// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_sent_packet_manager.h" #include #include "base/logging.h" #include "base/stl_util.h" #include "net/quic/congestion_control/pacing_sender.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/quic_ack_notifier_manager.h" #include "net/quic/quic_connection_stats.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_utils_chromium.h" using std::make_pair; using std::max; using std::min; namespace net { // The length of the recent min rtt window in seconds. Windowing is disabled for // values less than or equal to 0. int32 FLAGS_quic_recent_min_rtt_window_s = 60; namespace { static const int kDefaultRetransmissionTimeMs = 500; // TCP RFC calls for 1 second RTO however Linux differs from this default and // define the minimum RTO to 200ms, we will use the same until we have data to // support a higher or lower value. static const int kMinRetransmissionTimeMs = 200; static const int kMaxRetransmissionTimeMs = 60000; static const size_t kMaxRetransmissions = 10; // Only exponentially back off the handshake timer 5 times due to a timeout. static const size_t kMaxHandshakeRetransmissionBackoffs = 5; static const size_t kMinHandshakeTimeoutMs = 10; // Sends up to two tail loss probes before firing an RTO, // per draft RFC draft-dukkipati-tcpm-tcp-loss-probe. static const size_t kDefaultMaxTailLossProbes = 2; static const int64 kMinTailLossProbeTimeoutMs = 10; // Number of samples before we force a new recent min rtt to be captured. static const size_t kNumMinRttSamplesAfterQuiescence = 2; // Number of unpaced packets to send after quiescence. static const size_t kInitialUnpacedBurst = 10; bool HasCryptoHandshake(const TransmissionInfo& transmission_info) { if (transmission_info.retransmittable_frames == NULL) { return false; } return transmission_info.retransmittable_frames->HasCryptoHandshake() == IS_HANDSHAKE; } } // namespace #define ENDPOINT (is_server_ ? "Server: " : " Client: ") QuicSentPacketManager::QuicSentPacketManager( bool is_server, const QuicClock* clock, QuicConnectionStats* stats, CongestionControlType congestion_control_type, LossDetectionType loss_type) : unacked_packets_(), is_server_(is_server), clock_(clock), stats_(stats), debug_delegate_(NULL), network_change_visitor_(NULL), send_algorithm_(SendAlgorithmInterface::Create(clock, &rtt_stats_, congestion_control_type, stats)), loss_algorithm_(LossDetectionInterface::Create(loss_type)), least_packet_awaited_by_peer_(1), first_rto_transmission_(0), consecutive_rto_count_(0), consecutive_tlp_count_(0), consecutive_crypto_retransmission_count_(0), pending_timer_transmission_count_(0), max_tail_loss_probes_(kDefaultMaxTailLossProbes), using_pacing_(false), handshake_confirmed_(false) { } QuicSentPacketManager::~QuicSentPacketManager() { } void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { if (config.HasReceivedInitialRoundTripTimeUs() && config.ReceivedInitialRoundTripTimeUs() > 0) { rtt_stats_.set_initial_rtt_us(min(kMaxInitialRoundTripTimeUs, config.ReceivedInitialRoundTripTimeUs())); } else if (config.HasInitialRoundTripTimeUsToSend()) { rtt_stats_.set_initial_rtt_us( min(kMaxInitialRoundTripTimeUs, config.GetInitialRoundTripTimeUsToSend())); } // TODO(ianswett): BBR is currently a server only feature. if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) { if (FLAGS_quic_recent_min_rtt_window_s > 0) { rtt_stats_.set_recent_min_rtt_window( QuicTime::Delta::FromSeconds(FLAGS_quic_recent_min_rtt_window_s)); } send_algorithm_.reset( SendAlgorithmInterface::Create(clock_, &rtt_stats_, kBBR, stats_)); } if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) { send_algorithm_.reset( SendAlgorithmInterface::Create(clock_, &rtt_stats_, kReno, stats_)); } if (is_server_) { if (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kPACE)) { EnablePacing(); } } else if (config.HasSendConnectionOptions() && ContainsQuicTag(config.SendConnectionOptions(), kPACE)) { EnablePacing(); } // TODO(ianswett): Remove the "HasReceivedLossDetection" branch once // the ConnectionOptions code is live everywhere. if ((config.HasReceivedLossDetection() && config.ReceivedLossDetection() == kTIME) || (config.HasReceivedConnectionOptions() && ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME))) { loss_algorithm_.reset(LossDetectionInterface::Create(kTime)); } send_algorithm_->SetFromConfig(config, is_server_); if (network_change_visitor_ != NULL) { network_change_visitor_->OnCongestionWindowChange(GetCongestionWindow()); } } // TODO(ianswett): Combine this method with OnPacketSent once packets are always // sent in order and the connection tracks RetransmittableFrames for longer. void QuicSentPacketManager::OnSerializedPacket( const SerializedPacket& serialized_packet) { if (serialized_packet.retransmittable_frames) { ack_notifier_manager_.OnSerializedPacket(serialized_packet); } unacked_packets_.AddPacket(serialized_packet); if (debug_delegate_ != NULL) { debug_delegate_->OnSerializedPacket(serialized_packet); } } void QuicSentPacketManager::OnRetransmittedPacket( QuicPacketSequenceNumber old_sequence_number, QuicPacketSequenceNumber new_sequence_number) { TransmissionType transmission_type; PendingRetransmissionMap::iterator it = pending_retransmissions_.find(old_sequence_number); if (it != pending_retransmissions_.end()) { transmission_type = it->second; pending_retransmissions_.erase(it); } else { DLOG(DFATAL) << "Expected sequence number to be in " "pending_retransmissions_. sequence_number: " << old_sequence_number; transmission_type = NOT_RETRANSMISSION; } // A notifier may be waiting to hear about ACKs for the original sequence // number. Inform them that the sequence number has changed. ack_notifier_manager_.UpdateSequenceNumber(old_sequence_number, new_sequence_number); unacked_packets_.OnRetransmittedPacket(old_sequence_number, new_sequence_number, transmission_type); if (debug_delegate_ != NULL) { debug_delegate_->OnRetransmittedPacket(old_sequence_number, new_sequence_number, transmission_type, clock_->ApproximateNow()); } } void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame, QuicTime ack_receive_time) { QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); UpdatePacketInformationReceivedByPeer(ack_frame); // We rely on delta_time_largest_observed to compute an RTT estimate, so // we only update rtt when the largest observed gets acked. bool largest_observed_acked = MaybeUpdateRTT(ack_frame, ack_receive_time); DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed()); unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed); HandleAckForSentPackets(ack_frame); InvokeLossDetection(ack_receive_time); MaybeInvokeCongestionEvent(largest_observed_acked, bytes_in_flight); unacked_packets_.RemoveObsoletePackets(); sustained_bandwidth_recorder_.RecordEstimate( send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(), send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(), rtt_stats_.SmoothedRtt()); // If we have received a truncated ack, then we need to clear out some // previous transmissions to allow the peer to actually ACK new packets. if (ack_frame.is_truncated) { unacked_packets_.ClearAllPreviousRetransmissions(); } // Anytime we are making forward progress and have a new RTT estimate, reset // the backoff counters. if (largest_observed_acked) { // Reset all retransmit counters any time a new packet is acked. consecutive_rto_count_ = 0; consecutive_tlp_count_ = 0; consecutive_crypto_retransmission_count_ = 0; } if (debug_delegate_ != NULL) { debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time, unacked_packets_.largest_observed(), largest_observed_acked, GetLeastUnacked()); } } void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer( const QuicAckFrame& ack_frame) { if (ack_frame.missing_packets.empty()) { least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1; } else { least_packet_awaited_by_peer_ = *(ack_frame.missing_packets.begin()); } } void QuicSentPacketManager::MaybeInvokeCongestionEvent( bool rtt_updated, QuicByteCount bytes_in_flight) { if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) { return; } send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight, packets_acked_, packets_lost_); packets_acked_.clear(); packets_lost_.clear(); if (network_change_visitor_ != NULL) { network_change_visitor_->OnCongestionWindowChange(GetCongestionWindow()); } } void QuicSentPacketManager::HandleAckForSentPackets( const QuicAckFrame& ack_frame) { // Go through the packets we have not received an ack for and see if this // incoming_ack shows they've been seen by the peer. QuicTime::Delta delta_largest_observed = ack_frame.delta_time_largest_observed; QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { if (sequence_number > ack_frame.largest_observed) { // These packets are still in flight. break; } if (ContainsKey(ack_frame.missing_packets, sequence_number)) { // Don't continue to increase the nack count for packets not in flight. if (!it->in_flight) { continue; } // Consider it multiple nacks when there is a gap between the missing // packet and the largest observed, since the purpose of a nack // threshold is to tolerate re-ordering. This handles both StretchAcks // and Forward Acks. // The nack count only increases when the largest observed increases. size_t min_nacks = ack_frame.largest_observed - sequence_number; // Truncated acks can nack the largest observed, so use a min of 1. if (min_nacks == 0) { min_nacks = 1; } unacked_packets_.NackPacket(sequence_number, min_nacks); continue; } // Packet was acked, so remove it from our unacked packet list. DVLOG(1) << ENDPOINT << "Got an ack for packet " << sequence_number; // If data is associated with the most recent transmission of this // packet, then inform the caller. if (it->in_flight) { packets_acked_.push_back(make_pair(sequence_number, *it)); } MarkPacketHandled(sequence_number, *it, delta_largest_observed); } // Discard any retransmittable frames associated with revived packets. for (SequenceNumberSet::const_iterator revived_it = ack_frame.revived_packets.begin(); revived_it != ack_frame.revived_packets.end(); ++revived_it) { MarkPacketRevived(*revived_it, delta_largest_observed); } } bool QuicSentPacketManager::HasRetransmittableFrames( QuicPacketSequenceNumber sequence_number) const { return unacked_packets_.HasRetransmittableFrames(sequence_number); } void QuicSentPacketManager::RetransmitUnackedPackets( TransmissionType retransmission_type) { DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION || retransmission_type == ALL_INITIAL_RETRANSMISSION); QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { const RetransmittableFrames* frames = it->retransmittable_frames; if (frames != NULL && (retransmission_type == ALL_UNACKED_RETRANSMISSION || frames->encryption_level() == ENCRYPTION_INITIAL)) { MarkForRetransmission(sequence_number, retransmission_type); } } } void QuicSentPacketManager::NeuterUnencryptedPackets() { QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { const RetransmittableFrames* frames = it->retransmittable_frames; if (frames != NULL && frames->encryption_level() == ENCRYPTION_NONE) { // Once you're forward secure, no unencrypted packets will be sent, crypto // or otherwise. Unencrypted packets are neutered and abandoned, to ensure // they are not retransmitted or considered lost from a congestion control // perspective. pending_retransmissions_.erase(sequence_number); unacked_packets_.RemoveFromInFlight(sequence_number); unacked_packets_.RemoveRetransmittability(sequence_number); } } } void QuicSentPacketManager::MarkForRetransmission( QuicPacketSequenceNumber sequence_number, TransmissionType transmission_type) { const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(sequence_number); LOG_IF(DFATAL, transmission_info.retransmittable_frames == NULL); if (transmission_type != TLP_RETRANSMISSION) { unacked_packets_.RemoveFromInFlight(sequence_number); } // TODO(ianswett): Currently the RTO can fire while there are pending NACK // retransmissions for the same data, which is not ideal. if (ContainsKey(pending_retransmissions_, sequence_number)) { return; } pending_retransmissions_[sequence_number] = transmission_type; } void QuicSentPacketManager::RecordSpuriousRetransmissions( const SequenceNumberList& all_transmissions, QuicPacketSequenceNumber acked_sequence_number) { if (acked_sequence_number < first_rto_transmission_) { // Cancel all pending RTO transmissions and restore their in flight status. // Replace SRTT with latest_rtt and increase the variance to prevent // a spurious RTO from happening again. rtt_stats_.ExpireSmoothedMetrics(); for (PendingRetransmissionMap::const_iterator it = pending_retransmissions_.begin(); it != pending_retransmissions_.end(); ++it) { DCHECK_EQ(it->second, RTO_RETRANSMISSION); unacked_packets_.RestoreInFlight(it->first); } pending_retransmissions_.clear(); send_algorithm_->RevertRetransmissionTimeout(); first_rto_transmission_ = 0; ++stats_->spurious_rto_count; } for (SequenceNumberList::const_reverse_iterator it = all_transmissions.rbegin(); it != all_transmissions.rend() && *it > acked_sequence_number; ++it) { const TransmissionInfo& retransmit_info = unacked_packets_.GetTransmissionInfo(*it); stats_->bytes_spuriously_retransmitted += retransmit_info.bytes_sent; ++stats_->packets_spuriously_retransmitted; if (debug_delegate_ != NULL) { debug_delegate_->OnSpuriousPacketRetransmition( retransmit_info.transmission_type, retransmit_info.bytes_sent); } } } bool QuicSentPacketManager::HasPendingRetransmissions() const { return !pending_retransmissions_.empty(); } QuicSentPacketManager::PendingRetransmission QuicSentPacketManager::NextPendingRetransmission() { DCHECK(!pending_retransmissions_.empty()); QuicPacketSequenceNumber sequence_number = pending_retransmissions_.begin()->first; TransmissionType transmission_type = pending_retransmissions_.begin()->second; if (unacked_packets_.HasPendingCryptoPackets()) { // Ensure crypto packets are retransmitted before other packets. PendingRetransmissionMap::const_iterator it = pending_retransmissions_.begin(); do { if (HasCryptoHandshake(unacked_packets_.GetTransmissionInfo(it->first))) { sequence_number = it->first; transmission_type = it->second; break; } ++it; } while (it != pending_retransmissions_.end()); } DCHECK(unacked_packets_.IsUnacked(sequence_number)) << sequence_number; const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(sequence_number); DCHECK(transmission_info.retransmittable_frames); return PendingRetransmission(sequence_number, transmission_type, *transmission_info.retransmittable_frames, transmission_info.sequence_number_length); } void QuicSentPacketManager::MarkPacketRevived( QuicPacketSequenceNumber sequence_number, QuicTime::Delta delta_largest_observed) { if (!unacked_packets_.IsUnacked(sequence_number)) { return; } const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(sequence_number); QuicPacketSequenceNumber newest_transmission = transmission_info.all_transmissions == NULL ? sequence_number : *transmission_info.all_transmissions->rbegin(); // This packet has been revived at the receiver. If we were going to // retransmit it, do not retransmit it anymore. pending_retransmissions_.erase(newest_transmission); // The AckNotifierManager needs to be notified for revived packets, // since it indicates the packet arrived from the appliction's perspective. if (transmission_info.retransmittable_frames) { ack_notifier_manager_.OnPacketAcked( newest_transmission, delta_largest_observed); } unacked_packets_.RemoveRetransmittability(sequence_number); } void QuicSentPacketManager::MarkPacketHandled( QuicPacketSequenceNumber sequence_number, const TransmissionInfo& info, QuicTime::Delta delta_largest_observed) { QuicPacketSequenceNumber newest_transmission = info.all_transmissions == NULL ? sequence_number : *info.all_transmissions->rbegin(); // Remove the most recent packet, if it is pending retransmission. pending_retransmissions_.erase(newest_transmission); // The AckNotifierManager needs to be notified about the most recent // transmission, since that's the one only one it tracks. ack_notifier_manager_.OnPacketAcked(newest_transmission, delta_largest_observed); if (newest_transmission != sequence_number) { RecordSpuriousRetransmissions(*info.all_transmissions, sequence_number); // Remove the most recent packet from flight if it's a crypto handshake // packet, since they won't be acked now that one has been processed. // Other crypto handshake packets won't be in flight, only the newest // transmission of a crypto packet is in flight at once. // TODO(ianswett): Instead of handling all crypto packets special, // only handle NULL encrypted packets in a special way. if (HasCryptoHandshake( unacked_packets_.GetTransmissionInfo(newest_transmission))) { unacked_packets_.RemoveFromInFlight(newest_transmission); } } unacked_packets_.RemoveFromInFlight(sequence_number); unacked_packets_.RemoveRetransmittability(sequence_number); } bool QuicSentPacketManager::IsUnacked( QuicPacketSequenceNumber sequence_number) const { return unacked_packets_.IsUnacked(sequence_number); } bool QuicSentPacketManager::HasUnackedPackets() const { return unacked_packets_.HasUnackedPackets(); } QuicPacketSequenceNumber QuicSentPacketManager::GetLeastUnacked() const { return unacked_packets_.GetLeastUnacked(); } bool QuicSentPacketManager::OnPacketSent( QuicPacketSequenceNumber sequence_number, QuicTime sent_time, QuicByteCount bytes, TransmissionType transmission_type, HasRetransmittableData has_retransmittable_data) { DCHECK_LT(0u, sequence_number); DCHECK(unacked_packets_.IsUnacked(sequence_number)); LOG_IF(DFATAL, bytes == 0) << "Cannot send empty packets."; if (pending_timer_transmission_count_ > 0) { --pending_timer_transmission_count_; } if (unacked_packets_.bytes_in_flight() == 0) { // TODO(ianswett): Consider being less aggressive to force a new // recent_min_rtt, likely by not discarding a relatively new sample. DVLOG(1) << "Sampling a new recent min rtt within 2 samples. currently:" << rtt_stats_.recent_min_rtt().ToMilliseconds() << "ms"; rtt_stats_.SampleNewRecentMinRtt(kNumMinRttSamplesAfterQuiescence); } // Only track packets as in flight that the send algorithm wants us to track. const bool in_flight = send_algorithm_->OnPacketSent(sent_time, unacked_packets_.bytes_in_flight(), sequence_number, bytes, has_retransmittable_data); unacked_packets_.SetSent(sequence_number, sent_time, bytes, in_flight); if (debug_delegate_ != NULL) { debug_delegate_->OnSentPacket( sequence_number, sent_time, bytes, transmission_type); } // Reset the retransmission timer anytime a pending packet is sent. return in_flight; } void QuicSentPacketManager::OnRetransmissionTimeout() { DCHECK(unacked_packets_.HasInFlightPackets()); DCHECK_EQ(0u, pending_timer_transmission_count_); // Handshake retransmission, timer based loss detection, TLP, and RTO are // implemented with a single alarm. The handshake alarm is set when the // handshake has not completed, the loss alarm is set when the loss detection // algorithm says to, and the TLP and RTO alarms are set after that. // The TLP alarm is always set to run for under an RTO. switch (GetRetransmissionMode()) { case HANDSHAKE_MODE: ++stats_->crypto_retransmit_count; RetransmitCryptoPackets(); return; case LOSS_MODE: { ++stats_->loss_timeout_count; QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); InvokeLossDetection(clock_->Now()); MaybeInvokeCongestionEvent(false, bytes_in_flight); return; } case TLP_MODE: // If no tail loss probe can be sent, because there are no retransmittable // packets, execute a conventional RTO to abandon old packets. ++stats_->tlp_count; ++consecutive_tlp_count_; pending_timer_transmission_count_ = 1; // TLPs prefer sending new data instead of retransmitting data, so // give the connection a chance to write before completing the TLP. return; case RTO_MODE: ++stats_->rto_count; RetransmitAllPackets(); return; } } void QuicSentPacketManager::RetransmitCryptoPackets() { DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode()); // TODO(ianswett): Typical TCP implementations only retransmit 5 times. consecutive_crypto_retransmission_count_ = min(kMaxHandshakeRetransmissionBackoffs, consecutive_crypto_retransmission_count_ + 1); bool packet_retransmitted = false; QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { // Only retransmit frames which are in flight, and therefore have been sent. if (!it->in_flight || it->retransmittable_frames == NULL || it->retransmittable_frames->HasCryptoHandshake() != IS_HANDSHAKE) { continue; } packet_retransmitted = true; MarkForRetransmission(sequence_number, HANDSHAKE_RETRANSMISSION); ++pending_timer_transmission_count_; } DCHECK(packet_retransmitted) << "No crypto packets found to retransmit."; } bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() { if (pending_timer_transmission_count_ == 0) { return false; } QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { // Only retransmit frames which are in flight, and therefore have been sent. if (!it->in_flight || it->retransmittable_frames == NULL) { continue; } if (!handshake_confirmed_) { DCHECK_NE(IS_HANDSHAKE, it->retransmittable_frames->HasCryptoHandshake()); } MarkForRetransmission(sequence_number, TLP_RETRANSMISSION); return true; } DLOG(FATAL) << "No retransmittable packets, so RetransmitOldestPacket failed."; return false; } void QuicSentPacketManager::RetransmitAllPackets() { DVLOG(1) << "RetransmitAllPackets() called with " << unacked_packets_.GetNumUnackedPacketsDebugOnly() << " unacked packets."; // Request retransmission of all retransmittable packets when the RTO // fires, and let the congestion manager decide how many to send // immediately and the remaining packets will be queued. // Abandon any non-retransmittable packets that are sufficiently old. bool packets_retransmitted = false; QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); it != unacked_packets_.end(); ++it, ++sequence_number) { if (it->retransmittable_frames != NULL) { packets_retransmitted = true; MarkForRetransmission(sequence_number, RTO_RETRANSMISSION); } else { unacked_packets_.RemoveFromInFlight(sequence_number); } } send_algorithm_->OnRetransmissionTimeout(packets_retransmitted); if (packets_retransmitted) { if (consecutive_rto_count_ == 0) { first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1; } ++consecutive_rto_count_; } if (network_change_visitor_ != NULL) { network_change_visitor_->OnCongestionWindowChange(GetCongestionWindow()); } } QuicSentPacketManager::RetransmissionTimeoutMode QuicSentPacketManager::GetRetransmissionMode() const { DCHECK(unacked_packets_.HasInFlightPackets()); if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) { return HANDSHAKE_MODE; } if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) { return LOSS_MODE; } if (consecutive_tlp_count_ < max_tail_loss_probes_) { if (unacked_packets_.HasUnackedRetransmittableFrames()) { return TLP_MODE; } } return RTO_MODE; } void QuicSentPacketManager::OnIncomingQuicCongestionFeedbackFrame( const QuicCongestionFeedbackFrame& frame, const QuicTime& feedback_receive_time) { send_algorithm_->OnIncomingQuicCongestionFeedbackFrame( frame, feedback_receive_time); } void QuicSentPacketManager::InvokeLossDetection(QuicTime time) { SequenceNumberSet lost_packets = loss_algorithm_->DetectLostPackets(unacked_packets_, time, unacked_packets_.largest_observed(), rtt_stats_); for (SequenceNumberSet::const_iterator it = lost_packets.begin(); it != lost_packets.end(); ++it) { QuicPacketSequenceNumber sequence_number = *it; const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(sequence_number); // TODO(ianswett): If it's expected the FEC packet may repair the loss, it // should be recorded as a loss to the send algorithm, but not retransmitted // until it's known whether the FEC packet arrived. ++stats_->packets_lost; packets_lost_.push_back(make_pair(sequence_number, transmission_info)); DVLOG(1) << ENDPOINT << "Lost packet " << sequence_number; if (transmission_info.retransmittable_frames != NULL) { MarkForRetransmission(sequence_number, LOSS_RETRANSMISSION); } else { // Since we will not retransmit this, we need to remove it from // unacked_packets_. This is either the current transmission of // a packet whose previous transmission has been acked, a packet that has // been TLP retransmitted, or an FEC packet. unacked_packets_.RemoveFromInFlight(sequence_number); } } } bool QuicSentPacketManager::MaybeUpdateRTT( const QuicAckFrame& ack_frame, const QuicTime& ack_receive_time) { if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) { return false; } // We calculate the RTT based on the highest ACKed sequence number, the lower // sequence numbers will include the ACK aggregation delay. const TransmissionInfo& transmission_info = unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed); // Ensure the packet has a valid sent time. if (transmission_info.sent_time == QuicTime::Zero()) { LOG(DFATAL) << "Acked packet has zero sent time, largest_observed:" << ack_frame.largest_observed; return false; } QuicTime::Delta send_delta = ack_receive_time.Subtract(transmission_info.sent_time); rtt_stats_.UpdateRtt( send_delta, ack_frame.delta_time_largest_observed, ack_receive_time); return true; } QuicTime::Delta QuicSentPacketManager::TimeUntilSend( QuicTime now, HasRetransmittableData retransmittable) { // The TLP logic is entirely contained within QuicSentPacketManager, so the // send algorithm does not need to be consulted. if (pending_timer_transmission_count_ > 0) { return QuicTime::Delta::Zero(); } return send_algorithm_->TimeUntilSend( now, unacked_packets_.bytes_in_flight(), retransmittable); } // Uses a 25ms delayed ack timer. Also helps with better signaling // in low-bandwidth (< ~384 kbps), where an ack is sent per packet. // Ensures that the Delayed Ack timer is always set to a value lesser // than the retransmission timer's minimum value (MinRTO). We want the // delayed ack to get back to the QUIC peer before the sender's // retransmission timer triggers. Since we do not know the // reverse-path one-way delay, we assume equal delays for forward and // reverse paths, and ensure that the timer is set to less than half // of the MinRTO. // There may be a value in making this delay adaptive with the help of // the sender and a signaling mechanism -- if the sender uses a // different MinRTO, we may get spurious retransmissions. May not have // any benefits, but if the delayed ack becomes a significant source // of (likely, tail) latency, then consider such a mechanism. const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() const { return QuicTime::Delta::FromMilliseconds(min(kMaxDelayedAckTimeMs, kMinRetransmissionTimeMs/2)); } const QuicTime QuicSentPacketManager::GetRetransmissionTime() const { // Don't set the timer if there are no packets in flight or we've already // queued a tlp transmission and it hasn't been sent yet. if (!unacked_packets_.HasInFlightPackets() || pending_timer_transmission_count_ > 0) { return QuicTime::Zero(); } switch (GetRetransmissionMode()) { case HANDSHAKE_MODE: return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay()); case LOSS_MODE: return loss_algorithm_->GetLossTimeout(); case TLP_MODE: { // TODO(ianswett): When CWND is available, it would be preferable to // set the timer based on the earliest retransmittable packet. // Base the updated timer on the send time of the last packet. const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay()); // Ensure the TLP timer never gets set to a time in the past. return QuicTime::Max(clock_->ApproximateNow(), tlp_time); } case RTO_MODE: { // The RTO is based on the first outstanding packet. const QuicTime sent_time = unacked_packets_.GetFirstInFlightPacketSentTime(); QuicTime rto_time = sent_time.Add(GetRetransmissionDelay()); // Wait for TLP packets to be acked before an RTO fires. QuicTime tlp_time = unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay()); return QuicTime::Max(tlp_time, rto_time); } } DCHECK(false); return QuicTime::Zero(); } const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay() const { // This is equivalent to the TailLossProbeDelay, but slightly more aggressive // because crypto handshake messages don't incur a delayed ack time. int64 delay_ms = max(kMinHandshakeTimeoutMs, 1.5 * rtt_stats_.SmoothedRtt().ToMilliseconds()); return QuicTime::Delta::FromMilliseconds( delay_ms << consecutive_crypto_retransmission_count_); } const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const { QuicTime::Delta srtt = rtt_stats_.SmoothedRtt(); if (!unacked_packets_.HasMultipleInFlightPackets()) { return QuicTime::Delta::Max( srtt.Multiply(2), srtt.Multiply(1.5) .Add(QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs/2))); } return QuicTime::Delta::FromMilliseconds( max(kMinTailLossProbeTimeoutMs, static_cast(2 * srtt.ToMilliseconds()))); } const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const { QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay(); // TODO(rch): This code should move to |send_algorithm_|. if (retransmission_delay.IsZero()) { // We are in the initial state, use default timeout values. retransmission_delay = QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); } else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) { retransmission_delay = QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); } // Calculate exponential back off. retransmission_delay = retransmission_delay.Multiply( 1 << min(consecutive_rto_count_, kMaxRetransmissions)); if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); } return retransmission_delay; } const RttStats* QuicSentPacketManager::GetRttStats() const { return &rtt_stats_; } QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const { return send_algorithm_->BandwidthEstimate(); } bool QuicSentPacketManager::HasReliableBandwidthEstimate() const { return send_algorithm_->HasReliableBandwidthEstimate(); } const QuicSustainedBandwidthRecorder& QuicSentPacketManager::SustainedBandwidthRecorder() const { return sustained_bandwidth_recorder_; } QuicByteCount QuicSentPacketManager::GetCongestionWindow() const { return send_algorithm_->GetCongestionWindow(); } QuicByteCount QuicSentPacketManager::GetSlowStartThreshold() const { return send_algorithm_->GetSlowStartThreshold(); } void QuicSentPacketManager::EnablePacing() { if (using_pacing_) { return; } // Set up a pacing sender with a 5 millisecond alarm granularity. using_pacing_ = true; send_algorithm_.reset( new PacingSender(send_algorithm_.release(), QuicTime::Delta::FromMilliseconds(5), kInitialUnpacedBurst)); } } // namespace net