// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_QUIC_QUIC_SENT_PACKET_MANAGER_H_ #define NET_QUIC_QUIC_SENT_PACKET_MANAGER_H_ #include #include #include #include #include #include "base/containers/hash_tables.h" #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "net/base/linked_hash_map.h" #include "net/quic/congestion_control/loss_detection_interface.h" #include "net/quic/congestion_control/rtt_stats.h" #include "net/quic/congestion_control/send_algorithm_interface.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_sustained_bandwidth_recorder.h" #include "net/quic/quic_unacked_packet_map.h" namespace net { namespace test { class QuicConnectionPeer; class QuicSentPacketManagerPeer; } // namespace test class QuicClock; class QuicConfig; struct QuicConnectionStats; // Class which tracks the set of packets sent on a QUIC connection and contains // a send algorithm to decide when to send new packets. It keeps track of any // retransmittable data associated with each packet. If a packet is // retransmitted, it will keep track of each version of a packet so that if a // previous transmission is acked, the data will not be retransmitted. class NET_EXPORT_PRIVATE QuicSentPacketManager { public: // A delegate interface which manages pending retransmissions. class MultipathDelegateInterface { public: virtual ~MultipathDelegateInterface() {} // Called when unencrypted |packet_number| is requested to be neutered. virtual void OnUnencryptedPacketsNeutered( QuicPathId path_id, QuicPacketNumber packet_number) = 0; // Called when |packet_number| is requested to be retransmitted. virtual void OnRetransmissionMarked(QuicPathId path_id, QuicPacketNumber packet_number, TransmissionType transmission_type) = 0; // Called when |packet_number| is marked as not retransmittable. virtual void OnPacketMarkedNotRetransmittable( QuicPathId path_id, QuicPacketNumber packet_number, QuicTime::Delta delta_largest_observed) = 0; // Called when any transmission of |packet_number| is handled. virtual void OnPacketMarkedHandled( QuicPathId path_id, QuicPacketNumber packet_number, QuicTime::Delta delta_largest_observed) = 0; }; // Interface which gets callbacks from the QuicSentPacketManager at // interesting points. Implementations must not mutate the state of // the packet manager or connection as a result of these callbacks. class NET_EXPORT_PRIVATE DebugDelegate { public: virtual ~DebugDelegate() {} // Called when a spurious retransmission is detected. virtual void OnSpuriousPacketRetransmission( TransmissionType transmission_type, QuicByteCount byte_size) {} virtual void OnIncomingAck(const QuicAckFrame& ack_frame, QuicTime ack_receive_time, QuicPacketNumber largest_observed, bool rtt_updated, QuicPacketNumber least_unacked_sent_packet) {} virtual void OnPacketLoss(QuicPacketNumber lost_packet_number, TransmissionType transmission_type, QuicTime detection_time) {} }; // Interface which gets callbacks from the QuicSentPacketManager when // network-related state changes. Implementations must not mutate the // state of the packet manager as a result of these callbacks. class NET_EXPORT_PRIVATE NetworkChangeVisitor { public: virtual ~NetworkChangeVisitor() {} // Called when congestion window may have changed. virtual void OnCongestionWindowChange() = 0; // Called when RTT may have changed, including when an RTT is read from // the config. virtual void OnRttChange() = 0; // Called with the path may be degrading. Note that the path may only be // temporarily degrading. // TODO(jri): With multipath, this method should probably have a path_id // parameter, and should maybe result in the path being marked as inactive. virtual void OnPathDegrading() = 0; }; QuicSentPacketManager(Perspective perspective, QuicPathId path_id, const QuicClock* clock, QuicConnectionStats* stats, CongestionControlType congestion_control_type, LossDetectionType loss_type, MultipathDelegateInterface* delegate); virtual ~QuicSentPacketManager(); virtual void SetFromConfig(const QuicConfig& config); // Pass the CachedNetworkParameters to the send algorithm. void ResumeConnectionState( const CachedNetworkParameters& cached_network_params, bool max_bandwidth_resumption); void SetNumOpenStreams(size_t num_streams); void SetHandshakeConfirmed() { handshake_confirmed_ = true; } // Processes the incoming ack. void OnIncomingAck(const QuicAckFrame& ack_frame, QuicTime ack_receive_time); // Returns true if packet |packet_number| is unacked. bool IsUnacked(QuicPacketNumber packet_number) const; // Requests retransmission of all unacked packets of |retransmission_type|. // The behavior of this method depends on the value of |retransmission_type|: // ALL_UNACKED_RETRANSMISSION - All unacked packets will be retransmitted. // This can happen, for example, after a version negotiation packet has been // received and all packets needs to be retransmitted with the new version. // ALL_INITIAL_RETRANSMISSION - Only initially encrypted packets will be // retransmitted. This can happen, for example, when a CHLO has been rejected // and the previously encrypted data needs to be encrypted with a new key. void RetransmitUnackedPackets(TransmissionType retransmission_type); // Retransmits the oldest pending packet there is still a tail loss probe // pending. Invoked after OnRetransmissionTimeout. bool MaybeRetransmitTailLossProbe(); // Removes the retransmittable frames from all unencrypted packets to ensure // they don't get retransmitted. void NeuterUnencryptedPackets(); // Returns true if the unacked packet |packet_number| has retransmittable // frames. This will only return false if the packet has been acked, if a // previous transmission of this packet was ACK'd, or if this packet has been // retransmitted as with different packet number. bool HasRetransmittableFrames(QuicPacketNumber packet_number) const; // Returns true if there are pending retransmissions. bool HasPendingRetransmissions() const; // Retrieves the next pending retransmission. You must ensure that // there are pending retransmissions prior to calling this function. PendingRetransmission NextPendingRetransmission(); bool HasUnackedPackets() const; // Returns the smallest packet number of a serialized packet which has not // been acked by the peer. QuicPacketNumber GetLeastUnacked() const; // Called when we have sent bytes to the peer. This informs the manager both // the number of bytes sent and if they were retransmitted. Returns true if // the sender should reset the retransmission timer. virtual bool OnPacketSent(SerializedPacket* serialized_packet, QuicPacketNumber original_packet_number, QuicTime sent_time, TransmissionType transmission_type, HasRetransmittableData has_retransmittable_data); // Called when the retransmission timer expires. virtual void OnRetransmissionTimeout(); // Calculate the time until we can send the next packet to the wire. // Note 1: When kUnknownWaitTime is returned, there is no need to poll // TimeUntilSend again until we receive an OnIncomingAckFrame event. // Note 2: Send algorithms may or may not use |retransmit| in their // calculations. virtual QuicTime::Delta TimeUntilSend(QuicTime now, HasRetransmittableData retransmittable); // Returns amount of time for delayed ack timer. const QuicTime::Delta DelayedAckTime() const; // Returns the current delay for the retransmission timer, which may send // either a tail loss probe or do a full RTO. Returns QuicTime::Zero() if // there are no retransmittable packets. const QuicTime GetRetransmissionTime() const; const RttStats* GetRttStats() const; // Returns the estimated bandwidth calculated by the congestion algorithm. QuicBandwidth BandwidthEstimate() const; const QuicSustainedBandwidthRecorder& SustainedBandwidthRecorder() const; // Returns the size of the current congestion window in number of // kDefaultTCPMSS-sized segments. Note, this is not the *available* window. // Some send algorithms may not use a congestion window and will return 0. QuicPacketCount GetCongestionWindowInTcpMss() const; // Returns the number of packets of length |max_packet_length| which fit in // the current congestion window. More packets may end up in flight if the // congestion window has been recently reduced, of if non-full packets are // sent. QuicPacketCount EstimateMaxPacketsInFlight( QuicByteCount max_packet_length) const; // Returns the size of the current congestion window size in bytes. QuicByteCount GetCongestionWindowInBytes() const; // Returns the size of the slow start congestion window in nume of 1460 byte // TCP segments, aka ssthresh. Some send algorithms do not define a slow // start threshold and will return 0. QuicPacketCount GetSlowStartThresholdInTcpMss() const; // No longer retransmit data for |stream_id|. void CancelRetransmissionsForStream(QuicStreamId stream_id); // Enables pacing if it has not already been enabled. void EnablePacing(); // Called when peer address changes and the connection migrates. void OnConnectionMigration(PeerAddressChangeType type); bool using_pacing() const { return using_pacing_; } void set_debug_delegate(DebugDelegate* debug_delegate) { debug_delegate_ = debug_delegate; } QuicPacketNumber largest_observed() const { return unacked_packets_.largest_observed(); } QuicPacketNumber largest_sent_packet() const { return unacked_packets_.largest_sent_packet(); } QuicPacketNumber least_packet_awaited_by_peer() const { return least_packet_awaited_by_peer_; } void set_network_change_visitor(NetworkChangeVisitor* visitor) { DCHECK(!network_change_visitor_); DCHECK(visitor); network_change_visitor_ = visitor; } bool InSlowStart() const; // Used in Chromium, but not in the server. size_t consecutive_rto_count() const { return consecutive_rto_count_; } // Used in Chromium, but not in the server. size_t consecutive_tlp_count() const { return consecutive_tlp_count_; } private: friend class test::QuicConnectionPeer; friend class test::QuicSentPacketManagerPeer; // The retransmission timer is a single timer which switches modes depending // upon connection state. enum RetransmissionTimeoutMode { // A conventional TCP style RTO. RTO_MODE, // A tail loss probe. By default, QUIC sends up to two before RTOing. TLP_MODE, // Retransmission of handshake packets prior to handshake completion. HANDSHAKE_MODE, // Re-invoke the loss detection when a packet is not acked before the // loss detection algorithm expects. LOSS_MODE, }; typedef linked_hash_map PendingRetransmissionMap; // Updates the least_packet_awaited_by_peer. void UpdatePacketInformationReceivedByPeer(const QuicAckFrame& ack_frame); // Process the incoming ack looking for newly ack'd data packets. void HandleAckForSentPackets(const QuicAckFrame& ack_frame); // Returns the current retransmission mode. RetransmissionTimeoutMode GetRetransmissionMode() const; // Retransmits all crypto stream packets. void RetransmitCryptoPackets(); // Retransmits two packets for an RTO and removes any non-retransmittable // packets from flight. void RetransmitRtoPackets(); // Returns the timer for retransmitting crypto handshake packets. const QuicTime::Delta GetCryptoRetransmissionDelay() const; // Returns the timer for a new tail loss probe. const QuicTime::Delta GetTailLossProbeDelay() const; // Returns the retransmission timeout, after which a full RTO occurs. const QuicTime::Delta GetRetransmissionDelay() const; // Returns the newest transmission associated with a packet. QuicPacketNumber GetNewestRetransmission( QuicPacketNumber packet_number, const TransmissionInfo& transmission_info) const; // Update the RTT if the ack is for the largest acked packet number. // Returns true if the rtt was updated. bool MaybeUpdateRTT(const QuicAckFrame& ack_frame, QuicTime ack_receive_time); // Invokes the loss detection algorithm and loses and retransmits packets if // necessary. void InvokeLossDetection(QuicTime time); // Invokes OnCongestionEvent if |rtt_updated| is true, there are pending acks, // or pending losses. Clears pending acks and pending losses afterwards. // |bytes_in_flight| is the number of bytes in flight before the losses or // acks. void MaybeInvokeCongestionEvent(bool rtt_updated, QuicByteCount bytes_in_flight); // Called when frames of |packet_number| has been received but the packet // itself has not been received by the peer. Currently, this method is not // used. // TODO(fayang): Update the comment when multipath sent packet manager is // landed. // The packet needs no longer to be retransmitted, but the packet remains // pending if it is and the congestion control does not consider the packet // acked. void MarkPacketNotRetransmittable(QuicPacketNumber packet_number, QuicTime::Delta ack_delay_time); // Removes the retransmittability and in flight properties from the packet at // |info| due to receipt by the peer. void MarkPacketHandled(QuicPacketNumber packet_number, TransmissionInfo* info, QuicTime::Delta ack_delay_time); // Request that |packet_number| be retransmitted after the other pending // retransmissions. Does not add it to the retransmissions if it's already // a pending retransmission. void MarkForRetransmission(QuicPacketNumber packet_number, TransmissionType transmission_type); // Notify observers that packet with TransmissionInfo |info| is a spurious // retransmission. It is caller's responsibility to guarantee the packet with // TransmissionInfo |info| is a spurious retransmission before calling this // function. void RecordOneSpuriousRetransmission(const TransmissionInfo& info); // Notify observers about spurious retransmits of packet with TransmissionInfo // |info|. void RecordSpuriousRetransmissions(const TransmissionInfo& info, QuicPacketNumber acked_packet_number); // Returns mutable TransmissionInfo associated with |packet_number|, which // must be unacked. TransmissionInfo* GetMutableTransmissionInfo(QuicPacketNumber packet_number); // Remove any packets no longer needed for retransmission, congestion, or // RTT measurement purposes. void RemoveObsoletePackets(); // Newly serialized retransmittable packets are added to this map, which // contains owning pointers to any contained frames. If a packet is // retransmitted, this map will contain entries for both the old and the new // packet. The old packet's retransmittable frames entry will be nullptr, // while the new packet's entry will contain the frames to retransmit. // If the old packet is acked before the new packet, then the old entry will // be removed from the map and the new entry's retransmittable frames will be // set to nullptr. QuicUnackedPacketMap unacked_packets_; // Pending retransmissions which have not been packetized and sent yet. PendingRetransmissionMap pending_retransmissions_; // Tracks if the connection was created by the server or the client. Perspective perspective_; QuicPathId path_id_; const QuicClock* clock_; QuicConnectionStats* stats_; // Pending retransmissions are managed by delegate_ if it is not null. MultipathDelegateInterface* delegate_; // Not owned. DebugDelegate* debug_delegate_; NetworkChangeVisitor* network_change_visitor_; const QuicPacketCount initial_congestion_window_; RttStats rtt_stats_; scoped_ptr send_algorithm_; scoped_ptr loss_algorithm_; bool n_connection_simulation_; // Receiver side buffer in bytes. QuicByteCount receive_buffer_bytes_; // Least packet number which the peer is still waiting for. QuicPacketNumber least_packet_awaited_by_peer_; // Tracks the first RTO packet. If any packet before that packet gets acked, // it indicates the RTO was spurious and should be reversed(F-RTO). QuicPacketNumber first_rto_transmission_; // Number of times the RTO timer has fired in a row without receiving an ack. size_t consecutive_rto_count_; // Number of times the tail loss probe has been sent. size_t consecutive_tlp_count_; // Number of times the crypto handshake has been retransmitted. size_t consecutive_crypto_retransmission_count_; // Number of pending transmissions of TLP, RTO, or crypto packets. size_t pending_timer_transmission_count_; // Maximum number of tail loss probes to send before firing an RTO. size_t max_tail_loss_probes_; // If true, send the TLP at 0.5 RTT. bool enable_half_rtt_tail_loss_probe_; bool using_pacing_; // If true, use the new RTO with loss based CWND reduction instead of the send // algorithms's OnRetransmissionTimeout to reduce the congestion window. bool use_new_rto_; // Vectors packets acked and lost as a result of the last congestion event. SendAlgorithmInterface::CongestionVector packets_acked_; SendAlgorithmInterface::CongestionVector packets_lost_; // Set to true after the crypto handshake has successfully completed. After // this is true we no longer use HANDSHAKE_MODE, and further frames sent on // the crypto stream (i.e. SCUP messages) are treated like normal // retransmittable frames. bool handshake_confirmed_; // Records bandwidth from server to client in normal operation, over periods // of time with no loss events. QuicSustainedBandwidthRecorder sustained_bandwidth_recorder_; DISALLOW_COPY_AND_ASSIGN(QuicSentPacketManager); }; } // namespace net #endif // NET_QUIC_QUIC_SENT_PACKET_MANAGER_H_