// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_packet_generator.h" #include "base/logging.h" #include "net/quic/quic_bug_tracker.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_utils.h" using base::StringPiece; namespace net { QuicPacketGenerator::QuicPacketGenerator(QuicConnectionId connection_id, QuicFramer* framer, QuicRandom* random_generator, QuicBufferAllocator* buffer_allocator, DelegateInterface* delegate) : delegate_(delegate), packet_creator_(connection_id, framer, random_generator, buffer_allocator, delegate), batch_mode_(false), should_send_ack_(false), should_send_stop_waiting_(false) {} QuicPacketGenerator::~QuicPacketGenerator() { QuicUtils::DeleteFrames(&queued_control_frames_); } void QuicPacketGenerator::SetShouldSendAck(bool also_send_stop_waiting) { if (packet_creator_.has_ack()) { // Ack already queued, nothing to do. return; } if (also_send_stop_waiting && packet_creator_.has_stop_waiting()) { QUIC_BUG << "Should only ever be one pending stop waiting frame."; return; } should_send_ack_ = true; should_send_stop_waiting_ = also_send_stop_waiting; SendQueuedFrames(/*flush=*/false); } void QuicPacketGenerator::AddControlFrame(const QuicFrame& frame) { queued_control_frames_.push_back(frame); SendQueuedFrames(/*flush=*/false); } QuicConsumedData QuicPacketGenerator::ConsumeData( QuicStreamId id, QuicIOVector iov, QuicStreamOffset offset, bool fin, QuicAckListenerInterface* listener) { bool has_handshake = id == kCryptoStreamId; // To make reasoning about crypto frames easier, we don't combine them with // other retransmittable frames in a single packet. const bool flush = has_handshake && packet_creator_.HasPendingRetransmittableFrames(); SendQueuedFrames(flush); size_t total_bytes_consumed = 0; bool fin_consumed = false; if (!packet_creator_.HasRoomForStreamFrame(id, offset)) { packet_creator_.Flush(); } if (!fin && (iov.total_length == 0)) { QUIC_BUG << "Attempt to consume empty data without FIN."; return QuicConsumedData(0, false); } while (delegate_->ShouldGeneratePacket( HAS_RETRANSMITTABLE_DATA, has_handshake ? IS_HANDSHAKE : NOT_HANDSHAKE)) { QuicFrame frame; if (!packet_creator_.ConsumeData(id, iov, total_bytes_consumed, offset + total_bytes_consumed, fin, has_handshake, &frame)) { // The creator is always flushed if there's not enough room for a new // stream frame before ConsumeData, so ConsumeData should always succeed. QUIC_BUG << "Failed to ConsumeData, stream:" << id; return QuicConsumedData(0, false); } // A stream frame is created and added. size_t bytes_consumed = frame.stream_frame->frame_length; if (listener != nullptr) { packet_creator_.AddAckListener(listener, bytes_consumed); } total_bytes_consumed += bytes_consumed; fin_consumed = fin && total_bytes_consumed == iov.total_length; DCHECK(total_bytes_consumed == iov.total_length || (bytes_consumed > 0 && packet_creator_.HasPendingFrames())); if (!InBatchMode()) { packet_creator_.Flush(); } if (total_bytes_consumed == iov.total_length) { // We're done writing the data. Exit the loop. // We don't make this a precondition because we could have 0 bytes of data // if we're simply writing a fin. break; } // TODO(ianswett): Move to having the creator flush itself when it's full. packet_creator_.Flush(); } // Don't allow the handshake to be bundled with other retransmittable frames. if (has_handshake) { SendQueuedFrames(/*flush=*/true); } DCHECK(InBatchMode() || !packet_creator_.HasPendingFrames()); return QuicConsumedData(total_bytes_consumed, fin_consumed); } void QuicPacketGenerator::GenerateMtuDiscoveryPacket( QuicByteCount target_mtu, QuicAckListenerInterface* listener) { // MTU discovery frames must be sent by themselves. if (!packet_creator_.CanSetMaxPacketLength()) { QUIC_BUG << "MTU discovery packets should only be sent when no other " << "frames needs to be sent."; return; } const QuicByteCount current_mtu = GetCurrentMaxPacketLength(); // The MTU discovery frame is allocated on the stack, since it is going to be // serialized within this function. QuicMtuDiscoveryFrame mtu_discovery_frame; QuicFrame frame(mtu_discovery_frame); // Send the probe packet with the new length. SetMaxPacketLength(target_mtu); const bool success = packet_creator_.AddPaddedSavedFrame(frame); if (listener != nullptr) { packet_creator_.AddAckListener(listener, 0); } packet_creator_.Flush(); // The only reason AddFrame can fail is that the packet is too full to fit in // a ping. This is not possible for any sane MTU. DCHECK(success); // Reset the packet length back. SetMaxPacketLength(current_mtu); } bool QuicPacketGenerator::CanSendWithNextPendingFrameAddition() const { DCHECK(HasPendingFrames()); HasRetransmittableData retransmittable = (should_send_ack_ || should_send_stop_waiting_) ? NO_RETRANSMITTABLE_DATA : HAS_RETRANSMITTABLE_DATA; if (retransmittable == HAS_RETRANSMITTABLE_DATA) { DCHECK(!queued_control_frames_.empty()); // These are retransmittable. } return delegate_->ShouldGeneratePacket(retransmittable, NOT_HANDSHAKE); } void QuicPacketGenerator::SendQueuedFrames(bool flush) { // Only add pending frames if we are SURE we can then send the whole packet. while (HasPendingFrames() && (flush || CanSendWithNextPendingFrameAddition())) { AddNextPendingFrame(); } if (flush || !InBatchMode()) { packet_creator_.Flush(); } } bool QuicPacketGenerator::InBatchMode() { return batch_mode_; } void QuicPacketGenerator::StartBatchOperations() { batch_mode_ = true; } void QuicPacketGenerator::FinishBatchOperations() { batch_mode_ = false; SendQueuedFrames(/*flush=*/false); } void QuicPacketGenerator::FlushAllQueuedFrames() { SendQueuedFrames(/*flush=*/true); } bool QuicPacketGenerator::HasQueuedFrames() const { return packet_creator_.HasPendingFrames() || HasPendingFrames(); } bool QuicPacketGenerator::IsPendingPacketEmpty() const { return !packet_creator_.HasPendingFrames(); } bool QuicPacketGenerator::HasPendingFrames() const { return should_send_ack_ || should_send_stop_waiting_ || !queued_control_frames_.empty(); } bool QuicPacketGenerator::AddNextPendingFrame() { if (should_send_ack_) { if (FLAGS_quic_dont_copy_acks) { should_send_ack_ = !packet_creator_.AddSavedFrame(delegate_->GetUpdatedAckFrame()); } else { delegate_->PopulateAckFrame(&pending_ack_frame_); // If we can't this add the frame now, then we still need to do so later. should_send_ack_ = !packet_creator_.AddSavedFrame(QuicFrame(&pending_ack_frame_)); // Return success if we have added the frame. } return !should_send_ack_; } if (should_send_stop_waiting_) { delegate_->PopulateStopWaitingFrame(&pending_stop_waiting_frame_); // If we can't this add the frame now, then we still need to do so later. should_send_stop_waiting_ = !packet_creator_.AddSavedFrame(QuicFrame(&pending_stop_waiting_frame_)); // Return success if we have cleared out this flag (i.e., added the frame). // If we still need to send, then the frame is full, and we have failed. return !should_send_stop_waiting_; } QUIC_BUG_IF(queued_control_frames_.empty()) << "AddNextPendingFrame called with no queued control frames."; if (!packet_creator_.AddSavedFrame(queued_control_frames_.back())) { // Packet was full. return false; } queued_control_frames_.pop_back(); return true; } void QuicPacketGenerator::StopSendingVersion() { packet_creator_.StopSendingVersion(); } QuicPacketNumber QuicPacketGenerator::packet_number() const { return packet_creator_.packet_number(); } QuicByteCount QuicPacketGenerator::GetCurrentMaxPacketLength() const { return packet_creator_.max_packet_length(); } void QuicPacketGenerator::SetMaxPacketLength(QuicByteCount length) { DCHECK(packet_creator_.CanSetMaxPacketLength()); packet_creator_.SetMaxPacketLength(length); } QuicEncryptedPacket* QuicPacketGenerator::SerializeVersionNegotiationPacket( const QuicVersionVector& supported_versions) { return packet_creator_.SerializeVersionNegotiationPacket(supported_versions); } void QuicPacketGenerator::ReserializeAllFrames( const PendingRetransmission& retransmission, char* buffer, size_t buffer_len) { packet_creator_.ReserializeAllFrames(retransmission, buffer, buffer_len); } void QuicPacketGenerator::UpdateSequenceNumberLength( QuicPacketNumber least_packet_awaited_by_peer, QuicPacketCount max_packets_in_flight) { return packet_creator_.UpdatePacketNumberLength(least_packet_awaited_by_peer, max_packets_in_flight); } void QuicPacketGenerator::SetConnectionIdLength(uint32_t length) { if (length == 0) { packet_creator_.set_connection_id_length(PACKET_0BYTE_CONNECTION_ID); } else if (length == 1) { packet_creator_.set_connection_id_length(PACKET_1BYTE_CONNECTION_ID); } else if (length <= 4) { packet_creator_.set_connection_id_length(PACKET_4BYTE_CONNECTION_ID); } else { packet_creator_.set_connection_id_length(PACKET_8BYTE_CONNECTION_ID); } } void QuicPacketGenerator::set_encryption_level(EncryptionLevel level) { packet_creator_.set_encryption_level(level); } void QuicPacketGenerator::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { packet_creator_.SetEncrypter(level, encrypter); } void QuicPacketGenerator::SetCurrentPath( QuicPathId path_id, QuicPacketNumber least_packet_awaited_by_peer, QuicPacketCount max_packets_in_flight) { packet_creator_.SetCurrentPath(path_id, least_packet_awaited_by_peer, max_packets_in_flight); } } // namespace net