// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_QUIC_QUIC_PROTOCOL_H_ #define NET_QUIC_QUIC_PROTOCOL_H_ #include #include #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/containers/hash_tables.h" #include "base/logging.h" #include "base/strings/string_piece.h" #include "net/base/int128.h" #include "net/base/ip_endpoint.h" #include "net/base/net_export.h" #include "net/quic/iovector.h" #include "net/quic/quic_bandwidth.h" #include "net/quic/quic_time.h" namespace net { class QuicAckNotifier; class QuicPacket; struct QuicPacketHeader; typedef uint64 QuicConnectionId; typedef uint32 QuicStreamId; typedef uint64 QuicStreamOffset; typedef uint64 QuicPacketSequenceNumber; typedef QuicPacketSequenceNumber QuicFecGroupNumber; typedef uint64 QuicPublicResetNonceProof; typedef uint8 QuicPacketEntropyHash; typedef uint32 QuicHeaderId; // QuicTag is the type of a tag in the wire protocol. typedef uint32 QuicTag; typedef std::vector QuicTagVector; typedef std::map QuicTagValueMap; // TODO(rtenneti): Didn't use SpdyPriority because SpdyPriority is uint8 and // QuicPriority is uint32. Use SpdyPriority when we change the QUIC_VERSION. typedef uint32 QuicPriority; // Default and initial maximum size in bytes of a QUIC packet. const QuicByteCount kDefaultMaxPacketSize = 1350; // Default initial maximum size in bytes of a QUIC packet for servers. const QuicByteCount kDefaultServerMaxPacketSize = 1000; // The maximum packet size of any QUIC packet, based on ethernet's max size, // minus the IP and UDP headers. IPv6 has a 40 byte header, UPD adds an // additional 8 bytes. This is a total overhead of 48 bytes. Ethernet's // max packet size is 1500 bytes, 1500 - 48 = 1452. const QuicByteCount kMaxPacketSize = 1452; // Default maximum packet size used in Linux TCP implementations. const QuicByteCount kDefaultTCPMSS = 1460; // We match SPDY's use of 32 when secure (since we'd compete with SPDY). const QuicPacketCount kInitialCongestionWindowSecure = 32; // Be conservative, and just use double a typical TCP ICWND for HTTP. const QuicPacketCount kInitialCongestionWindowInsecure = 20; // Minimum size of initial flow control window, for both stream and session. const uint32 kMinimumFlowControlSendWindow = 16 * 1024; // 16 KB // Minimum size of the CWND, in packets, when doing bandwidth resumption. const QuicPacketCount kMinCongestionWindowForBandwidthResumption = 10; // Maximum size of the CWND, in packets, for TCP congestion control algorithms. const QuicPacketCount kMaxTcpCongestionWindow = 200; // Default size of the socket receive buffer in bytes. const QuicByteCount kDefaultSocketReceiveBuffer = 256 * 1024; // Minimum size of the socket receive buffer in bytes. // Smaller values are ignored. const QuicByteCount kMinSocketReceiveBuffer = 16 * 1024; // Don't allow a client to suggest an RTT shorter than 10ms. const uint32 kMinInitialRoundTripTimeUs = 10 * kNumMicrosPerMilli; // Don't allow a client to suggest an RTT longer than 15 seconds. const uint32 kMaxInitialRoundTripTimeUs = 15 * kNumMicrosPerSecond; // Maximum number of open streams per connection. const size_t kDefaultMaxStreamsPerConnection = 100; // Number of bytes reserved for public flags in the packet header. const size_t kPublicFlagsSize = 1; // Number of bytes reserved for version number in the packet header. const size_t kQuicVersionSize = 4; // Number of bytes reserved for private flags in the packet header. const size_t kPrivateFlagsSize = 1; // Number of bytes reserved for FEC group in the packet header. const size_t kFecGroupSize = 1; // Signifies that the QuicPacket will contain version of the protocol. const bool kIncludeVersion = true; // Index of the first byte in a QUIC packet which is used in hash calculation. const size_t kStartOfHashData = 0; // Limit on the delta between stream IDs. const QuicStreamId kMaxStreamIdDelta = 200; // Limit on the delta between header IDs. const QuicHeaderId kMaxHeaderIdDelta = 200; // Reserved ID for the crypto stream. const QuicStreamId kCryptoStreamId = 1; // Reserved ID for the headers stream. const QuicStreamId kHeadersStreamId = 3; // Maximum delayed ack time, in ms. const int64 kMaxDelayedAckTimeMs = 25; // The timeout before the handshake succeeds. const int64 kInitialIdleTimeoutSecs = 5; // The default idle timeout. const int64 kDefaultIdleTimeoutSecs = 30; // The maximum idle timeout that can be negotiated. const int64 kMaximumIdleTimeoutSecs = 60 * 10; // 10 minutes. // The default timeout for a connection until the crypto handshake succeeds. const int64 kMaxTimeForCryptoHandshakeSecs = 10; // 10 secs. // Default limit on the number of undecryptable packets the connection buffers // before the CHLO/SHLO arrive. const size_t kDefaultMaxUndecryptablePackets = 10; // Default ping timeout. const int64 kPingTimeoutSecs = 15; // 15 secs. // Minimum number of RTTs between Server Config Updates (SCUP) sent to client. const int kMinIntervalBetweenServerConfigUpdatesRTTs = 10; // Minimum time between Server Config Updates (SCUP) sent to client. const int kMinIntervalBetweenServerConfigUpdatesMs = 1000; // Minimum number of packets between Server Config Updates (SCUP). const int kMinPacketsBetweenServerConfigUpdates = 100; // The number of open streams that a server will accept is set to be slightly // larger than the negotiated limit. Immediately closing the connection if the // client opens slightly too many streams is not ideal: the client may have sent // a FIN that was lost, and simultaneously opened a new stream. The number of // streams a server accepts is a fixed increment over the negotiated limit, or a // percentage increase, whichever is larger. const float kMaxStreamsMultiplier = 1.1f; const int kMaxStreamsMinimumIncrement = 10; // We define an unsigned 16-bit floating point value, inspired by IEEE floats // (http://en.wikipedia.org/wiki/Half_precision_floating-point_format), // with 5-bit exponent (bias 1), 11-bit mantissa (effective 12 with hidden // bit) and denormals, but without signs, transfinites or fractions. Wire format // 16 bits (little-endian byte order) are split into exponent (high 5) and // mantissa (low 11) and decoded as: // uint64 value; // if (exponent == 0) value = mantissa; // else value = (mantissa | 1 << 11) << (exponent - 1) const int kUFloat16ExponentBits = 5; const int kUFloat16MaxExponent = (1 << kUFloat16ExponentBits) - 2; // 30 const int kUFloat16MantissaBits = 16 - kUFloat16ExponentBits; // 11 const int kUFloat16MantissaEffectiveBits = kUFloat16MantissaBits + 1; // 12 const uint64 kUFloat16MaxValue = // 0x3FFC0000000 ((GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits) - 1) << kUFloat16MaxExponent; enum TransmissionType { NOT_RETRANSMISSION, FIRST_TRANSMISSION_TYPE = NOT_RETRANSMISSION, HANDSHAKE_RETRANSMISSION, // Retransmits due to handshake timeouts. ALL_UNACKED_RETRANSMISSION, // Retransmits all unacked packets. ALL_INITIAL_RETRANSMISSION, // Retransmits all initially encrypted packets. LOSS_RETRANSMISSION, // Retransmits due to loss detection. RTO_RETRANSMISSION, // Retransmits due to retransmit time out. TLP_RETRANSMISSION, // Tail loss probes. LAST_TRANSMISSION_TYPE = TLP_RETRANSMISSION, }; enum HasRetransmittableData { NO_RETRANSMITTABLE_DATA, HAS_RETRANSMITTABLE_DATA, }; enum IsHandshake { NOT_HANDSHAKE, IS_HANDSHAKE }; // Indicates FEC protection level for data being written. enum FecProtection { MUST_FEC_PROTECT, // Callee must FEC protect this data. MAY_FEC_PROTECT // Callee does not have to but may FEC protect this data. }; // Indicates FEC policy. enum FecPolicy { FEC_PROTECT_ALWAYS, // All data in the stream should be FEC protected. FEC_PROTECT_OPTIONAL // Data in the stream does not need FEC protection. }; enum QuicFrameType { // Regular frame types. The values set here cannot change without the // introduction of a new QUIC version. PADDING_FRAME = 0, RST_STREAM_FRAME = 1, CONNECTION_CLOSE_FRAME = 2, GOAWAY_FRAME = 3, WINDOW_UPDATE_FRAME = 4, BLOCKED_FRAME = 5, STOP_WAITING_FRAME = 6, PING_FRAME = 7, // STREAM and ACK frames are special frames. They are encoded differently on // the wire and their values do not need to be stable. STREAM_FRAME, ACK_FRAME, NUM_FRAME_TYPES }; enum QuicConnectionIdLength { PACKET_0BYTE_CONNECTION_ID = 0, PACKET_1BYTE_CONNECTION_ID = 1, PACKET_4BYTE_CONNECTION_ID = 4, PACKET_8BYTE_CONNECTION_ID = 8 }; enum InFecGroup { NOT_IN_FEC_GROUP, IN_FEC_GROUP, }; enum QuicSequenceNumberLength { PACKET_1BYTE_SEQUENCE_NUMBER = 1, PACKET_2BYTE_SEQUENCE_NUMBER = 2, PACKET_4BYTE_SEQUENCE_NUMBER = 4, PACKET_6BYTE_SEQUENCE_NUMBER = 6 }; // Used to indicate a QuicSequenceNumberLength using two flag bits. enum QuicSequenceNumberLengthFlags { PACKET_FLAGS_1BYTE_SEQUENCE = 0, // 00 PACKET_FLAGS_2BYTE_SEQUENCE = 1, // 01 PACKET_FLAGS_4BYTE_SEQUENCE = 1 << 1, // 10 PACKET_FLAGS_6BYTE_SEQUENCE = 1 << 1 | 1, // 11 }; // The public flags are specified in one byte. enum QuicPacketPublicFlags { PACKET_PUBLIC_FLAGS_NONE = 0, // Bit 0: Does the packet header contains version info? PACKET_PUBLIC_FLAGS_VERSION = 1 << 0, // Bit 1: Is this packet a public reset packet? PACKET_PUBLIC_FLAGS_RST = 1 << 1, // Bits 2 and 3 specify the length of the ConnectionId as follows: // ----00--: 0 bytes // ----01--: 1 byte // ----10--: 4 bytes // ----11--: 8 bytes PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID = 0, PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID = 1 << 2, PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID = 1 << 3, PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID = 1 << 3 | 1 << 2, // Bits 4 and 5 describe the packet sequence number length as follows: // --00----: 1 byte // --01----: 2 bytes // --10----: 4 bytes // --11----: 6 bytes PACKET_PUBLIC_FLAGS_1BYTE_SEQUENCE = PACKET_FLAGS_1BYTE_SEQUENCE << 4, PACKET_PUBLIC_FLAGS_2BYTE_SEQUENCE = PACKET_FLAGS_2BYTE_SEQUENCE << 4, PACKET_PUBLIC_FLAGS_4BYTE_SEQUENCE = PACKET_FLAGS_4BYTE_SEQUENCE << 4, PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE = PACKET_FLAGS_6BYTE_SEQUENCE << 4, // All bits set (bits 6 and 7 are not currently used): 00111111 PACKET_PUBLIC_FLAGS_MAX = (1 << 6) - 1 }; // The private flags are specified in one byte. enum QuicPacketPrivateFlags { PACKET_PRIVATE_FLAGS_NONE = 0, // Bit 0: Does this packet contain an entropy bit? PACKET_PRIVATE_FLAGS_ENTROPY = 1 << 0, // Bit 1: Payload is part of an FEC group? PACKET_PRIVATE_FLAGS_FEC_GROUP = 1 << 1, // Bit 2: Payload is FEC as opposed to frames? PACKET_PRIVATE_FLAGS_FEC = 1 << 2, // All bits set (bits 3-7 are not currently used): 00000111 PACKET_PRIVATE_FLAGS_MAX = (1 << 3) - 1 }; // The available versions of QUIC. Guaranteed that the integer value of the enum // will match the version number. // When adding a new version to this enum you should add it to // kSupportedQuicVersions (if appropriate), and also add a new case to the // helper methods QuicVersionToQuicTag, QuicTagToQuicVersion, and // QuicVersionToString. enum QuicVersion { // Special case to indicate unknown/unsupported QUIC version. QUIC_VERSION_UNSUPPORTED = 0, QUIC_VERSION_23 = 23, // Timestamp in the ack frame. QUIC_VERSION_24 = 24, // SPDY/4 header compression. }; // This vector contains QUIC versions which we currently support. // This should be ordered such that the highest supported version is the first // element, with subsequent elements in descending order (versions can be // skipped as necessary). // // IMPORTANT: if you are adding to this list, follow the instructions at // http://sites/quic/adding-and-removing-versions static const QuicVersion kSupportedQuicVersions[] = {QUIC_VERSION_24, QUIC_VERSION_23}; typedef std::vector QuicVersionVector; // Returns a vector of QUIC versions in kSupportedQuicVersions. NET_EXPORT_PRIVATE QuicVersionVector QuicSupportedVersions(); // QuicTag is written to and read from the wire, but we prefer to use // the more readable QuicVersion at other levels. // Helper function which translates from a QuicVersion to a QuicTag. Returns 0 // if QuicVersion is unsupported. NET_EXPORT_PRIVATE QuicTag QuicVersionToQuicTag(const QuicVersion version); // Returns appropriate QuicVersion from a QuicTag. // Returns QUIC_VERSION_UNSUPPORTED if version_tag cannot be understood. NET_EXPORT_PRIVATE QuicVersion QuicTagToQuicVersion(const QuicTag version_tag); // Helper function which translates from a QuicVersion to a string. // Returns strings corresponding to enum names (e.g. QUIC_VERSION_6). NET_EXPORT_PRIVATE std::string QuicVersionToString(const QuicVersion version); // Returns comma separated list of string representations of QuicVersion enum // values in the supplied |versions| vector. NET_EXPORT_PRIVATE std::string QuicVersionVectorToString( const QuicVersionVector& versions); // Version and Crypto tags are written to the wire with a big-endian // representation of the name of the tag. For example // the client hello tag (CHLO) will be written as the // following 4 bytes: 'C' 'H' 'L' 'O'. Since it is // stored in memory as a little endian uint32, we need // to reverse the order of the bytes. // MakeQuicTag returns a value given the four bytes. For example: // MakeQuicTag('C', 'H', 'L', 'O'); NET_EXPORT_PRIVATE QuicTag MakeQuicTag(char a, char b, char c, char d); // Returns true if the tag vector contains the specified tag. NET_EXPORT_PRIVATE bool ContainsQuicTag(const QuicTagVector& tag_vector, QuicTag tag); // Size in bytes of the data or fec packet header. NET_EXPORT_PRIVATE size_t GetPacketHeaderSize(const QuicPacketHeader& header); NET_EXPORT_PRIVATE size_t GetPacketHeaderSize( QuicConnectionIdLength connection_id_length, bool include_version, QuicSequenceNumberLength sequence_number_length, InFecGroup is_in_fec_group); // Index of the first byte in a QUIC packet of FEC protected data. NET_EXPORT_PRIVATE size_t GetStartOfFecProtectedData( QuicConnectionIdLength connection_id_length, bool include_version, QuicSequenceNumberLength sequence_number_length); // Index of the first byte in a QUIC packet of encrypted data. NET_EXPORT_PRIVATE size_t GetStartOfEncryptedData( QuicConnectionIdLength connection_id_length, bool include_version, QuicSequenceNumberLength sequence_number_length); enum QuicRstStreamErrorCode { QUIC_STREAM_NO_ERROR = 0, // There was some error which halted stream processing. QUIC_ERROR_PROCESSING_STREAM, // We got two fin or reset offsets which did not match. QUIC_MULTIPLE_TERMINATION_OFFSETS, // We got bad payload and can not respond to it at the protocol level. QUIC_BAD_APPLICATION_PAYLOAD, // Stream closed due to connection error. No reset frame is sent when this // happens. QUIC_STREAM_CONNECTION_ERROR, // GoAway frame sent. No more stream can be created. QUIC_STREAM_PEER_GOING_AWAY, // The stream has been cancelled. QUIC_STREAM_CANCELLED, // Closing stream locally, sending a RST to allow for proper flow control // accounting. Sent in response to a RST from the peer. QUIC_RST_ACKNOWLEDGEMENT, // No error. Used as bound while iterating. QUIC_STREAM_LAST_ERROR, }; // Because receiving an unknown QuicRstStreamErrorCode results in connection // teardown, we use this to make sure any errors predating a given version are // downgraded to the most appropriate existing error. NET_EXPORT_PRIVATE QuicRstStreamErrorCode AdjustErrorForVersion( QuicRstStreamErrorCode error_code, QuicVersion version); // These values must remain stable as they are uploaded to UMA histograms. // To add a new error code, use the current value of QUIC_LAST_ERROR and // increment QUIC_LAST_ERROR. enum QuicErrorCode { QUIC_NO_ERROR = 0, // Connection has reached an invalid state. QUIC_INTERNAL_ERROR = 1, // There were data frames after the a fin or reset. QUIC_STREAM_DATA_AFTER_TERMINATION = 2, // Control frame is malformed. QUIC_INVALID_PACKET_HEADER = 3, // Frame data is malformed. QUIC_INVALID_FRAME_DATA = 4, // The packet contained no payload. QUIC_MISSING_PAYLOAD = 48, // FEC data is malformed. QUIC_INVALID_FEC_DATA = 5, // STREAM frame data is malformed. QUIC_INVALID_STREAM_DATA = 46, // STREAM frame data is not encrypted. QUIC_UNENCRYPTED_STREAM_DATA = 61, // RST_STREAM frame data is malformed. QUIC_INVALID_RST_STREAM_DATA = 6, // CONNECTION_CLOSE frame data is malformed. QUIC_INVALID_CONNECTION_CLOSE_DATA = 7, // GOAWAY frame data is malformed. QUIC_INVALID_GOAWAY_DATA = 8, // WINDOW_UPDATE frame data is malformed. QUIC_INVALID_WINDOW_UPDATE_DATA = 57, // BLOCKED frame data is malformed. QUIC_INVALID_BLOCKED_DATA = 58, // STOP_WAITING frame data is malformed. QUIC_INVALID_STOP_WAITING_DATA = 60, // ACK frame data is malformed. QUIC_INVALID_ACK_DATA = 9, // deprecated: QUIC_INVALID_CONGESTION_FEEDBACK_DATA = 47, // Version negotiation packet is malformed. QUIC_INVALID_VERSION_NEGOTIATION_PACKET = 10, // Public RST packet is malformed. QUIC_INVALID_PUBLIC_RST_PACKET = 11, // There was an error decrypting. QUIC_DECRYPTION_FAILURE = 12, // There was an error encrypting. QUIC_ENCRYPTION_FAILURE = 13, // The packet exceeded kMaxPacketSize. QUIC_PACKET_TOO_LARGE = 14, // Data was sent for a stream which did not exist. QUIC_PACKET_FOR_NONEXISTENT_STREAM = 15, // The peer is going away. May be a client or server. QUIC_PEER_GOING_AWAY = 16, // A stream ID was invalid. QUIC_INVALID_STREAM_ID = 17, // A priority was invalid. QUIC_INVALID_PRIORITY = 49, // Too many streams already open. QUIC_TOO_MANY_OPEN_STREAMS = 18, // The peer must send a FIN/RST for each stream, and has not been doing so. QUIC_TOO_MANY_UNFINISHED_STREAMS = 66, // Received public reset for this connection. QUIC_PUBLIC_RESET = 19, // Invalid protocol version. QUIC_INVALID_VERSION = 20, // deprecated: QUIC_STREAM_RST_BEFORE_HEADERS_DECOMPRESSED = 21 // The Header ID for a stream was too far from the previous. QUIC_INVALID_HEADER_ID = 22, // Negotiable parameter received during handshake had invalid value. QUIC_INVALID_NEGOTIATED_VALUE = 23, // There was an error decompressing data. QUIC_DECOMPRESSION_FAILURE = 24, // We hit our prenegotiated (or default) timeout QUIC_CONNECTION_TIMED_OUT = 25, // We hit our overall connection timeout QUIC_CONNECTION_OVERALL_TIMED_OUT = 67, // There was an error encountered migrating addresses QUIC_ERROR_MIGRATING_ADDRESS = 26, // There was an error while writing to the socket. QUIC_PACKET_WRITE_ERROR = 27, // There was an error while reading from the socket. QUIC_PACKET_READ_ERROR = 51, // We received a STREAM_FRAME with no data and no fin flag set. QUIC_INVALID_STREAM_FRAME = 50, // We received invalid data on the headers stream. QUIC_INVALID_HEADERS_STREAM_DATA = 56, // The peer received too much data, violating flow control. QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA = 59, // The peer sent too much data, violating flow control. QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA = 63, // The peer received an invalid flow control window. QUIC_FLOW_CONTROL_INVALID_WINDOW = 64, // The connection has been IP pooled into an existing connection. QUIC_CONNECTION_IP_POOLED = 62, // The connection has too many outstanding sent packets. QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS = 68, // The connection has too many outstanding received packets. QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS = 69, // The quic connection job to load server config is cancelled. QUIC_CONNECTION_CANCELLED = 70, // Crypto errors. // Hanshake failed. QUIC_HANDSHAKE_FAILED = 28, // Handshake message contained out of order tags. QUIC_CRYPTO_TAGS_OUT_OF_ORDER = 29, // Handshake message contained too many entries. QUIC_CRYPTO_TOO_MANY_ENTRIES = 30, // Handshake message contained an invalid value length. QUIC_CRYPTO_INVALID_VALUE_LENGTH = 31, // A crypto message was received after the handshake was complete. QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE = 32, // A crypto message was received with an illegal message tag. QUIC_INVALID_CRYPTO_MESSAGE_TYPE = 33, // A crypto message was received with an illegal parameter. QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER = 34, // An invalid channel id signature was supplied. QUIC_INVALID_CHANNEL_ID_SIGNATURE = 52, // A crypto message was received with a mandatory parameter missing. QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND = 35, // A crypto message was received with a parameter that has no overlap // with the local parameter. QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP = 36, // A crypto message was received that contained a parameter with too few // values. QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND = 37, // An internal error occured in crypto processing. QUIC_CRYPTO_INTERNAL_ERROR = 38, // A crypto handshake message specified an unsupported version. QUIC_CRYPTO_VERSION_NOT_SUPPORTED = 39, // There was no intersection between the crypto primitives supported by the // peer and ourselves. QUIC_CRYPTO_NO_SUPPORT = 40, // The server rejected our client hello messages too many times. QUIC_CRYPTO_TOO_MANY_REJECTS = 41, // The client rejected the server's certificate chain or signature. QUIC_PROOF_INVALID = 42, // A crypto message was received with a duplicate tag. QUIC_CRYPTO_DUPLICATE_TAG = 43, // A crypto message was received with the wrong encryption level (i.e. it // should have been encrypted but was not.) QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT = 44, // The server config for a server has expired. QUIC_CRYPTO_SERVER_CONFIG_EXPIRED = 45, // We failed to setup the symmetric keys for a connection. QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED = 53, // A handshake message arrived, but we are still validating the // previous handshake message. QUIC_CRYPTO_MESSAGE_WHILE_VALIDATING_CLIENT_HELLO = 54, // A server config update arrived before the handshake is complete. QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE = 65, // This connection involved a version negotiation which appears to have been // tampered with. QUIC_VERSION_NEGOTIATION_MISMATCH = 55, // No error. Used as bound while iterating. QUIC_LAST_ERROR = 71, }; struct NET_EXPORT_PRIVATE QuicPacketPublicHeader { QuicPacketPublicHeader(); explicit QuicPacketPublicHeader(const QuicPacketPublicHeader& other); ~QuicPacketPublicHeader(); // Universal header. All QuicPacket headers will have a connection_id and // public flags. QuicConnectionId connection_id; QuicConnectionIdLength connection_id_length; bool reset_flag; bool version_flag; QuicSequenceNumberLength sequence_number_length; QuicVersionVector versions; }; // Header for Data or FEC packets. struct NET_EXPORT_PRIVATE QuicPacketHeader { QuicPacketHeader(); explicit QuicPacketHeader(const QuicPacketPublicHeader& header); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicPacketHeader& s); QuicPacketPublicHeader public_header; bool fec_flag; bool entropy_flag; QuicPacketEntropyHash entropy_hash; QuicPacketSequenceNumber packet_sequence_number; InFecGroup is_in_fec_group; QuicFecGroupNumber fec_group; }; struct NET_EXPORT_PRIVATE QuicPublicResetPacket { QuicPublicResetPacket(); explicit QuicPublicResetPacket(const QuicPacketPublicHeader& header); QuicPacketPublicHeader public_header; QuicPublicResetNonceProof nonce_proof; QuicPacketSequenceNumber rejected_sequence_number; IPEndPoint client_address; }; enum QuicVersionNegotiationState { START_NEGOTIATION = 0, // Server-side this implies we've sent a version negotiation packet and are // waiting on the client to select a compatible version. Client-side this // implies we've gotten a version negotiation packet, are retransmitting the // initial packets with a supported version and are waiting for our first // packet from the server. NEGOTIATION_IN_PROGRESS, // This indicates this endpoint has received a packet from the peer with a // version this endpoint supports. Version negotiation is complete, and the // version number will no longer be sent with future packets. NEGOTIATED_VERSION }; typedef QuicPacketPublicHeader QuicVersionNegotiationPacket; // A padding frame contains no payload. struct NET_EXPORT_PRIVATE QuicPaddingFrame { }; // A ping frame contains no payload, though it is retransmittable, // and ACK'd just like other normal frames. struct NET_EXPORT_PRIVATE QuicPingFrame { }; struct NET_EXPORT_PRIVATE QuicStreamFrame { QuicStreamFrame(); QuicStreamFrame(const QuicStreamFrame& frame); QuicStreamFrame(QuicStreamId stream_id, bool fin, QuicStreamOffset offset, IOVector data); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicStreamFrame& s); // Returns a copy of the IOVector |data| as a heap-allocated string. // Caller must take ownership of the returned string. std::string* GetDataAsString() const; QuicStreamId stream_id; bool fin; QuicStreamOffset offset; // Location of this data in the stream. IOVector data; // TODO(rjshade): Remove with FLAGS_quic_attach_ack_notifiers_to_packets. // If this is set, then when this packet is ACKed the AckNotifier will be // informed. QuicAckNotifier* notifier; }; // TODO(ianswett): Re-evaluate the trade-offs of hash_set vs set when framing // is finalized. typedef std::set SequenceNumberSet; typedef std::list SequenceNumberList; typedef std::list< std::pair > PacketTimeList; struct NET_EXPORT_PRIVATE QuicStopWaitingFrame { QuicStopWaitingFrame(); ~QuicStopWaitingFrame(); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicStopWaitingFrame& s); // Entropy hash of all packets up to, but not including, the least unacked // packet. QuicPacketEntropyHash entropy_hash; // The lowest packet we've sent which is unacked, and we expect an ack for. QuicPacketSequenceNumber least_unacked; }; struct NET_EXPORT_PRIVATE QuicAckFrame { QuicAckFrame(); ~QuicAckFrame(); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicAckFrame& s); // Entropy hash of all packets up to largest observed not including missing // packets. QuicPacketEntropyHash entropy_hash; // The highest packet sequence number we've observed from the peer. // // In general, this should be the largest packet number we've received. In // the case of truncated acks, we may have to advertise a lower "upper bound" // than largest received, to avoid implicitly acking missing packets that // don't fit in the missing packet list due to size limitations. In this // case, largest_observed may be a packet which is also in the missing packets // list. QuicPacketSequenceNumber largest_observed; // Time elapsed since largest_observed was received until this Ack frame was // sent. QuicTime::Delta delta_time_largest_observed; // TODO(satyamshekhar): Can be optimized using an interval set like data // structure. // The set of packets which we're expecting and have not received. SequenceNumberSet missing_packets; // Whether the ack had to be truncated when sent. bool is_truncated; // Packets which have been revived via FEC. // All of these must also be in missing_packets. SequenceNumberSet revived_packets; // List of for when packets arrived. PacketTimeList received_packet_times; }; // True if the sequence number is greater than largest_observed or is listed // as missing. // Always returns false for sequence numbers less than least_unacked. bool NET_EXPORT_PRIVATE IsAwaitingPacket( const QuicAckFrame& ack_frame, QuicPacketSequenceNumber sequence_number); // Inserts missing packets between [lower, higher). void NET_EXPORT_PRIVATE InsertMissingPacketsBetween( QuicAckFrame* ack_frame, QuicPacketSequenceNumber lower, QuicPacketSequenceNumber higher); // Defines for all types of congestion control algorithms that can be used in // QUIC. Note that this is separate from the congestion feedback type - // some congestion control algorithms may use the same feedback type // (Reno and Cubic are the classic example for that). enum CongestionControlType { kCubic, kReno, kBBR, }; enum LossDetectionType { kNack, // Used to mimic TCP's loss detection. kTime, // Time based loss detection. }; struct NET_EXPORT_PRIVATE QuicRstStreamFrame { QuicRstStreamFrame(); QuicRstStreamFrame(QuicStreamId stream_id, QuicRstStreamErrorCode error_code, QuicStreamOffset bytes_written); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicRstStreamFrame& r); QuicStreamId stream_id; QuicRstStreamErrorCode error_code; std::string error_details; // Used to update flow control windows. On termination of a stream, both // endpoints must inform the peer of the number of bytes they have sent on // that stream. This can be done through normal termination (data packet with // FIN) or through a RST. QuicStreamOffset byte_offset; }; struct NET_EXPORT_PRIVATE QuicConnectionCloseFrame { QuicConnectionCloseFrame(); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicConnectionCloseFrame& c); QuicErrorCode error_code; std::string error_details; }; struct NET_EXPORT_PRIVATE QuicGoAwayFrame { QuicGoAwayFrame(); QuicGoAwayFrame(QuicErrorCode error_code, QuicStreamId last_good_stream_id, const std::string& reason); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicGoAwayFrame& g); QuicErrorCode error_code; QuicStreamId last_good_stream_id; std::string reason_phrase; }; // Flow control updates per-stream and at the connection levoel. // Based on SPDY's WINDOW_UPDATE frame, but uses an absolute byte offset rather // than a window delta. // TODO(rjshade): A possible future optimization is to make stream_id and // byte_offset variable length, similar to stream frames. struct NET_EXPORT_PRIVATE QuicWindowUpdateFrame { QuicWindowUpdateFrame() {} QuicWindowUpdateFrame(QuicStreamId stream_id, QuicStreamOffset byte_offset); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicWindowUpdateFrame& w); // The stream this frame applies to. 0 is a special case meaning the overall // connection rather than a specific stream. QuicStreamId stream_id; // Byte offset in the stream or connection. The receiver of this frame must // not send data which would result in this offset being exceeded. QuicStreamOffset byte_offset; }; // The BLOCKED frame is used to indicate to the remote endpoint that this // endpoint believes itself to be flow-control blocked but otherwise ready to // send data. The BLOCKED frame is purely advisory and optional. // Based on SPDY's BLOCKED frame (undocumented as of 2014-01-28). struct NET_EXPORT_PRIVATE QuicBlockedFrame { QuicBlockedFrame() {} explicit QuicBlockedFrame(QuicStreamId stream_id); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicBlockedFrame& b); // The stream this frame applies to. 0 is a special case meaning the overall // connection rather than a specific stream. QuicStreamId stream_id; }; // EncryptionLevel enumerates the stages of encryption that a QUIC connection // progresses through. When retransmitting a packet, the encryption level needs // to be specified so that it is retransmitted at a level which the peer can // understand. enum EncryptionLevel { ENCRYPTION_NONE = 0, ENCRYPTION_INITIAL = 1, ENCRYPTION_FORWARD_SECURE = 2, NUM_ENCRYPTION_LEVELS, }; struct NET_EXPORT_PRIVATE QuicFrame { QuicFrame(); explicit QuicFrame(QuicPaddingFrame* padding_frame); explicit QuicFrame(QuicStreamFrame* stream_frame); explicit QuicFrame(QuicAckFrame* frame); explicit QuicFrame(QuicRstStreamFrame* frame); explicit QuicFrame(QuicConnectionCloseFrame* frame); explicit QuicFrame(QuicStopWaitingFrame* frame); explicit QuicFrame(QuicPingFrame* frame); explicit QuicFrame(QuicGoAwayFrame* frame); explicit QuicFrame(QuicWindowUpdateFrame* frame); explicit QuicFrame(QuicBlockedFrame* frame); NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicFrame& frame); QuicFrameType type; union { QuicPaddingFrame* padding_frame; QuicStreamFrame* stream_frame; QuicAckFrame* ack_frame; QuicStopWaitingFrame* stop_waiting_frame; QuicPingFrame* ping_frame; QuicRstStreamFrame* rst_stream_frame; QuicConnectionCloseFrame* connection_close_frame; QuicGoAwayFrame* goaway_frame; QuicWindowUpdateFrame* window_update_frame; QuicBlockedFrame* blocked_frame; }; }; typedef std::vector QuicFrames; struct NET_EXPORT_PRIVATE QuicFecData { QuicFecData(); // The FEC group number is also the sequence number of the first // FEC protected packet. The last protected packet's sequence number will // be one less than the sequence number of the FEC packet. QuicFecGroupNumber fec_group; base::StringPiece redundancy; }; class NET_EXPORT_PRIVATE QuicData { public: QuicData(const char* buffer, size_t length); QuicData(char* buffer, size_t length, bool owns_buffer); virtual ~QuicData(); base::StringPiece AsStringPiece() const { return base::StringPiece(data(), length()); } const char* data() const { return buffer_; } size_t length() const { return length_; } private: const char* buffer_; size_t length_; bool owns_buffer_; DISALLOW_COPY_AND_ASSIGN(QuicData); }; class NET_EXPORT_PRIVATE QuicPacket : public QuicData { public: QuicPacket(char* buffer, size_t length, bool owns_buffer, QuicConnectionIdLength connection_id_length, bool includes_version, QuicSequenceNumberLength sequence_number_length); base::StringPiece FecProtectedData() const; base::StringPiece AssociatedData() const; base::StringPiece BeforePlaintext() const; base::StringPiece Plaintext() const; char* mutable_data() { return buffer_; } private: char* buffer_; const QuicConnectionIdLength connection_id_length_; const bool includes_version_; const QuicSequenceNumberLength sequence_number_length_; DISALLOW_COPY_AND_ASSIGN(QuicPacket); }; class NET_EXPORT_PRIVATE QuicEncryptedPacket : public QuicData { public: QuicEncryptedPacket(const char* buffer, size_t length); QuicEncryptedPacket(char* buffer, size_t length, bool owns_buffer); // Clones the packet into a new packet which owns the buffer. QuicEncryptedPacket* Clone() const; // By default, gtest prints the raw bytes of an object. The bool data // member (in the base class QuicData) causes this object to have padding // bytes, which causes the default gtest object printer to read // uninitialize memory. So we need to teach gtest how to print this object. NET_EXPORT_PRIVATE friend std::ostream& operator<<( std::ostream& os, const QuicEncryptedPacket& s); private: DISALLOW_COPY_AND_ASSIGN(QuicEncryptedPacket); }; class NET_EXPORT_PRIVATE RetransmittableFrames { public: RetransmittableFrames(); ~RetransmittableFrames(); // Allocates a local copy of the referenced StringPiece has QuicStreamFrame // use it. // Takes ownership of |stream_frame|. const QuicFrame& AddStreamFrame(QuicStreamFrame* stream_frame); // Takes ownership of the frame inside |frame|. const QuicFrame& AddNonStreamFrame(const QuicFrame& frame); const QuicFrames& frames() const { return frames_; } IsHandshake HasCryptoHandshake() const { return has_crypto_handshake_; } void set_encryption_level(EncryptionLevel level); EncryptionLevel encryption_level() const { return encryption_level_; } private: QuicFrames frames_; EncryptionLevel encryption_level_; IsHandshake has_crypto_handshake_; // Data referenced by the StringPiece of a QuicStreamFrame. std::vector stream_data_; DISALLOW_COPY_AND_ASSIGN(RetransmittableFrames); }; struct NET_EXPORT_PRIVATE SerializedPacket { SerializedPacket(QuicPacketSequenceNumber sequence_number, QuicSequenceNumberLength sequence_number_length, QuicEncryptedPacket* packet, QuicPacketEntropyHash entropy_hash, RetransmittableFrames* retransmittable_frames); ~SerializedPacket(); QuicPacketSequenceNumber sequence_number; QuicSequenceNumberLength sequence_number_length; QuicEncryptedPacket* packet; QuicPacketEntropyHash entropy_hash; RetransmittableFrames* retransmittable_frames; bool is_fec_packet; // Optional notifiers which will be informed when this packet has been ACKed. std::list notifiers; }; struct NET_EXPORT_PRIVATE TransmissionInfo { // Used by STL when assigning into a map. TransmissionInfo(); // Constructs a Transmission with a new all_tranmissions set // containing |sequence_number|. TransmissionInfo(RetransmittableFrames* retransmittable_frames, QuicSequenceNumberLength sequence_number_length, TransmissionType transmission_type, QuicTime sent_time); RetransmittableFrames* retransmittable_frames; QuicSequenceNumberLength sequence_number_length; // Zero when the packet is serialized, non-zero once it's sent. QuicTime sent_time; // Zero when the packet is serialized, non-zero once it's sent. QuicByteCount bytes_sent; QuicPacketCount nack_count; // Reason why this packet was transmitted. TransmissionType transmission_type; // Stores the sequence numbers of all transmissions of this packet. // Must always be nullptr or have multiple elements. SequenceNumberList* all_transmissions; // In flight packets have not been abandoned or lost. bool in_flight; // True if the packet can never be acked, so it can be removed. bool is_unackable; // True if the packet is an FEC packet. bool is_fec_packet; }; } // namespace net #endif // NET_QUIC_QUIC_PROTOCOL_H_