// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_sent_packet_manager.h" #include #include "base/logging.h" #include "base/stl_util.h" #include "net/quic/congestion_control/pacing_sender.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/proto/cached_network_parameters.pb.h" #include "net/quic/quic_bug_tracker.h" #include "net/quic/quic_connection_stats.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_utils_chromium.h" using std::max; using std::min; using std::pair; namespace net { // The length of the recent min rtt window in seconds. Windowing is disabled for // values less than or equal to 0. int32_t FLAGS_quic_recent_min_rtt_window_s = 60; namespace { static const int64_t kDefaultRetransmissionTimeMs = 500; // TCP RFC calls for 1 second RTO however Linux differs from this default and // define the minimum RTO to 200ms, we will use the same until we have data to // support a higher or lower value. static const int64_t kMinRetransmissionTimeMs = 200; static const int64_t kMaxRetransmissionTimeMs = 60000; // Maximum number of exponential backoffs used for RTO timeouts. static const size_t kMaxRetransmissions = 10; // Maximum number of packets retransmitted upon an RTO. static const size_t kMaxRetransmissionsOnTimeout = 2; // Minimum number of consecutive RTOs before path is considered to be degrading. const size_t kMinTimeoutsBeforePathDegrading = 2; // Ensure the handshake timer isnt't faster than 10ms. // This limits the tenth retransmitted packet to 10s after the initial CHLO. static const int64_t kMinHandshakeTimeoutMs = 10; // Sends up to two tail loss probes before firing an RTO, // per draft RFC draft-dukkipati-tcpm-tcp-loss-probe. static const size_t kDefaultMaxTailLossProbes = 2; static const int64_t kMinTailLossProbeTimeoutMs = 10; // Number of unpaced packets to send after quiescence. static const size_t kInitialUnpacedBurst = 10; bool HasCryptoHandshake(const TransmissionInfo& transmission_info) { DCHECK(!transmission_info.has_crypto_handshake || !transmission_info.retransmittable_frames.empty()); return transmission_info.has_crypto_handshake; } } // namespace #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") QuicSentPacketManager::QuicSentPacketManager( Perspective perspective, QuicPathId path_id, const QuicClock* clock, QuicConnectionStats* stats, CongestionControlType congestion_control_type, LossDetectionType loss_type, MultipathDelegateInterface* delegate) : unacked_packets_(), perspective_(perspective), path_id_(path_id), clock_(clock), stats_(stats), delegate_(delegate), debug_delegate_(nullptr), network_change_visitor_(nullptr), initial_congestion_window_(kInitialCongestionWindow), send_algorithm_( SendAlgorithmInterface::Create(clock, &rtt_stats_, congestion_control_type, stats, initial_congestion_window_)), loss_algorithm_(LossDetectionInterface::Create(loss_type)), n_connection_simulation_(false), receive_buffer_bytes_(kDefaultSocketReceiveBuffer), least_packet_awaited_by_peer_(1), first_rto_transmission_(0), consecutive_rto_count_(0), consecutive_tlp_count_(0), consecutive_crypto_retransmission_count_(0), pending_timer_transmission_count_(0), max_tail_loss_probes_(kDefaultMaxTailLossProbes), enable_half_rtt_tail_loss_probe_(false), using_pacing_(false), use_new_rto_(false), handshake_confirmed_(false) {} QuicSentPacketManager::~QuicSentPacketManager() {} void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { if (config.HasReceivedInitialRoundTripTimeUs() && config.ReceivedInitialRoundTripTimeUs() > 0) { rtt_stats_.set_initial_rtt_us( max(kMinInitialRoundTripTimeUs, min(kMaxInitialRoundTripTimeUs, config.ReceivedInitialRoundTripTimeUs()))); } else if (config.HasInitialRoundTripTimeUsToSend() && config.GetInitialRoundTripTimeUsToSend() > 0) { rtt_stats_.set_initial_rtt_us( max(kMinInitialRoundTripTimeUs, min(kMaxInitialRoundTripTimeUs, config.GetInitialRoundTripTimeUsToSend()))); } // Initial RTT may have changed. if (network_change_visitor_ != nullptr) { network_change_visitor_->OnRttChange(); } // TODO(ianswett): BBR is currently a server only feature. if (FLAGS_quic_allow_bbr && config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) { if (FLAGS_quic_recent_min_rtt_window_s > 0) { rtt_stats_.set_recent_min_rtt_window( QuicTime::Delta::FromSeconds(FLAGS_quic_recent_min_rtt_window_s)); } send_algorithm_.reset(SendAlgorithmInterface::Create( clock_, &rtt_stats_, kBBR, stats_, initial_congestion_window_)); } if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) { if (ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) { send_algorithm_.reset(SendAlgorithmInterface::Create( clock_, &rtt_stats_, kRenoBytes, stats_, initial_congestion_window_)); } else { send_algorithm_.reset(SendAlgorithmInterface::Create( clock_, &rtt_stats_, kReno, stats_, initial_congestion_window_)); } } else if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) { send_algorithm_.reset(SendAlgorithmInterface::Create( clock_, &rtt_stats_, kCubicBytes, stats_, initial_congestion_window_)); } if (!FLAGS_quic_disable_pacing) { EnablePacing(); } if (config.HasClientSentConnectionOption(k1CON, perspective_)) { send_algorithm_->SetNumEmulatedConnections(1); } if (config.HasClientSentConnectionOption(kNCON, perspective_)) { n_connection_simulation_ = true; } if (config.HasClientSentConnectionOption(kNTLP, perspective_)) { max_tail_loss_probes_ = 0; } if (config.HasClientSentConnectionOption(kTLPR, perspective_)) { enable_half_rtt_tail_loss_probe_ = true; } if (config.HasClientSentConnectionOption(kNRTO, perspective_)) { use_new_rto_ = true; } if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME)) { loss_algorithm_.reset(LossDetectionInterface::Create(kTime)); } if (config.HasReceivedSocketReceiveBuffer()) { receive_buffer_bytes_ = max(kMinSocketReceiveBuffer, static_cast(config.ReceivedSocketReceiveBuffer())); QuicByteCount max_cwnd_bytes = static_cast( receive_buffer_bytes_ * kConservativeReceiveBufferFraction); max_cwnd_bytes = min(max_cwnd_bytes, kMaxCongestionWindow * kDefaultTCPMSS); send_algorithm_->SetMaxCongestionWindow(max_cwnd_bytes); } send_algorithm_->SetFromConfig(config, perspective_); if (network_change_visitor_ != nullptr) { network_change_visitor_->OnCongestionWindowChange(); } } void QuicSentPacketManager::ResumeConnectionState( const CachedNetworkParameters& cached_network_params, bool max_bandwidth_resumption) { if (cached_network_params.has_min_rtt_ms()) { uint32_t initial_rtt_us = kNumMicrosPerMilli * cached_network_params.min_rtt_ms(); rtt_stats_.set_initial_rtt_us( max(kMinInitialRoundTripTimeUs, min(kMaxInitialRoundTripTimeUs, initial_rtt_us))); } send_algorithm_->ResumeConnectionState(cached_network_params, max_bandwidth_resumption); } void QuicSentPacketManager::SetNumOpenStreams(size_t num_streams) { if (n_connection_simulation_) { // Ensure the number of connections is between 1 and 5. send_algorithm_->SetNumEmulatedConnections( min(5, max(1, num_streams))); } } void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame, QuicTime ack_receive_time) { QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); UpdatePacketInformationReceivedByPeer(ack_frame); bool rtt_updated = MaybeUpdateRTT(ack_frame, ack_receive_time); DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed()); unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed); HandleAckForSentPackets(ack_frame); InvokeLossDetection(ack_receive_time); // Ignore losses in RTO mode. if (consecutive_rto_count_ > 0 && !use_new_rto_) { packets_lost_.clear(); } MaybeInvokeCongestionEvent(rtt_updated, bytes_in_flight); unacked_packets_.RemoveObsoletePackets(); sustained_bandwidth_recorder_.RecordEstimate( send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(), send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(), rtt_stats_.smoothed_rtt()); // Anytime we are making forward progress and have a new RTT estimate, reset // the backoff counters. if (rtt_updated) { if (consecutive_rto_count_ > 0) { // If the ack acknowledges data sent prior to the RTO, // the RTO was spurious. if (ack_frame.largest_observed < first_rto_transmission_) { // Replace SRTT with latest_rtt and increase the variance to prevent // a spurious RTO from happening again. rtt_stats_.ExpireSmoothedMetrics(); } else { if (!use_new_rto_) { send_algorithm_->OnRetransmissionTimeout(true); } } } // Reset all retransmit counters any time a new packet is acked. consecutive_rto_count_ = 0; consecutive_tlp_count_ = 0; consecutive_crypto_retransmission_count_ = 0; } if (debug_delegate_ != nullptr) { debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time, unacked_packets_.largest_observed(), rtt_updated, GetLeastUnacked()); } } void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer( const QuicAckFrame& ack_frame) { if (ack_frame.missing_packets.Empty()) { least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1; } else { least_packet_awaited_by_peer_ = ack_frame.missing_packets.Min(); } } void QuicSentPacketManager::MaybeInvokeCongestionEvent( bool rtt_updated, QuicByteCount bytes_in_flight) { if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) { return; } send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight, packets_acked_, packets_lost_); packets_acked_.clear(); packets_lost_.clear(); if (network_change_visitor_ != nullptr) { network_change_visitor_->OnCongestionWindowChange(); } } void QuicSentPacketManager::HandleAckForSentPackets( const QuicAckFrame& ack_frame) { // Go through the packets we have not received an ack for and see if this // incoming_ack shows they've been seen by the peer. QuicTime::Delta ack_delay_time = ack_frame.ack_delay_time; QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { if (packet_number > ack_frame.largest_observed) { // These packets are still in flight. break; } if (ack_frame.missing_packets.Contains(packet_number)) { // Don't continue to increase the nack count for packets not in flight. if (!it->in_flight) { continue; } // Consider it multiple nacks when there is a gap between the missing // packet and the largest observed, since the purpose of a nack // threshold is to tolerate re-ordering. This handles both StretchAcks // and Forward Acks. // The nack count only increases when the largest observed increases. QuicPacketCount min_nacks = ack_frame.largest_observed - packet_number; // Truncated acks can nack the largest observed, so use a min of 1. if (min_nacks == 0) { min_nacks = 1; } unacked_packets_.NackPacket(packet_number, min_nacks); continue; } // Packet was acked, so remove it from our unacked packet list. DVLOG(1) << ENDPOINT << "Got an ack for packet " << packet_number; // If data is associated with the most recent transmission of this // packet, then inform the caller. if (it->in_flight) { packets_acked_.push_back(std::make_pair(packet_number, it->bytes_sent)); } MarkPacketHandled(packet_number, &(*it), ack_delay_time); } // Discard any retransmittable frames associated with revived packets. if (ack_frame.latest_revived_packet != 0) { MarkPacketNotRetransmittable(ack_frame.latest_revived_packet, ack_delay_time); } } bool QuicSentPacketManager::HasRetransmittableFrames( QuicPacketNumber packet_number) const { return unacked_packets_.HasRetransmittableFrames(packet_number); } void QuicSentPacketManager::RetransmitUnackedPackets( TransmissionType retransmission_type) { DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION || retransmission_type == ALL_INITIAL_RETRANSMISSION); QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { if (!it->retransmittable_frames.empty() && (retransmission_type == ALL_UNACKED_RETRANSMISSION || it->encryption_level == ENCRYPTION_INITIAL)) { MarkForRetransmission(packet_number, retransmission_type); } else if (it->is_fec_packet) { // Remove FEC packets from the packet map, since we can't retransmit them. unacked_packets_.RemoveFromInFlight(packet_number); } } } void QuicSentPacketManager::NeuterUnencryptedPackets() { QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { if (!it->retransmittable_frames.empty() && it->encryption_level == ENCRYPTION_NONE) { // Once you're forward secure, no unencrypted packets will be sent, crypto // or otherwise. Unencrypted packets are neutered and abandoned, to ensure // they are not retransmitted or considered lost from a congestion control // perspective. if (delegate_ != nullptr) { delegate_->OnUnencryptedPacketsNeutered(path_id_, packet_number); } else { pending_retransmissions_.erase(packet_number); } unacked_packets_.RemoveFromInFlight(packet_number); unacked_packets_.RemoveRetransmittability(packet_number); } } } void QuicSentPacketManager::MarkForRetransmission( QuicPacketNumber packet_number, TransmissionType transmission_type) { const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(packet_number); QUIC_BUG_IF(transmission_info.retransmittable_frames.empty()); // Both TLP and the new RTO leave the packets in flight and let the loss // detection decide if packets are lost. if (transmission_type != TLP_RETRANSMISSION && transmission_type != RTO_RETRANSMISSION) { unacked_packets_.RemoveFromInFlight(packet_number); } if (delegate_ != nullptr) { delegate_->OnRetransmissionMarked(path_id_, packet_number, transmission_type); } else { // TODO(ianswett): Currently the RTO can fire while there are pending NACK // retransmissions for the same data, which is not ideal. if (ContainsKey(pending_retransmissions_, packet_number)) { return; } pending_retransmissions_[packet_number] = transmission_type; } } void QuicSentPacketManager::RecordOneSpuriousRetransmission( const TransmissionInfo& info) { stats_->bytes_spuriously_retransmitted += info.bytes_sent; ++stats_->packets_spuriously_retransmitted; if (debug_delegate_ != nullptr) { debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type, info.bytes_sent); } } void QuicSentPacketManager::RecordSpuriousRetransmissions( const TransmissionInfo& info, QuicPacketNumber acked_packet_number) { QuicPacketNumber retransmission = info.retransmission; while (retransmission != 0) { const TransmissionInfo& retransmit_info = unacked_packets_.GetTransmissionInfo(retransmission); retransmission = retransmit_info.retransmission; RecordOneSpuriousRetransmission(retransmit_info); } } bool QuicSentPacketManager::HasPendingRetransmissions() const { return !pending_retransmissions_.empty(); } PendingRetransmission QuicSentPacketManager::NextPendingRetransmission() { QUIC_BUG_IF(pending_retransmissions_.empty()) << "Unexpected call to PendingRetransmissions() with empty pending " << "retransmission list. Corrupted memory usage imminent."; QuicPacketNumber packet_number = pending_retransmissions_.begin()->first; TransmissionType transmission_type = pending_retransmissions_.begin()->second; if (unacked_packets_.HasPendingCryptoPackets()) { // Ensure crypto packets are retransmitted before other packets. for (const auto& pair : pending_retransmissions_) { if (HasCryptoHandshake( unacked_packets_.GetTransmissionInfo(pair.first))) { packet_number = pair.first; transmission_type = pair.second; break; } } } DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number; const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(packet_number); DCHECK(!transmission_info.retransmittable_frames.empty()); return PendingRetransmission(path_id_, packet_number, transmission_type, transmission_info.retransmittable_frames, transmission_info.has_crypto_handshake, transmission_info.needs_padding, transmission_info.encryption_level, transmission_info.packet_number_length); } QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission( QuicPacketNumber packet_number, const TransmissionInfo& transmission_info) const { QuicPacketNumber retransmission = transmission_info.retransmission; while (retransmission != 0) { packet_number = retransmission; retransmission = unacked_packets_.GetTransmissionInfo(retransmission).retransmission; } return packet_number; } void QuicSentPacketManager::MarkPacketNotRetransmittable( QuicPacketNumber packet_number, QuicTime::Delta ack_delay_time) { if (!unacked_packets_.IsUnacked(packet_number)) { return; } const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(packet_number); QuicPacketNumber newest_transmission = GetNewestRetransmission(packet_number, transmission_info); // We do not need to retransmit this packet anymore. if (delegate_ != nullptr) { delegate_->OnPacketMarkedNotRetransmittable(path_id_, newest_transmission, ack_delay_time); } else { pending_retransmissions_.erase(newest_transmission); } // The AckListener needs to be notified for revived packets, // since it indicates the packet arrived from the appliction's perspective. unacked_packets_.NotifyAndClearListeners(newest_transmission, ack_delay_time); unacked_packets_.RemoveRetransmittability(packet_number); } void QuicSentPacketManager::MarkPacketHandled(QuicPacketNumber packet_number, TransmissionInfo* info, QuicTime::Delta ack_delay_time) { QuicPacketNumber newest_transmission = GetNewestRetransmission(packet_number, *info); // Remove the most recent packet, if it is pending retransmission. if (delegate_ != nullptr) { delegate_->OnPacketMarkedHandled(path_id_, newest_transmission, ack_delay_time); } else { pending_retransmissions_.erase(newest_transmission); } // The AckListener needs to be notified about the most recent // transmission, since that's the one only one it tracks. if (newest_transmission == packet_number) { unacked_packets_.NotifyAndClearListeners(&info->ack_listeners, ack_delay_time); } else { unacked_packets_.NotifyAndClearListeners(newest_transmission, ack_delay_time); RecordSpuriousRetransmissions(*info, packet_number); // Remove the most recent packet from flight if it's a crypto handshake // packet, since they won't be acked now that one has been processed. // Other crypto handshake packets won't be in flight, only the newest // transmission of a crypto packet is in flight at once. // TODO(ianswett): Instead of handling all crypto packets special, // only handle nullptr encrypted packets in a special way. const TransmissionInfo& newest_transmission_info = unacked_packets_.GetTransmissionInfo(newest_transmission); if (HasCryptoHandshake(newest_transmission_info)) { unacked_packets_.RemoveFromInFlight(newest_transmission); } } unacked_packets_.RemoveFromInFlight(info); unacked_packets_.RemoveRetransmittability(info); } bool QuicSentPacketManager::IsUnacked(QuicPacketNumber packet_number) const { return unacked_packets_.IsUnacked(packet_number); } bool QuicSentPacketManager::HasUnackedPackets() const { return unacked_packets_.HasUnackedPackets(); } QuicPacketNumber QuicSentPacketManager::GetLeastUnacked() const { return unacked_packets_.GetLeastUnacked(); } bool QuicSentPacketManager::OnPacketSent( SerializedPacket* serialized_packet, QuicPacketNumber original_packet_number, QuicTime sent_time, TransmissionType transmission_type, HasRetransmittableData has_retransmittable_data) { QuicPacketNumber packet_number = serialized_packet->packet_number; DCHECK_LT(0u, packet_number); DCHECK(!unacked_packets_.IsUnacked(packet_number)); QUIC_BUG_IF(serialized_packet->encrypted_length == 0) << "Cannot send empty packets."; if (delegate_ == nullptr && original_packet_number != 0) { if (!pending_retransmissions_.erase(original_packet_number)) { QUIC_BUG << "Expected packet number to be in " << "pending_retransmissions_. packet_number: " << original_packet_number; } } if (pending_timer_transmission_count_ > 0) { --pending_timer_transmission_count_; } // Only track packets as in flight that the send algorithm wants us to track. // Since FEC packets should also be counted towards the congestion window, // consider them as retransmittable for the purposes of congestion control. HasRetransmittableData has_congestion_controlled_data = serialized_packet->is_fec_packet ? HAS_RETRANSMITTABLE_DATA : has_retransmittable_data; // TODO(ianswett): Remove sent_time, because it's unused. const bool in_flight = send_algorithm_->OnPacketSent( sent_time, unacked_packets_.bytes_in_flight(), packet_number, serialized_packet->encrypted_length, has_congestion_controlled_data); unacked_packets_.AddSentPacket(serialized_packet, original_packet_number, transmission_type, sent_time, in_flight); // Reset the retransmission timer anytime a pending packet is sent. return in_flight; } void QuicSentPacketManager::OnRetransmissionTimeout() { DCHECK(unacked_packets_.HasInFlightPackets()); DCHECK_EQ(0u, pending_timer_transmission_count_); // Handshake retransmission, timer based loss detection, TLP, and RTO are // implemented with a single alarm. The handshake alarm is set when the // handshake has not completed, the loss alarm is set when the loss detection // algorithm says to, and the TLP and RTO alarms are set after that. // The TLP alarm is always set to run for under an RTO. switch (GetRetransmissionMode()) { case HANDSHAKE_MODE: ++stats_->crypto_retransmit_count; RetransmitCryptoPackets(); return; case LOSS_MODE: { ++stats_->loss_timeout_count; QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); InvokeLossDetection(clock_->Now()); MaybeInvokeCongestionEvent(false, bytes_in_flight); return; } case TLP_MODE: // If no tail loss probe can be sent, because there are no retransmittable // packets, execute a conventional RTO to abandon old packets. ++stats_->tlp_count; ++consecutive_tlp_count_; pending_timer_transmission_count_ = 1; // TLPs prefer sending new data instead of retransmitting data, so // give the connection a chance to write before completing the TLP. return; case RTO_MODE: ++stats_->rto_count; RetransmitRtoPackets(); if (network_change_visitor_ != nullptr && consecutive_rto_count_ == kMinTimeoutsBeforePathDegrading) { network_change_visitor_->OnPathDegrading(); } return; } } void QuicSentPacketManager::RetransmitCryptoPackets() { DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode()); ++consecutive_crypto_retransmission_count_; bool packet_retransmitted = false; QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { // Only retransmit frames which are in flight, and therefore have been sent. if (!it->in_flight || it->retransmittable_frames.empty() || !it->has_crypto_handshake) { continue; } packet_retransmitted = true; MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION); ++pending_timer_transmission_count_; } DCHECK(packet_retransmitted) << "No crypto packets found to retransmit."; } bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() { if (pending_timer_transmission_count_ == 0) { return false; } QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { // Only retransmit frames which are in flight, and therefore have been sent. if (!it->in_flight || it->retransmittable_frames.empty()) { continue; } if (!handshake_confirmed_) { DCHECK(!it->has_crypto_handshake); } MarkForRetransmission(packet_number, TLP_RETRANSMISSION); return true; } DLOG(ERROR) << "No retransmittable packets, so RetransmitOldestPacket failed."; return false; } void QuicSentPacketManager::RetransmitRtoPackets() { QUIC_BUG_IF(pending_timer_transmission_count_ > 0) << "Retransmissions already queued:" << pending_timer_transmission_count_; // Mark two packets for retransmission. QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++packet_number) { if (!it->retransmittable_frames.empty() && pending_timer_transmission_count_ < kMaxRetransmissionsOnTimeout) { MarkForRetransmission(packet_number, RTO_RETRANSMISSION); ++pending_timer_transmission_count_; } // Abandon non-retransmittable data that's in flight to ensure it doesn't // fill up the congestion window. const bool has_retransmissions = it->retransmission != 0; if (it->retransmittable_frames.empty() && it->in_flight && !has_retransmissions) { // Log only for non-retransmittable data. // Retransmittable data is marked as lost during loss detection, and will // be logged later. unacked_packets_.RemoveFromInFlight(packet_number); if (FLAGS_quic_log_loss_event && debug_delegate_ != nullptr) { debug_delegate_->OnPacketLoss(packet_number, RTO_RETRANSMISSION, clock_->Now()); } } } if (pending_timer_transmission_count_ > 0) { if (consecutive_rto_count_ == 0) { first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1; } ++consecutive_rto_count_; } } QuicSentPacketManager::RetransmissionTimeoutMode QuicSentPacketManager::GetRetransmissionMode() const { DCHECK(unacked_packets_.HasInFlightPackets()); if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) { return HANDSHAKE_MODE; } if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) { return LOSS_MODE; } if (consecutive_tlp_count_ < max_tail_loss_probes_) { if (unacked_packets_.HasUnackedRetransmittableFrames()) { return TLP_MODE; } } return RTO_MODE; } void QuicSentPacketManager::InvokeLossDetection(QuicTime time) { loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_, &packets_lost_); for (const pair& pair : packets_lost_) { ++stats_->packets_lost; if (FLAGS_quic_log_loss_event && debug_delegate_ != nullptr) { debug_delegate_->OnPacketLoss(pair.first, LOSS_RETRANSMISSION, time); } // TODO(ianswett): This could be optimized. if (unacked_packets_.HasRetransmittableFrames(pair.first)) { MarkForRetransmission(pair.first, LOSS_RETRANSMISSION); } else { // Since we will not retransmit this, we need to remove it from // unacked_packets_. This is either the current transmission of // a packet whose previous transmission has been acked, a packet that // has been TLP retransmitted, or an FEC packet. unacked_packets_.RemoveFromInFlight(pair.first); } } } bool QuicSentPacketManager::MaybeUpdateRTT(const QuicAckFrame& ack_frame, const QuicTime& ack_receive_time) { // We rely on ack_delay_time to compute an RTT estimate, so we // only update rtt when the largest observed gets acked. // NOTE: If ack is a truncated ack, then the largest observed is in fact // unacked, and may cause an RTT sample to be taken. if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) { return false; } // We calculate the RTT based on the highest ACKed packet number, the lower // packet numbers will include the ACK aggregation delay. const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed); // Ensure the packet has a valid sent time. if (transmission_info.sent_time == QuicTime::Zero()) { QUIC_BUG << "Acked packet has zero sent time, largest_observed:" << ack_frame.largest_observed; return false; } QuicTime::Delta send_delta = ack_receive_time.Subtract(transmission_info.sent_time); rtt_stats_.UpdateRtt(send_delta, ack_frame.ack_delay_time, ack_receive_time); if (network_change_visitor_ != nullptr) { network_change_visitor_->OnRttChange(); } return true; } QuicTime::Delta QuicSentPacketManager::TimeUntilSend( QuicTime now, HasRetransmittableData retransmittable) { // The TLP logic is entirely contained within QuicSentPacketManager, so the // send algorithm does not need to be consulted. if (pending_timer_transmission_count_ > 0) { return QuicTime::Delta::Zero(); } return send_algorithm_->TimeUntilSend(now, unacked_packets_.bytes_in_flight(), retransmittable); } // Uses a 25ms delayed ack timer. Also helps with better signaling // in low-bandwidth (< ~384 kbps), where an ack is sent per packet. // Ensures that the Delayed Ack timer is always set to a value lesser // than the retransmission timer's minimum value (MinRTO). We want the // delayed ack to get back to the QUIC peer before the sender's // retransmission timer triggers. Since we do not know the // reverse-path one-way delay, we assume equal delays for forward and // reverse paths, and ensure that the timer is set to less than half // of the MinRTO. // There may be a value in making this delay adaptive with the help of // the sender and a signaling mechanism -- if the sender uses a // different MinRTO, we may get spurious retransmissions. May not have // any benefits, but if the delayed ack becomes a significant source // of (likely, tail) latency, then consider such a mechanism. const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() const { return QuicTime::Delta::FromMilliseconds( min(kMaxDelayedAckTimeMs, kMinRetransmissionTimeMs / 2)); } const QuicTime QuicSentPacketManager::GetRetransmissionTime() const { // Don't set the timer if there are no packets in flight or we've already // queued a tlp transmission and it hasn't been sent yet. if (!unacked_packets_.HasInFlightPackets() || pending_timer_transmission_count_ > 0) { return QuicTime::Zero(); } switch (GetRetransmissionMode()) { case HANDSHAKE_MODE: return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay()); case LOSS_MODE: return loss_algorithm_->GetLossTimeout(); case TLP_MODE: { // TODO(ianswett): When CWND is available, it would be preferable to // set the timer based on the earliest retransmittable packet. // Base the updated timer on the send time of the last packet. const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay()); // Ensure the TLP timer never gets set to a time in the past. return QuicTime::Max(clock_->ApproximateNow(), tlp_time); } case RTO_MODE: { // The RTO is based on the first outstanding packet. const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); QuicTime rto_time = sent_time.Add(GetRetransmissionDelay()); // Wait for TLP packets to be acked before an RTO fires. QuicTime tlp_time = unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay()); return QuicTime::Max(tlp_time, rto_time); } } DCHECK(false); return QuicTime::Zero(); } const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay() const { // This is equivalent to the TailLossProbeDelay, but slightly more aggressive // because crypto handshake messages don't incur a delayed ack time. QuicTime::Delta srtt = rtt_stats_.smoothed_rtt(); if (srtt.IsZero()) { srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us()); } int64_t delay_ms = max(kMinHandshakeTimeoutMs, static_cast(1.5 * srtt.ToMilliseconds())); return QuicTime::Delta::FromMilliseconds( delay_ms << consecutive_crypto_retransmission_count_); } const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const { QuicTime::Delta srtt = rtt_stats_.smoothed_rtt(); if (srtt.IsZero()) { srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us()); } if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count_ == 0u) { return QuicTime::Delta::FromMilliseconds( max(kMinTailLossProbeTimeoutMs, static_cast(0.5 * srtt.ToMilliseconds()))); } if (!unacked_packets_.HasMultipleInFlightPackets()) { return QuicTime::Delta::Max( srtt.Multiply(2), srtt.Multiply(1.5).Add( QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs / 2))); } return QuicTime::Delta::FromMilliseconds( max(kMinTailLossProbeTimeoutMs, static_cast(2 * srtt.ToMilliseconds()))); } const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const { QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay(); if (retransmission_delay.IsZero()) { // We are in the initial state, use default timeout values. retransmission_delay = QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) { retransmission_delay = QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); } // Calculate exponential back off. retransmission_delay = retransmission_delay.Multiply( 1 << min(consecutive_rto_count_, kMaxRetransmissions)); if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); } return retransmission_delay; } const RttStats* QuicSentPacketManager::GetRttStats() const { return &rtt_stats_; } QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const { // TODO(ianswett): Remove BandwidthEstimate from SendAlgorithmInterface // and implement the logic here. return send_algorithm_->BandwidthEstimate(); } const QuicSustainedBandwidthRecorder& QuicSentPacketManager::SustainedBandwidthRecorder() const { return sustained_bandwidth_recorder_; } QuicPacketCount QuicSentPacketManager::EstimateMaxPacketsInFlight( QuicByteCount max_packet_length) const { return send_algorithm_->GetCongestionWindow() / max_packet_length; } QuicPacketCount QuicSentPacketManager::GetCongestionWindowInTcpMss() const { return send_algorithm_->GetCongestionWindow() / kDefaultTCPMSS; } QuicByteCount QuicSentPacketManager::GetCongestionWindowInBytes() const { return send_algorithm_->GetCongestionWindow(); } QuicPacketCount QuicSentPacketManager::GetSlowStartThresholdInTcpMss() const { return send_algorithm_->GetSlowStartThreshold() / kDefaultTCPMSS; } void QuicSentPacketManager::CancelRetransmissionsForStream( QuicStreamId stream_id) { unacked_packets_.CancelRetransmissionsForStream(stream_id); if (delegate_ != nullptr) { return; } PendingRetransmissionMap::iterator it = pending_retransmissions_.begin(); while (it != pending_retransmissions_.end()) { if (HasRetransmittableFrames(it->first)) { ++it; continue; } it = pending_retransmissions_.erase(it); } } void QuicSentPacketManager::EnablePacing() { // TODO(ianswett): Replace with a method which wraps the send algorithm in a // pacer every time a new algorithm is set. if (using_pacing_) { return; } // Set up a pacing sender with a 1 millisecond alarm granularity, the same as // the default granularity of the Linux kernel's FQ qdisc. using_pacing_ = true; send_algorithm_.reset(new PacingSender(send_algorithm_.release(), QuicTime::Delta::FromMilliseconds(1), kInitialUnpacedBurst)); } void QuicSentPacketManager::OnConnectionMigration(PeerAddressChangeType type) { if (type == PORT_CHANGE || type == IPV4_SUBNET_CHANGE) { // Rtt and cwnd do not need to be reset when the peer address change is // considered to be caused by NATs. return; } consecutive_rto_count_ = 0; consecutive_tlp_count_ = 0; rtt_stats_.OnConnectionMigration(); send_algorithm_->OnConnectionMigration(); } bool QuicSentPacketManager::InSlowStart() const { return send_algorithm_->InSlowStart(); } TransmissionInfo* QuicSentPacketManager::GetMutableTransmissionInfo( QuicPacketNumber packet_number) { return unacked_packets_.GetMutableTransmissionInfo(packet_number); } void QuicSentPacketManager::RemoveObsoletePackets() { unacked_packets_.RemoveObsoletePackets(); } } // namespace net