// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "base/hash_tables.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/port.h" #include "base/stl_util.h" #include "net/quic/quic_framer.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/test_tools/quic_test_utils.h" using base::hash_set; using base::StringPiece; using std::string; using std::vector; namespace net { namespace test { class TestEncrypter : public QuicEncrypter { public: virtual ~TestEncrypter() {} virtual QuicData* Encrypt(StringPiece associated_data, StringPiece plaintext) { associated_data_ = associated_data.as_string(); plaintext_ = plaintext.as_string(); return new QuicData(plaintext.data(), plaintext.length()); } virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) { return ciphertext_size; } virtual size_t GetCiphertextSize(size_t plaintext_size) { return plaintext_size; } string associated_data_; string plaintext_; }; class TestDecrypter : public QuicDecrypter { public: virtual ~TestDecrypter() {} virtual QuicData* Decrypt(StringPiece associated_data, StringPiece ciphertext) { associated_data_ = associated_data.as_string(); ciphertext_ = ciphertext.as_string(); return new QuicData(ciphertext.data(), ciphertext.length()); } string associated_data_; string ciphertext_; }; // The offset of congestion info in our tests, given the size of our usual ack // frame. This does NOT work for all packets. const int kCongestionInfoOffset = kPacketHeaderSize + 54; class TestQuicVisitor : public ::net::QuicFramerVisitorInterface { public: TestQuicVisitor() : error_count_(0), packet_count_(0), frame_count_(0), fec_count_(0), complete_packets_(0), revived_packets_(0), accept_packet_(true) { } ~TestQuicVisitor() { STLDeleteElements(&stream_frames_); STLDeleteElements(&ack_frames_); STLDeleteElements(&fec_data_); } virtual void OnError(QuicFramer* f) { DLOG(INFO) << "QuicFramer Error: " << QuicUtils::ErrorToString(f->error()) << " (" << f->error() << ")"; error_count_++; } virtual void OnPacket(const IPEndPoint& self_address, const IPEndPoint& peer_address) { self_address_ = self_address; peer_address_ = peer_address; } virtual void OnRevivedPacket() { revived_packets_++; } virtual bool OnPacketHeader(const QuicPacketHeader& header) { packet_count_++; header_.reset(new QuicPacketHeader(header)); return accept_packet_; } virtual void OnStreamFrame(const QuicStreamFrame& frame) { frame_count_++; stream_frames_.push_back(new QuicStreamFrame(frame)); } virtual void OnFecProtectedPayload(StringPiece payload) { fec_protected_payload_ = payload.as_string(); } virtual void OnAckFrame(const QuicAckFrame& frame) { frame_count_++; ack_frames_.push_back(new QuicAckFrame(frame)); } virtual void OnFecData(const QuicFecData& fec) { fec_count_++; fec_data_.push_back(new QuicFecData(fec)); } virtual void OnPacketComplete() { complete_packets_++; } virtual void OnRstStreamFrame(const QuicRstStreamFrame& frame) { rst_stream_frame_ = frame; } virtual void OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) { connection_close_frame_ = frame; } // Counters from the visitor_ callbacks. int error_count_; int packet_count_; int frame_count_; int fec_count_; int complete_packets_; int revived_packets_; bool accept_packet_; IPEndPoint self_address_; IPEndPoint peer_address_; scoped_ptr header_; vector stream_frames_; vector ack_frames_; vector fec_data_; string fec_protected_payload_; QuicRstStreamFrame rst_stream_frame_; QuicConnectionCloseFrame connection_close_frame_; }; class QuicFramerTest : public ::testing::Test { public: QuicFramerTest() : encrypter_(new test::TestEncrypter()), decrypter_(new test::TestDecrypter()), framer_(decrypter_, encrypter_), self_address_(IPAddressNumber(), 1), peer_address_(IPAddressNumber(), 2) { framer_.set_visitor(&visitor_); } bool CheckEncryption(StringPiece packet) { StringPiece associated_data( packet.substr(kStartOfHashData, kStartOfEncryptedData - kStartOfHashData)); if (associated_data != encrypter_->associated_data_) { LOG(ERROR) << "Encrypted incorrect associated data. expected " << associated_data << " actual: " << encrypter_->associated_data_; return false; } StringPiece plaintext(packet.substr(kStartOfEncryptedData)); if (plaintext != encrypter_->plaintext_) { LOG(ERROR) << "Encrypted incorrect plaintext data. expected " << plaintext << " actual: " << encrypter_->plaintext_; return false; } return true; } bool CheckDecryption(StringPiece packet) { StringPiece associated_data( packet.substr(kStartOfHashData, kStartOfEncryptedData - kStartOfHashData)); if (associated_data != decrypter_->associated_data_) { LOG(ERROR) << "Decrypted incorrect associated data. expected " << associated_data << " actual: " << decrypter_->associated_data_; return false; } StringPiece plaintext(packet.substr(kStartOfEncryptedData)); if (plaintext != decrypter_->ciphertext_) { LOG(ERROR) << "Decrypted incorrect chipertext data. expected " << plaintext << " actual: " << decrypter_->ciphertext_; return false; } return true; } char* AsChars(unsigned char* data) { return reinterpret_cast(data); } test::TestEncrypter* encrypter_; test::TestDecrypter* decrypter_; QuicFramer framer_; test::TestQuicVisitor visitor_; IPEndPoint self_address_; IPEndPoint peer_address_; }; TEST_F(QuicFramerTest, EmptyPacket) { char packet[] = { 0x00 }; QuicEncryptedPacket encrypted(packet, 0, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(QUIC_INVALID_PACKET_HEADER, framer_.error()); } TEST_F(QuicFramerTest, LargePacket) { unsigned char packet[kMaxPacketSize + 1] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, }; memset(packet + kPacketHeaderSize, 0, kMaxPacketSize - kPacketHeaderSize + 1); QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); ASSERT_TRUE(visitor_.header_.get()); // Make sure we've parsed the packet header, so we can send an error. EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->guid); // Make sure the correct error is propogated. EXPECT_EQ(QUIC_PACKET_TOO_LARGE, framer_.error()); } TEST_F(QuicFramerTest, PacketHeader) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->guid); EXPECT_EQ(0x1, visitor_.header_->retransmission_count); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), visitor_.header_->transmission_time); EXPECT_EQ(0x00, visitor_.header_->flags); EXPECT_EQ(0x00, visitor_.header_->fec_group); // Now test framing boundaries for (int i = 0; i < 25; ++i) { string expected_error; if (i < 8) { expected_error = "Unable to read GUID."; } else if (i < 14) { expected_error = "Unable to read sequence number."; } else if (i < 15) { expected_error = "Unable to read retransmission count."; } else if (i < 23) { expected_error = "Unable to read transmission time."; } else if (i < 24) { expected_error = "Unable to read flags."; } else if (i < 25) { expected_error = "Unable to read fec group."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_PACKET_HEADER, framer_.error()); } } TEST_F(QuicFramerTest, StreamFrame) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (stream frame) 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // fin 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); ASSERT_EQ(peer_address_, visitor_.peer_address_); ASSERT_EQ(self_address_, visitor_.self_address_); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(static_cast(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); EXPECT_EQ("hello world!", visitor_.stream_frames_[0]->data); // Now test framing boundaries for (size_t i = kPacketHeaderSize; i < kPacketHeaderSize + 29; ++i) { string expected_error; if (i < kPacketHeaderSize + 1) { expected_error = "Unable to read frame count."; } else if (i < kPacketHeaderSize + 2) { expected_error = "Unable to read frame type."; } else if (i < kPacketHeaderSize + 6) { expected_error = "Unable to read stream_id."; } else if (i < kPacketHeaderSize + 7) { expected_error = "Unable to read fin."; } else if (i < kPacketHeaderSize + 15) { expected_error = "Unable to read offset."; } else if (i < kPacketHeaderSize + 29) { expected_error = "Unable to read frame data."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } } TEST_F(QuicFramerTest, RejectPacket) { visitor_.accept_packet_ = false; unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (stream frame) 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // fin 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); ASSERT_EQ(peer_address_, visitor_.peer_address_); ASSERT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); } TEST_F(QuicFramerTest, RevivedStreamFrame) { unsigned char payload[] = { // frame count 0x01, // frame type (stream frame) 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // fin 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; // Do not encrypt the payload because the revived payload is post-encryption. EXPECT_TRUE(framer_.ProcessRevivedPacket(header, StringPiece(AsChars(payload), arraysize(payload)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_EQ(1, visitor_.revived_packets_); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210), visitor_.header_->guid); EXPECT_EQ(0x1, visitor_.header_->retransmission_count); EXPECT_EQ(GG_UINT64_C(0x123456789ABC), visitor_.header_->packet_sequence_number); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), visitor_.header_->transmission_time); EXPECT_EQ(0x00, visitor_.header_->flags); EXPECT_EQ(0x00, visitor_.header_->fec_group); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); EXPECT_EQ("hello world!", visitor_.stream_frames_[0]->data); } TEST_F(QuicFramerTest, StreamFrameInFecGroup) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x12, 0x34, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x02, // frame count 0x01, // frame type (stream frame) 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // fin 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(2, visitor_.header_->fec_group); EXPECT_EQ(string(AsChars(packet) + kStartOfFecProtectedData, arraysize(packet) - kStartOfFecProtectedData), visitor_.fec_protected_payload_); ASSERT_EQ(peer_address_, visitor_.peer_address_); ASSERT_EQ(1u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id); EXPECT_TRUE(visitor_.stream_frames_[0]->fin); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.stream_frames_[0]->offset); EXPECT_EQ("hello world!", visitor_.stream_frames_[0]->data); } TEST_F(QuicFramerTest, AckFrame) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (none) 0x00, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABC), frame.received_info.largest_received); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), frame.received_info.time_received); const hash_set* sequence_nums = &frame.received_info.missing_packets; ASSERT_EQ(2u, sequence_nums->size()); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABB))); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABA))); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); ASSERT_EQ(3u, frame.sent_info.non_retransmiting.size()); const hash_set* non_retrans = &frame.sent_info.non_retransmiting; EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AB0))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAF))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAE))); ASSERT_EQ(kNone, frame.congestion_info.type); // Now test framing boundaries for (size_t i = kPacketHeaderSize; i < kPacketHeaderSize + 55; ++i) { string expected_error; if (i < kPacketHeaderSize + 1) { expected_error = "Unable to read frame count."; } else if (i < kPacketHeaderSize + 2) { expected_error = "Unable to read frame type."; } else if (i < kPacketHeaderSize + 8) { expected_error = "Unable to read largest received."; } else if (i < kPacketHeaderSize + 16) { expected_error = "Unable to read time received."; } else if (i < kPacketHeaderSize + 17) { expected_error = "Unable to read num unacked packets."; } else if (i < kPacketHeaderSize + 29) { expected_error = "Unable to read sequence number in unacked packets."; } else if (i < kPacketHeaderSize + 35) { expected_error = "Unable to read least unacked."; } else if (i < kPacketHeaderSize + 36) { expected_error = "Unable to read num non-retransmitting."; } else if (i < kPacketHeaderSize + 54) { expected_error = "Unable to read sequence number in non-retransmitting."; } else if (i < kPacketHeaderSize + 55) { expected_error = "Unable to read congestion info type."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } } TEST_F(QuicFramerTest, AckFrameTCP) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (tcp) 0x01, // ack_frame.congestion_info.tcp.accumulated_number_of_lost_packets 0x01, 0x02, // ack_frame.congestion_info.tcp.receive_window 0x03, 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABC), frame.received_info.largest_received); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), frame.received_info.time_received); const hash_set* sequence_nums = &frame.received_info.missing_packets; ASSERT_EQ(2u, sequence_nums->size()); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABB))); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABA))); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); ASSERT_EQ(3u, frame.sent_info.non_retransmiting.size()); const hash_set* non_retrans = &frame.sent_info.non_retransmiting; EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AB0))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAF))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAE))); ASSERT_EQ(kTCP, frame.congestion_info.type); EXPECT_EQ(0x0201, frame.congestion_info.tcp.accumulated_number_of_lost_packets); EXPECT_EQ(0x0403, frame.congestion_info.tcp.receive_window); // Now test framing boundaries for (size_t i = kCongestionInfoOffset; i < kCongestionInfoOffset + 5; ++i) { string expected_error; if (i < kCongestionInfoOffset + 1) { expected_error = "Unable to read congestion info type."; } else if (i < kCongestionInfoOffset + 3) { expected_error = "Unable to read accumulated number of lost packets."; } else if (i < kCongestionInfoOffset + 5) { expected_error = "Unable to read receive window."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } } TEST_F(QuicFramerTest, AckFrameInterArrival) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (inter arrival) 0x02, // accumulated_number_of_lost_packets 0x02, 0x03, // offset_time 0x04, 0x05, // delta_time 0x06, 0x07, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABC), frame.received_info.largest_received); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), frame.received_info.time_received); const hash_set* sequence_nums = &frame.received_info.missing_packets; ASSERT_EQ(2u, sequence_nums->size()); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABB))); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABA))); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); ASSERT_EQ(3u, frame.sent_info.non_retransmiting.size()); const hash_set* non_retrans = &frame.sent_info.non_retransmiting; EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AB0))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAF))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAE))); ASSERT_EQ(kInterArrival, frame.congestion_info.type); EXPECT_EQ(0x0302, frame.congestion_info.inter_arrival. accumulated_number_of_lost_packets); EXPECT_EQ(0x0504, frame.congestion_info.inter_arrival.offset_time); EXPECT_EQ(0x0706, frame.congestion_info.inter_arrival.delta_time); // Now test framing boundaries for (size_t i = kCongestionInfoOffset; i < kCongestionInfoOffset + 5; ++i) { string expected_error; if (i < kCongestionInfoOffset + 1) { expected_error = "Unable to read congestion info type."; } else if (i < kCongestionInfoOffset + 3) { expected_error = "Unable to read accumulated number of lost packets."; } else if (i < kCongestionInfoOffset + 5) { expected_error = "Unable to read offset time."; } else if (i < kCongestionInfoOffset + 7) { expected_error = "Unable to read delta time."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } } TEST_F(QuicFramerTest, AckFrameFixRate) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (fix rate) 0x03, // bitrate_in_bytes_per_second; 0x01, 0x02, 0x03, 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABC), frame.received_info.largest_received); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), frame.received_info.time_received); const hash_set* sequence_nums = &frame.received_info.missing_packets; ASSERT_EQ(2u, sequence_nums->size()); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABB))); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABA))); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); ASSERT_EQ(3u, frame.sent_info.non_retransmiting.size()); const hash_set* non_retrans = &frame.sent_info.non_retransmiting; EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AB0))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAF))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAE))); ASSERT_EQ(kFixRate, frame.congestion_info.type); EXPECT_EQ(static_cast(0x04030201), frame.congestion_info.fix_rate.bitrate_in_bytes_per_second); // Now test framing boundaries for (size_t i = kCongestionInfoOffset; i < kCongestionInfoOffset + 5; ++i) { string expected_error; if (i < kCongestionInfoOffset + 1) { expected_error = "Unable to read congestion info type."; } else if (i < kCongestionInfoOffset + 5) { expected_error = "Unable to read bitrate."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } } TEST_F(QuicFramerTest, AckFrameInvalidFeedback) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (invalid) 0x04, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_INVALID_FRAME_DATA, framer_.error()); } TEST_F(QuicFramerTest, RstStreamFrame) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (rst stream frame) 0x03, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); ASSERT_EQ(peer_address_, visitor_.peer_address_); EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.rst_stream_frame_.stream_id); EXPECT_EQ(0x05060708, visitor_.rst_stream_frame_.error_code); EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654), visitor_.rst_stream_frame_.offset); EXPECT_EQ("because I can", visitor_.rst_stream_frame_.error_details); // Now test framing boundaries for (size_t i = kPacketHeaderSize + 3; i < kPacketHeaderSize + 33; ++i) { string expected_error; if (i < kPacketHeaderSize + 6) { expected_error = "Unable to read stream_id."; } else if (i < kPacketHeaderSize + 14) { expected_error = "Unable to read offset in rst frame."; } else if (i < kPacketHeaderSize + 18) { expected_error = "Unable to read rst stream error code."; } else if (i < kPacketHeaderSize + 33) { expected_error = "Unable to read rst stream error details."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_RST_STREAM_DATA, framer_.error()); } } TEST_F(QuicFramerTest, ConnectionCloseFrame) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (connection close frame) 0x04, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', // Ack frame. // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // congestion feedback type (inter arrival) 0x02, // accumulated_number_of_lost_packets 0x02, 0x03, // offset_time 0x04, 0x05, // delta_time 0x06, 0x07, }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0x05060708, visitor_.connection_close_frame_.error_code); EXPECT_EQ("because I can", visitor_.connection_close_frame_.error_details); ASSERT_EQ(1u, visitor_.ack_frames_.size()); const QuicAckFrame& frame = *visitor_.ack_frames_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABC), frame.received_info.largest_received); EXPECT_EQ(GG_UINT64_C(0xF0E1D2C3B4A59687), frame.received_info.time_received); const hash_set* sequence_nums = &frame.received_info.missing_packets; ASSERT_EQ(2u, sequence_nums->size()); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABB))); EXPECT_EQ(1u, sequence_nums->count(GG_UINT64_C(0x0123456789ABA))); EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.sent_info.least_unacked); ASSERT_EQ(3u, frame.sent_info.non_retransmiting.size()); const hash_set* non_retrans = &frame.sent_info.non_retransmiting; EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AB0))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAF))); EXPECT_EQ(1u, non_retrans->count(GG_UINT64_C(0x0123456789AAE))); ASSERT_EQ(kInterArrival, frame.congestion_info.type); EXPECT_EQ(0x0302, frame.congestion_info.inter_arrival. accumulated_number_of_lost_packets); EXPECT_EQ(0x0504, frame.congestion_info.inter_arrival.offset_time); EXPECT_EQ(0x0706, frame.congestion_info.inter_arrival.delta_time); // Now test framing boundaries for (size_t i = kPacketHeaderSize + 3; i < kPacketHeaderSize + 21; ++i) { string expected_error; if (i < kPacketHeaderSize + 6) { expected_error = "Unable to read connection close error code."; } else if (i < kPacketHeaderSize + 21) { expected_error = "Unable to read connection close error details."; } QuicEncryptedPacket encrypted(AsChars(packet), i, false); EXPECT_FALSE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_EQ(expected_error, framer_.detailed_error()); EXPECT_EQ(QUIC_INVALID_CONNECTION_CLOSE_DATA, framer_.error()); } } TEST_F(QuicFramerTest, FecPacket) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags (FEC) 0x01, // fec group 0x01, // first protected packet 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false); EXPECT_TRUE(framer_.ProcessPacket(self_address_, peer_address_, encrypted)); EXPECT_TRUE(CheckDecryption(StringPiece(AsChars(packet), arraysize(packet)))); EXPECT_EQ(QUIC_NO_ERROR, framer_.error()); ASSERT_TRUE(visitor_.header_.get()); EXPECT_EQ(0u, visitor_.stream_frames_.size()); EXPECT_EQ(0u, visitor_.ack_frames_.size()); ASSERT_EQ(1, visitor_.fec_count_); const QuicFecData& fec_data = *visitor_.fec_data_[0]; EXPECT_EQ(GG_UINT64_C(0x0123456789ABB), fec_data.min_protected_packet_sequence_number); EXPECT_EQ("abcdefghijklmnop", fec_data.redundancy); } TEST_F(QuicFramerTest, ConstructStreamFramePacket) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicStreamFrame stream_frame; stream_frame.stream_id = 0x01020304; stream_frame.fin = true; stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); stream_frame.data = "hello world!"; QuicFrame frame; frame.type = STREAM_FRAME; frame.stream_frame = &stream_frame; QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (stream frame) 0x00, // stream id 0x04, 0x03, 0x02, 0x01, // fin 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // data length 0x0c, 0x00, // data 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', }; QuicPacket* data; ASSERT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructAckFramePacket) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame.received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame.sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame.congestion_info.type = kNone; QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, #if defined(OS_WIN) // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, #if defined(OS_WIN) // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // congestion feedback type (none) 0x00, }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructAckFramePacketTCP) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame.received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame.sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame.congestion_info.type = kTCP; ack_frame.congestion_info.tcp.accumulated_number_of_lost_packets = 0x0201; ack_frame.congestion_info.tcp.receive_window = 0x0403; QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, #if defined(OS_WIN) // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, #if defined(OS_WIN) // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // congestion feedback type (tcp) 0x01, // ack_frame.congestion_info.tcp.accumulated_number_of_lost_packets 0x01, 0x02, // ack_frame.congestion_info.tcp.receive_window 0x03, 0x04, }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructAckFramePacketInterArrival) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame.received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame.sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame.congestion_info.type = kInterArrival; ack_frame.congestion_info.inter_arrival.accumulated_number_of_lost_packets = 0x0302; ack_frame.congestion_info.inter_arrival.offset_time = 0x0504; ack_frame.congestion_info.inter_arrival.delta_time = 0x0706; QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, #if defined(OS_WIN) // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, #if defined(OS_WIN) // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // congestion feedback type (inter arrival) 0x02, // accumulated_number_of_lost_packets 0x02, 0x03, // offset_time 0x04, 0x05, // delta_time 0x06, 0x07, }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructAckFramePacketFixRate) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame.received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame.sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame.congestion_info.type = kFixRate; ack_frame.congestion_info.fix_rate.bitrate_in_bytes_per_second = 0x04030201; QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (ack frame) 0x02, // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, #if defined(OS_WIN) // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, #if defined(OS_WIN) // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // congestion feedback type (fix rate) 0x03, // bitrate_in_bytes_per_second; 0x01, 0x02, 0x03, 0x04, }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructAckFramePacketInvalidFeedback) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicAckFrame ack_frame; ack_frame.received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame.received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame.received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame.sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame.sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame.congestion_info.type = static_cast(kFixRate + 1); QuicFrame frame; frame.type = ACK_FRAME; frame.ack_frame = &ack_frame; QuicFrames frames; frames.push_back(frame); QuicPacket* data; EXPECT_FALSE(framer_.ConstructFragementDataPacket(header, frames, &data)); } TEST_F(QuicFramerTest, ConstructRstFramePacket) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicRstStreamFrame rst_frame; rst_frame.stream_id = 0x01020304; rst_frame.error_code = static_cast(0x05060708); rst_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); rst_frame.error_details = "because I can"; unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (rst stream frame) 0x03, // stream id 0x04, 0x03, 0x02, 0x01, // offset 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', }; QuicFrame frame(&rst_frame); QuicFrames frames; frames.push_back(frame); QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructCloseFramePacket) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicConnectionCloseFrame close_frame; close_frame.error_code = static_cast(0x05060708); close_frame.error_details = "because I can"; QuicAckFrame* ack_frame = &close_frame.ack_frame; ack_frame->received_info.largest_received = GG_UINT64_C(0x0123456789ABC); ack_frame->received_info.time_received = GG_UINT64_C(0xF0E1D2C3B4A59687); ack_frame->received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABB)); ack_frame->received_info.missing_packets.insert( GG_UINT64_C(0x0123456789ABA)); ack_frame->sent_info.least_unacked = GG_UINT64_C(0x0123456789AA0); ack_frame->sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AB0)); ack_frame->sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAF)); ack_frame->sent_info.non_retransmiting.insert( GG_UINT64_C(0x0123456789AAE)); ack_frame->congestion_info.type = kInterArrival; ack_frame->congestion_info.inter_arrival.accumulated_number_of_lost_packets = 0x0302; ack_frame->congestion_info.inter_arrival.offset_time = 0x0504; ack_frame->congestion_info.inter_arrival.delta_time = 0x0706; QuicFrame frame(&close_frame); QuicFrames frames; frames.push_back(frame); unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x00, // fec group 0x00, // frame count 0x01, // frame type (connection close frame) 0x04, // error code 0x08, 0x07, 0x06, 0x05, // error details length 0x0d, 0x00, // error details 'b', 'e', 'c', 'a', 'u', 's', 'e', ' ', 'I', ' ', 'c', 'a', 'n', // Ack frame. // largest received packet sequence number 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // time delta 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // num_unacked_packets 0x02, #if defined(OS_WIN) // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // unacked packet sequence number 0xBA, 0x9A, 0x78, 0x56, 0x34, 0x12, // unacked packet sequence number 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // least packet sequence number awaiting an ack 0xA0, 0x9A, 0x78, 0x56, 0x34, 0x12, // num non retransmitting packets 0x03, #if defined(OS_WIN) // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, #else // non retransmitting packet sequence number 0xAE, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xAF, 0x9A, 0x78, 0x56, 0x34, 0x12, // non retransmitting packet sequence number 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12, #endif // congestion feedback type (inter arrival) 0x02, // accumulated_number_of_lost_packets 0x02, 0x03, // offset_time 0x04, 0x05, // delta_time 0x06, 0x07, }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFragementDataPacket(header, frames, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, ConstructFecPacket) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 0x01; header.packet_sequence_number = (GG_UINT64_C(0x123456789ABC)); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_FEC; header.fec_group = 1; QuicFecData fec_data; fec_data.fec_group = 1; fec_data.min_protected_packet_sequence_number = GG_UINT64_C(0x123456789ABB); fec_data.redundancy = "abcdefghijklmnop"; unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x01, // fec group 0x01, // first protected packet 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; QuicPacket* data; EXPECT_TRUE(framer_.ConstructFecPacket(header, fec_data, &data)); test::CompareCharArraysWithHexError("constructed packet", data->data(), data->length(), AsChars(packet), arraysize(packet)); delete data; } TEST_F(QuicFramerTest, IncrementRetransmitCount) { QuicPacketHeader header; header.guid = GG_UINT64_C(0xFEDCBA9876543210); header.retransmission_count = 1; header.packet_sequence_number = GG_UINT64_C(0x123456789ABC); header.transmission_time = GG_UINT64_C(0xF0E1D2C3B4A59687); header.flags = PACKET_FLAGS_NONE; header.fec_group = 0; QuicStreamFrame stream_frame; stream_frame.stream_id = 0x01020304; stream_frame.fin = true; stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654); stream_frame.data = "hello world!"; QuicFrame frame; frame.type = STREAM_FRAME; frame.stream_frame = &stream_frame; QuicFrames frames; frames.push_back(frame); QuicPacket *original; ASSERT_TRUE(framer_.ConstructFragementDataPacket( header, frames, &original)); EXPECT_EQ(header.retransmission_count, framer_.GetRetransmitCount(original)); header.retransmission_count = 2; QuicPacket *retransmitted; ASSERT_TRUE(framer_.ConstructFragementDataPacket( header, frames, &retransmitted)); framer_.IncrementRetransmitCount(original); EXPECT_EQ(header.retransmission_count, framer_.GetRetransmitCount(original)); test::CompareCharArraysWithHexError( "constructed packet", original->data(), original->length(), retransmitted->data(), retransmitted->length()); delete original; delete retransmitted; } TEST_F(QuicFramerTest, EncryptPacket) { unsigned char packet[] = { // guid 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, // packet id 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12, // retransmission count 0x01, // transmission time 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, // flags 0x01, // fec group 0x01, // first protected packet 0xBB, 0x9A, 0x78, 0x56, 0x34, 0x12, // redundancy 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', }; QuicPacket raw(AsChars(packet), arraysize(packet), false); scoped_ptr encrypted(framer_.EncryptPacket(raw)); ASSERT_TRUE(encrypted.get() != NULL); EXPECT_TRUE(CheckEncryption(StringPiece(AsChars(packet), arraysize(packet)))); } } // namespace test } // namespace net