packet_->nonce_proof); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.public_reset_packet_->rejected_sequence_number); EXPECT_TRUE( visitor_.public_reset_packet_->client_address.address().empty()); // Now test framing boundaries for (size_t i = 0; i < arraysize(packet); ++i) { string expected_error; DVLOG(1) << "iteration: " << i; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else if (i < kPublicResetPacketMessageTagOffset) { expected_error = "Unable to read ConnectionId."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else { expected_error = "Unable to read reset message."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PUBLIC_RST_PACKET); } } } TEST_P(QuicFramerTest, PublicResetPacketWithTrailingJunk) { unsigned char packet[] = { // public flags (public reset, 8 byte connection_id) 0x0E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // message tag (kPRST) 'P', 'R', 'S', 'T', // num_entries (2) + padding 0x02, 0x00, 0x00, 0x00, // tag kRNON 'R', 'N', 'O', 'N', // end offset 8 0x08, 0x00, 0x00, 0x00, // tag kRSEQ 'R', 'S', 'E', 'Q', // end offset 16 0x10, 0x00, 0x00, 0x00, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, // trailing junk 'j', 'u', 'n', 'k', }; string expected_error = "Unable to read reset message."; CheckProcessingFails(packet, arraysize(packet), expected_error, QUIC_INVALID_PUBLIC_RST_PACKET); } TEST_P(QuicFramerTest, PublicResetPacketWithClientAddress) { unsigned char packet[] = { // public flags (public reset, 8 byte connection_id) 0x0E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // message tag (kPRST) 'P', 'R', 'S', 'T', // num_entries (3) + padding 0x03, 0x00, 0x00, 0x00, // tag kRNON 'R', 'N', 'O', 'N', // end offset 8 0x08, 0x00, 0x00, 0x00, // tag kRSEQ 'R', 'S', 'E', 'Q', // end offset 16 0x10, 0x00, 0x00, 0x00, // tag kCADR 'C', 'A', 'D', 'R', // end offset 24 0x18, 0x00, 0x00, 0x00, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, // client address: 4.31.198.44:443 0x02, 0x00, 0x04, 0x1F, 0xC6, 0x2C, 0xBB, 0x01, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); ASSERT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.public_reset_packet_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.public_reset_packet_->public_header.connection_id); EXPECT_TRUE(visitor_.public_reset_packet_->public_header.reset_flag); EXPECT_FALSE(visitor_.public_reset_packet_->public_header.version_flag); EXPECT_EQ(GG_UINT64_C(0xABCDEF0123456789), visitor_.public_reset_packet_->nonce_proof); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.public_reset_packet_->rejected_sequence_number); EXPECT_EQ("4.31.198.44", IPAddressToString(visitor_.public_reset_packet_-> client_address.address())); EXPECT_EQ(443, visitor_.public_reset_packet_->client_address.port()); // Now test framing boundaries for (size_t i = 0; i < arraysize(packet); ++i) { string expected_error; DVLOG(1) << "iteration: " << i; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else if (i < kPublicResetPacketMessageTagOffset) { expected_error = "Unable to read ConnectionId."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else { expected_error = "Unable to read reset message."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PUBLIC_RST_PACKET); } } } // TODO(wtc): remove this test when we drop support for QUIC_VERSION_13. TEST_P(QuicFramerTest, PublicResetPacketOld) { unsigned char packet[] = { // public flags (public reset, 8 byte connection_id) 0x3E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); ASSERT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.public_reset_packet_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.public_reset_packet_->public_header.connection_id); EXPECT_TRUE(visitor_.public_reset_packet_->public_header.reset_flag); EXPECT_FALSE(visitor_.public_reset_packet_->public_header.version_flag); EXPECT_EQ(GG_UINT64_C(0xABCDEF0123456789), visitor_.public_reset_packet_->nonce_proof); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.public_reset_packet_->rejected_sequence_number); EXPECT_TRUE( visitor_.public_reset_packet_->client_address.address().empty()); // Now test framing boundaries for (size_t i = 0; i < arraysize(packet); ++i) { string expected_error; DVLOG(1) << "iteration: " << i; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else if (i < kPublicResetPacketNonceProofOffset) { expected_error = "Unable to read ConnectionId."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER); } else if (i < kPublicResetPacketRejectedSequenceNumberOffset) { expected_error = "Unable to read nonce proof."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PUBLIC_RST_PACKET); } else { expected_error = "Unable to read rejected sequence number."; CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PUBLIC_RST_PACKET); } } } TEST_P(QuicFramerTest, VersionNegotiationPacket) { unsigned char packet[] = { // public flags (version, 8 byte connection_id) 0x3D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), 'Q', '2', '.', '0', }; QuicFramerPeer::SetIsServer(&framer_, false); QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); ASSERT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.version_negotiation_packet_.get()); EXPECT_EQ(2u, visitor_.version_negotiation_packet_->versions.size()); EXPECT_EQ(GetParam(), visitor_.version_negotiation_packet_->versions[0]); for (size_t i = 0; i <= kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID; ++i) { string expected_error; QuicErrorCode error_code = QUIC_INVALID_PACKET_HEADER; if (i < kConnectionIdOffset) { expected_error = "Unable to read public flags."; } else if (i < kVersionOffset) { expected_error = "Unable to read ConnectionId."; } else { expected_error = "Unable to read supported version in negotiation."; error_code = QUIC_INVALID_VERSION_NEGOTIATION_PACKET; } CheckProcessingFails(packet, i, expected_error, error_code); } } TEST_P(QuicFramerTest, FecPacket) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (fec group & FEC) 0x06, // first fec protected packet offset 0x01, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion)); EXPECT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); ASSERT_EQ(1, visitor_.fec_count_); const QuicFecData& fec_data = *visitor_.fec_data_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABB), fec_data.fec_group); EXPECT_EQ("abcdefghijklmnop", fec_data.redundancy); } TEST_P(QuicFramerTest, BuildPaddingFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicPaddingFrame padding_frame; QuicFrames frames; frames.push_back(QuicFrame(&padding_frame)); unsigned char packet[kMaxPacketSize] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (padding frame) 0x00, 0x00, 0x00, 0x00, 0x00 }; uint64 header_size = GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, Build4ByteSequenceNumberPaddingFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.public_header.sequence_number_length = PACKET_4BYTE_SEQUENCE_NUMBER; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicPaddingFrame padding_frame; QuicFrames frames; frames.push_back(QuicFrame(&padding_frame)); unsigned char packet[kMaxPacketSize] = { // public flags (8 byte connection_id and 4 byte sequence number) 0x2C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, // private flags 0x00, // frame type (padding frame) 0x00, 0x00, 0x00, 0x00, 0x00 }; uint64 header_size = GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_4BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, Build2ByteSequenceNumberPaddingFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.public_header.sequence_number_length = PACKET_2BYTE_SEQUENCE_NUMBER; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicPaddingFrame padding_frame; QuicFrames frames; frames.push_back(QuicFrame(&padding_frame)); unsigned char packet[kMaxPacketSize] = { // public flags (8 byte connection_id and 2 byte sequence number) 0x1C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, // private flags 0x00, // frame type (padding frame) 0x00, 0x00, 0x00, 0x00, 0x00 }; uint64 header_size = GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_2BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, Build1ByteSequenceNumberPaddingFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.public_header.sequence_number_length = PACKET_1BYTE_SEQUENCE_NUMBER; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicPaddingFrame padding_frame; QuicFrames frames; frames.push_back(QuicFrame(&padding_frame)); unsigned char packet[kMaxPacketSize] = { // public flags (8 byte connection_id and 1 byte sequence number) 0x0C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, // private flags 0x00, // frame type (padding frame) 0x00, 0x00, 0x00, 0x00, 0x00 }; uint64 header_size = GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP); memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildStreamFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC); header.fec_group = 0; QuicStreamFrame stream_frame; stream_frame.stream_id = 0x01020304; stream_frame.fin = true; stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); stream_frame.data = MakeIOVector("hello world!"); QuicFrames frames; frames.push_back(QuicFrame(&stream_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (stream frame with fin and no length) 0xDF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildStreamFramePacketInFecGroup) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC); header.is_in_fec_group = IN_FEC_GROUP; header.fec_group = GG_UINT64_C(0x77123456789ABC); QuicStreamFrame stream_frame; stream_frame.stream_id = 0x01020304; stream_frame.fin = true; stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); stream_frame.data = MakeIOVector("hello world!"); QuicFrames frames; frames.push_back(QuicFrame(&stream_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy, is_in_fec_group) 0x03, // FEC group 0x00, // frame type (stream frame with fin and data length field) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length (since packet is in an FEC group) 0x0C, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildStreamFramePacketWithVersionFlag) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = true; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC); header.fec_group = 0; QuicStreamFrame stream_frame; stream_frame.stream_id = 0x01020304; stream_frame.fin = true; stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); stream_frame.data = MakeIOVector("hello world!"); QuicFrames frames; frames.push_back(QuicFrame(&stream_frame)); unsigned char packet[] = { // public flags (version, 8 byte connection_id) 0x3D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (stream frame with fin and no length) 0xDF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicFramerPeer::SetIsServer(&framer_, false); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildVersionNegotiationPacket) { QuicPacketPublicHeader header; header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.reset_flag = false; header.version_flag = true; unsigned char packet[] = { // public flags (version, 8 byte connection_id) 0x0D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(), }; QuicVersionVector versions; versions.push_back(GetParam()); scoped_ptr data( framer_.BuildVersionNegotiationPacket(header, versions)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildAckFramePacket) { if (version_ <= QUIC_VERSION_15) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.entropy_hash = 0x43; ack_frame.received_info.largest_observed = GG_UINT64_C(0x770123456789ABF); ack_frame.received_info.delta_time_largest_observed = QuicTime::Delta::Zero(); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x770123456789ABE)); QuicFrames frames; frames.push_back(QuicFrame(&ack_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of all received packets. 0x43, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // 0 revived packets. 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildAckFramePacket15) { if (version_ != QUIC_VERSION_15) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.entropy_hash = 0x43; ack_frame.received_info.largest_observed = GG_UINT64_C(0x770123456789ABF); ack_frame.received_info.delta_time_largest_observed = QuicTime::Delta::Zero(); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x770123456789ABE)); ack_frame.sent_info.entropy_hash = 0x14; ack_frame.sent_info.least_unacked = GG_UINT64_C(0x770123456789AA0); QuicFrames frames; frames.push_back(QuicFrame(&ack_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0x14, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0x43, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, // 0 revived packets. 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildAckFramePacketV13) { if (version_ != QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.entropy_hash = 0x43; ack_frame.received_info.largest_observed = GG_UINT64_C(0x770123456789ABF); ack_frame.received_info.delta_time_largest_observed = QuicTime::Delta::Zero(); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x770123456789ABE)); ack_frame.sent_info.entropy_hash = 0x14; ack_frame.sent_info.least_unacked = GG_UINT64_C(0x770123456789AA0); QuicFrames frames; frames.push_back(QuicFrame(&ack_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (ack frame) // (has nacks, not truncated, 6 byte largest observed, 1 byte delta) 0x6C, // entropy hash of sent packets till least awaiting - 1. 0x14, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // entropy hash of all received packets. 0x43, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // Zero delta time. 0x0, 0x0, // num missing packet ranges 0x01, // missing packet delta 0x01, // 0 more missing packets in range. 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketTCP) { if (version_ == QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame congestion_feedback_frame; congestion_feedback_frame.type = kTCP; congestion_feedback_frame.tcp.receive_window = 0x4030; QuicFrames frames; frames.push_back(QuicFrame(&congestion_feedback_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (TCP) 0x00, // TCP receive window 0x03, 0x04, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketTCPV13) { if (version_ != QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame congestion_feedback_frame; congestion_feedback_frame.type = kTCP; congestion_feedback_frame.tcp.receive_window = 0x4030; QuicFrames frames; frames.push_back(QuicFrame(&congestion_feedback_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (TCP) 0x00, // accumulated number of lost packets 0x00, 0x00, // TCP receive window 0x03, 0x04, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketInterArrival) { if (version_ == QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame frame; frame.type = kInterArrival; frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABA), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59687))))); frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABB), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59688))))); frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABD), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59689))))); QuicFrames frames; frames.push_back(QuicFrame(&frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (inter arrival) 0x01, // num received packets 0x03, // lowest sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // receive time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0x07, // sequence delta 0x01, 0x00, // time delta 0x01, 0x00, 0x00, 0x00, // sequence delta (skip one packet) 0x03, 0x00, // time delta 0x02, 0x00, 0x00, 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketInterArrivalV13) { if (version_ != QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame frame; frame.type = kInterArrival; frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABA), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59687))))); frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABB), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59688))))); frame.inter_arrival.received_packet_times.insert( make_pair(GG_UINT64_C(0x0123456789ABD), start_.Add(QuicTime::Delta::FromMicroseconds( GG_UINT64_C(0x07E1D2C3B4A59689))))); QuicFrames frames; frames.push_back(QuicFrame(&frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (inter arrival) 0x01, // accumulated_number_of_lost_packets 0x00, 0x00, // num received packets 0x03, // lowest sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // receive time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0x07, // sequence delta 0x01, 0x00, // time delta 0x01, 0x00, 0x00, 0x00, // sequence delta (skip one packet) 0x03, 0x00, // time delta 0x02, 0x00, 0x00, 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildStopWaitingPacket) { if (version_ <= QUIC_VERSION_15) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8); header.fec_group = 0; QuicStopWaitingFrame stop_waiting_frame; stop_waiting_frame.entropy_hash = 0x14; stop_waiting_frame.least_unacked = GG_UINT64_C(0x770123456789AA0); QuicFrames frames; frames.push_back(QuicFrame(&stop_waiting_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (stop waiting frame) 0x06, // entropy hash of sent packets till least awaiting - 1. 0x14, // least packet sequence number awaiting an ack, delta from sequence number. 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketFixRate) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame congestion_feedback_frame; congestion_feedback_frame.type = kFixRate; congestion_feedback_frame.fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(0x04030201); QuicFrames frames; frames.push_back(QuicFrame(&congestion_feedback_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (congestion feedback frame) 0x20, // congestion feedback type (fix rate) 0x02, // bitrate_in_bytes_per_second; 0x01, 0x02, 0x03, 0x04, }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCongestionFeedbackFramePacketInvalidFeedback) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicCongestionFeedbackFrame congestion_feedback_frame; congestion_feedback_frame.type = static_cast(kFixRate + 1); QuicFrames frames; frames.push_back(QuicFrame(&congestion_feedback_frame)); scoped_ptr data; EXPECT_DFATAL( data.reset(framer_.BuildUnsizedDataPacket(header, frames).packet), "AppendCongestionFeedbackFrame failed"); ASSERT_TRUE(data == NULL); } TEST_P(QuicFramerTest, BuildRstFramePacketVersion13) { if (version_ > QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicRstStreamFrame rst_frame; rst_frame.stream_id = 0x01020304; rst_frame.error_code = static_cast(0x05060708); rst_frame.error_details = "because I can"; unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (rst stream frame) 0x01, // stream id 0x04, 0x03, 0x02, 0x01, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicFrames frames; frames.push_back(QuicFrame(&rst_frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildRstFramePacketQuic) { if (version_ <= QUIC_VERSION_13) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicRstStreamFrame rst_frame; rst_frame.stream_id = 0x01020304; rst_frame.error_code = static_cast(0x05060708); rst_frame.error_details = "because I can"; rst_frame.byte_offset = 0x0807060504030201; unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags 0x00, // frame type (rst stream frame) 0x01, // stream id 0x04, 0x03, 0x02, 0x01, // sent byte offset 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicFrames frames; frames.push_back(QuicFrame(&rst_frame)); scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildCloseFramePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicConnectionCloseFrame close_frame; close_frame.error_code = static_cast(0x05060708); close_frame.error_details = "because I can"; QuicFrames frames; frames.push_back(QuicFrame(&close_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy) 0x01, // frame type (connection close frame) 0x02, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildGoAwayPacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicGoAwayFrame goaway_frame; goaway_frame.error_code = static_cast(0x05060708); goaway_frame.last_good_stream_id = 0x01020304; goaway_frame.reason_phrase = "because I can"; QuicFrames frames; frames.push_back(QuicFrame(&goaway_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags(entropy) 0x01, // frame type (go away frame) 0x03, // error code 0x08, 0x07, 0x06, 0x05, // stream id 0x04, 0x03, 0x02, 0x01, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildWindowUpdatePacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicWindowUpdateFrame window_update_frame; window_update_frame.stream_id = 0x01020304; window_update_frame.byte_offset = 0x1122334455667788; QuicFrames frames; frames.push_back(QuicFrame(&window_update_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags(entropy) 0x01, // frame type (window update frame) 0x04, // stream id 0x04, 0x03, 0x02, 0x01, // byte offset 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, }; if (version_ > QUIC_VERSION_13) { scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } else { string expected_error = "Attempt to add a WindowUpdateFrame in " + QuicVersionToString(version_); EXPECT_DFATAL(framer_.BuildUnsizedDataPacket(header, frames), expected_error); return; } } TEST_P(QuicFramerTest, BuildBlockedPacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicBlockedFrame blocked_frame; blocked_frame.stream_id = 0x01020304; QuicFrames frames; frames.push_back(QuicFrame(&blocked_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags(entropy) 0x01, // frame type (blocked frame) 0x05, // stream id 0x04, 0x03, 0x02, 0x01, }; if (version_ > QUIC_VERSION_13) { scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } else { string expected_error = "Attempt to add a BlockedFrame in " + QuicVersionToString(version_); EXPECT_DFATAL(framer_.BuildUnsizedDataPacket(header, frames), expected_error); return; } } TEST_P(QuicFramerTest, BuildPingPacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicPingFrame ping_frame; QuicFrames frames; frames.push_back(QuicFrame(&ping_frame)); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags(entropy) 0x01, // frame type (ping frame) 0x07, }; if (version_ > QUIC_VERSION_17) { scoped_ptr data( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } else { string expected_error = "Attempt to add a PingFrame in " + QuicVersionToString(version_); EXPECT_DFATAL(framer_.BuildUnsizedDataPacket(header, frames), expected_error); return; } } TEST_P(QuicFramerTest, BuildPublicResetPacket) { QuicPublicResetPacket reset_packet; reset_packet.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); reset_packet.public_header.reset_flag = true; reset_packet.public_header.version_flag = false; reset_packet.rejected_sequence_number = GG_UINT64_C(0x123456789ABC); reset_packet.nonce_proof = GG_UINT64_C(0xABCDEF0123456789); unsigned char packet[] = { // public flags (public reset, 8 byte ConnectionId) 0x0E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // message tag (kPRST) 'P', 'R', 'S', 'T', // num_entries (2) + padding 0x02, 0x00, 0x00, 0x00, // tag kRNON 'R', 'N', 'O', 'N', // end offset 8 0x08, 0x00, 0x00, 0x00, // tag kRSEQ 'R', 'S', 'E', 'Q', // end offset 16 0x10, 0x00, 0x00, 0x00, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, }; scoped_ptr data( framer_.BuildPublicResetPacket(reset_packet)); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildPublicResetPacketWithClientAddress) { QuicPublicResetPacket reset_packet; reset_packet.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); reset_packet.public_header.reset_flag = true; reset_packet.public_header.version_flag = false; reset_packet.rejected_sequence_number = GG_UINT64_C(0x123456789ABC); reset_packet.nonce_proof = GG_UINT64_C(0xABCDEF0123456789); reset_packet.client_address = IPEndPoint(Loopback4(), 0x1234); unsigned char packet[] = { // public flags (public reset, 8 byte ConnectionId) 0x0E, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // message tag (kPRST) 'P', 'R', 'S', 'T', // num_entries (3) + padding 0x03, 0x00, 0x00, 0x00, // tag kRNON 'R', 'N', 'O', 'N', // end offset 8 0x08, 0x00, 0x00, 0x00, // tag kRSEQ 'R', 'S', 'E', 'Q', // end offset 16 0x10, 0x00, 0x00, 0x00, // tag kCADR 'C', 'A', 'D', 'R', // end offset 24 0x18, 0x00, 0x00, 0x00, // nonce proof 0x89, 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, // rejected sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, // client address 0x02, 0x00, 0x7F, 0x00, 0x00, 0x01, 0x34, 0x12, }; scoped_ptr data( framer_.BuildPublicResetPacket(reset_packet)); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, BuildFecPacket) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = true; header.entropy_flag = true; header.packet_sequence_number = (GG_UINT64_C(0x123456789ABC)); header.is_in_fec_group = IN_FEC_GROUP; header.fec_group = GG_UINT64_C(0x123456789ABB);; QuicFecData fec_data; fec_data.fec_group = 1; fec_data.redundancy = "abcdefghijklmnop"; unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (entropy & fec group & fec packet) 0x07, // first fec protected packet offset 0x01, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; scoped_ptr data( framer_.BuildFecPacket(header, fec_data).packet); ASSERT_TRUE(data != NULL); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); } TEST_P(QuicFramerTest, EncryptPacket) { QuicPacketSequenceNumber sequence_number = GG_UINT64_C(0x123456789ABC); unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (fec group & fec packet) 0x06, // first fec protected packet offset 0x01, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; scoped_ptr raw( QuicPacket::NewDataPacket(AsChars(packet), arraysize(packet), false, PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER)); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, sequence_number, *raw)); ASSERT_TRUE(encrypted.get() != NULL); EXPECT_TRUE(CheckEncryption(sequence_number, raw.get())); } TEST_P(QuicFramerTest, EncryptPacketWithVersionFlag) { QuicPacketSequenceNumber sequence_number = GG_UINT64_C(0x123456789ABC); unsigned char packet[] = { // public flags (version, 8 byte connection_id) 0x3D, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // version tag 'Q', '.', '1', '0', // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (fec group & fec flags) 0x06, // first fec protected packet offset 0x01, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; scoped_ptr raw( QuicPacket::NewDataPacket(AsChars(packet), arraysize(packet), false, PACKET_8BYTE_CONNECTION_ID, kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER)); scoped_ptr encrypted( framer_.EncryptPacket(ENCRYPTION_NONE, sequence_number, *raw)); ASSERT_TRUE(encrypted.get() != NULL); EXPECT_TRUE(CheckEncryption(sequence_number, raw.get())); } TEST_P(QuicFramerTest, Truncation) { if (framer_.version() <= QUIC_VERSION_15) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_observed = 601; for (uint64 i = 1; i < ack_frame.received_info.largest_observed; i += 2) { ack_frame.received_info.missing_packets.insert(i); } // Create a packet with just the ack QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); scoped_ptr raw_ack_packet( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(raw_ack_packet != NULL); scoped_ptr ack_packet( framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number, *raw_ack_packet)); // Now make sure we can turn our ack packet back into an ack frame ASSERT_TRUE(framer_.ProcessPacket(*ack_packet)); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& processed_ack_frame = *visitor_.ack_frames_[0]; EXPECT_TRUE(processed_ack_frame.received_info.is_truncated); EXPECT_EQ(510u, processed_ack_frame.received_info.largest_observed); ASSERT_EQ(255u, processed_ack_frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = processed_ack_frame.received_info.missing_packets.begin(); EXPECT_EQ(1u, *missing_iter); SequenceNumberSet::const_reverse_iterator last_missing_iter = processed_ack_frame.received_info.missing_packets.rbegin(); EXPECT_EQ(509u, *last_missing_iter); } TEST_P(QuicFramerTest, Truncation15) { if (framer_.version() > QUIC_VERSION_15) { return; } QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = false; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_observed = 601; ack_frame.sent_info.least_unacked = header.packet_sequence_number - 1; for (uint64 i = 1; i < ack_frame.received_info.largest_observed; i += 2) { ack_frame.received_info.missing_packets.insert(i); } // Create a packet with just the ack QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); scoped_ptr raw_ack_packet( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(raw_ack_packet != NULL); scoped_ptr ack_packet( framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number, *raw_ack_packet)); // Now make sure we can turn our ack packet back into an ack frame ASSERT_TRUE(framer_.ProcessPacket(*ack_packet)); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& processed_ack_frame = *visitor_.ack_frames_[0]; EXPECT_EQ(header.packet_sequence_number - 1, processed_ack_frame.sent_info.least_unacked); EXPECT_TRUE(processed_ack_frame.received_info.is_truncated); EXPECT_EQ(510u, processed_ack_frame.received_info.largest_observed); ASSERT_EQ(255u, processed_ack_frame.received_info.missing_packets.size()); SequenceNumberSet::const_iterator missing_iter = processed_ack_frame.received_info.missing_packets.begin(); EXPECT_EQ(1u, *missing_iter); SequenceNumberSet::const_reverse_iterator last_missing_iter = processed_ack_frame.received_info.missing_packets.rbegin(); EXPECT_EQ(509u, *last_missing_iter); } TEST_P(QuicFramerTest, CleanTruncation) { QuicPacketHeader header; header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210); header.public_header.reset_flag = false; header.public_header.version_flag = false; header.fec_flag = false; header.entropy_flag = true; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_observed = 201; ack_frame.sent_info.least_unacked = header.packet_sequence_number - 2; for (uint64 i = 1; i < ack_frame.received_info.largest_observed; ++i) { ack_frame.received_info.missing_packets.insert(i); } // Create a packet with just the ack QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); scoped_ptr raw_ack_packet( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(raw_ack_packet != NULL); scoped_ptr ack_packet( framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number, *raw_ack_packet)); // Now make sure we can turn our ack packet back into an ack frame ASSERT_TRUE(framer_.ProcessPacket(*ack_packet)); // Test for clean truncation of the ack by comparing the length of the // original packets to the re-serialized packets. frames.clear(); frame.type = ACK_FRAME; frame.ack_frame = visitor_.ack_frames_[0]; frames.push_back(frame); size_t original_raw_length = raw_ack_packet->length(); raw_ack_packet.reset( framer_.BuildUnsizedDataPacket(header, frames).packet); ASSERT_TRUE(raw_ack_packet != NULL); EXPECT_EQ(original_raw_length, raw_ack_packet->length()); ASSERT_TRUE(raw_ack_packet != NULL); } TEST_P(QuicFramerTest, EntropyFlagTest) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (Entropy) 0x01, // frame type (stream frame with fin and no length) 0xDF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(visitor_.header_->entropy_flag); EXPECT_EQ(1 << 4, visitor_.header_->entropy_hash); EXPECT_FALSE(visitor_.header_->fec_flag); }; TEST_P(QuicFramerTest, FecEntropyTest) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // private flags (Entropy & fec group & FEC) 0x07, // first fec protected packet offset 0xFF, // frame type (stream frame with fin and no length) 0xDF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_TRUE(visitor_.header_->fec_flag); EXPECT_TRUE(visitor_.header_->entropy_flag); EXPECT_EQ(1 << 4, visitor_.header_->entropy_hash); }; TEST_P(QuicFramerTest, StopPacketProcessing) { unsigned char packet[] = { // public flags (8 byte connection_id) 0x3C, // connection_id 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // Entropy 0x01, // frame type (stream frame with fin) 0xFF, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', // frame type (ack frame) 0x40, // entropy hash of sent packets till least awaiting - 1. 0x14, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // entropy hash of all received packets. 0x43, // largest observed packet sequence number 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12, // num missing packets 0x01, // missing packet 0xBE, 0x9A, 0x78, 0x56, 0x34, 0x12, }; MockFramerVisitor visitor; framer_.set_visitor(&visitor); EXPECT_CALL(visitor, OnPacket()); EXPECT_CALL(visitor, OnPacketHeader(_)); EXPECT_CALL(visitor, OnStreamFrame(_)).WillOnce(Return(false)); EXPECT_CALL(visitor, OnAckFrame(_)).Times(0); EXPECT_CALL(visitor, OnPacketComplete()); EXPECT_CALL(visitor, OnUnauthenticatedPublicHeader(_)).WillOnce(Return(true)); QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(encrypted)); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); } } // namespace test } // namespace net