// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_session.h" #include #include "base/containers/hash_tables.h" #include "base/rand_util.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "build/build_config.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/quic_crypto_stream.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/reliable_quic_stream.h" #include "net/quic/test_tools/quic_config_peer.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_flow_controller_peer.h" #include "net/quic/test_tools/quic_session_peer.h" #include "net/quic/test_tools/quic_spdy_session_peer.h" #include "net/quic/test_tools/quic_spdy_stream_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/quic/test_tools/reliable_quic_stream_peer.h" #include "net/spdy/spdy_framer.h" #include "net/test/gtest_util.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gmock_mutant.h" #include "testing/gtest/include/gtest/gtest.h" using base::hash_map; using std::set; using std::string; using std::vector; using testing::CreateFunctor; using testing::InSequence; using testing::Invoke; using testing::Return; using testing::StrictMock; using testing::_; namespace net { namespace test { namespace { const SpdyPriority kHighestPriority = kV3HighestPriority; class TestCryptoStream : public QuicCryptoStream { public: explicit TestCryptoStream(QuicSession* session) : QuicCryptoStream(session) {} void OnHandshakeMessage(const CryptoHandshakeMessage& /*message*/) override { encryption_established_ = true; handshake_confirmed_ = true; CryptoHandshakeMessage msg; string error_details; session()->config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session()->config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); session()->config()->ToHandshakeMessage(&msg); const QuicErrorCode error = session()->config()->ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_EQ(QUIC_NO_ERROR, error); session()->OnConfigNegotiated(); session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED); } MOCK_METHOD0(OnCanWrite, void()); }; class TestHeadersStream : public QuicHeadersStream { public: explicit TestHeadersStream(QuicSpdySession* session) : QuicHeadersStream(session) {} MOCK_METHOD0(OnCanWrite, void()); }; class TestStream : public QuicSpdyStream { public: TestStream(QuicStreamId id, QuicSpdySession* session) : QuicSpdyStream(id, session) {} using ReliableQuicStream::CloseWriteSide; void OnDataAvailable() override {} MOCK_METHOD0(OnCanWrite, void()); }; // Poor man's functor for use as callback in a mock. class StreamBlocker { public: StreamBlocker(QuicSession* session, QuicStreamId stream_id) : session_(session), stream_id_(stream_id) {} void MarkConnectionLevelWriteBlocked() { session_->MarkConnectionLevelWriteBlocked(stream_id_); } private: QuicSession* const session_; const QuicStreamId stream_id_; }; class TestSession : public QuicSpdySession { public: explicit TestSession(QuicConnection* connection) : QuicSpdySession(connection, DefaultQuicConfig()), crypto_stream_(this), writev_consumes_all_data_(false) { Initialize(); } TestCryptoStream* GetCryptoStream() override { return &crypto_stream_; } TestStream* CreateOutgoingDynamicStream(SpdyPriority priority) override { TestStream* stream = new TestStream(GetNextOutgoingStreamId(), this); stream->SetPriority(priority); ActivateStream(stream); return stream; } TestStream* CreateIncomingDynamicStream(QuicStreamId id) override { // Enforce the limit on the number of open streams. if (GetNumOpenIncomingStreams() + 1 > max_open_incoming_streams()) { connection()->SendConnectionCloseWithDetails(QUIC_TOO_MANY_OPEN_STREAMS, "Too many streams!"); return nullptr; } else { TestStream* stream = new TestStream(id, this); ActivateStream(stream); return stream; } } bool ShouldCreateIncomingDynamicStream(QuicStreamId /*id*/) override { return true; } bool ShouldCreateOutgoingDynamicStream() override { return true; } bool IsClosedStream(QuicStreamId id) { return QuicSession::IsClosedStream(id); } ReliableQuicStream* GetOrCreateDynamicStream(QuicStreamId stream_id) { return QuicSpdySession::GetOrCreateDynamicStream(stream_id); } QuicConsumedData WritevData( QuicStreamId id, QuicIOVector data, QuicStreamOffset offset, bool fin, QuicAckListenerInterface* ack_notifier_delegate) override { QuicConsumedData consumed(data.total_length, fin); if (!writev_consumes_all_data_) { consumed = QuicSession::WritevData(id, data, offset, fin, ack_notifier_delegate); } QuicSessionPeer::GetWriteBlockedStreams(this)->UpdateBytesForStream( id, consumed.bytes_consumed); return consumed; } void set_writev_consumes_all_data(bool val) { writev_consumes_all_data_ = val; } QuicConsumedData SendStreamData(QuicStreamId id) { struct iovec iov; return WritevData(id, MakeIOVector("not empty", &iov), 0, true, nullptr); } QuicConsumedData SendLargeFakeData(QuicStreamId id, int bytes) { DCHECK(writev_consumes_all_data_); struct iovec iov; iov.iov_base = nullptr; // should not be read. iov.iov_len = static_cast(bytes); return WritevData(id, QuicIOVector(&iov, 1, bytes), 0, true, nullptr); } using QuicSession::PostProcessAfterData; private: StrictMock crypto_stream_; bool writev_consumes_all_data_; }; class QuicSessionTestBase : public ::testing::TestWithParam { protected: explicit QuicSessionTestBase(Perspective perspective) : connection_( new StrictMock(&helper_, perspective, SupportedVersions(GetParam()))), session_(connection_) { FLAGS_quic_always_log_bugs_for_tests = true; session_.config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session_.config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); headers_[":host"] = "www.google.com"; headers_[":path"] = "/index.hml"; headers_[":scheme"] = "http"; headers_["cookie"] = "__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; " "__utmc=160408618; " "GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX" "hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX" "RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT" "pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0" "O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh" "1zFMi5vzcns38-8_Sns; " "GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-" "yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339" "47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c" "v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%" "2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4" "SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1" "3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP" "ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6" "edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b" "Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6" "QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG" "tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk" "Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn" "EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr" "JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo "; connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); // TODO(ianswett): Fix QuicSessionTests so they don't attempt to write // non-crypto stream data at ENCRYPTION_NONE. FLAGS_quic_never_write_unencrypted_data = false; } void CheckClosedStreams() { for (QuicStreamId i = kCryptoStreamId; i < 100; i++) { if (!ContainsKey(closed_streams_, i)) { EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i; } else { EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i; } } } void CloseStream(QuicStreamId id) { EXPECT_CALL(*connection_, SendRstStream(id, _, _)); session_.CloseStream(id); closed_streams_.insert(id); } QuicVersion version() const { return connection_->version(); } MockConnectionHelper helper_; StrictMock* connection_; TestSession session_; set closed_streams_; SpdyHeaderBlock headers_; }; class QuicSessionTestServer : public QuicSessionTestBase { protected: QuicSessionTestServer() : QuicSessionTestBase(Perspective::IS_SERVER) {} }; INSTANTIATE_TEST_CASE_P(Tests, QuicSessionTestServer, ::testing::ValuesIn(QuicSupportedVersions())); TEST_P(QuicSessionTestServer, PeerAddress) { EXPECT_EQ(IPEndPoint(Loopback4(), kTestPort), session_.peer_address()); } TEST_P(QuicSessionTestServer, IsCryptoHandshakeConfirmed) { EXPECT_FALSE(session_.IsCryptoHandshakeConfirmed()); CryptoHandshakeMessage message; session_.GetCryptoStream()->OnHandshakeMessage(message); EXPECT_TRUE(session_.IsCryptoHandshakeConfirmed()); } TEST_P(QuicSessionTestServer, IsClosedStreamDefault) { // Ensure that no streams are initially closed. for (QuicStreamId i = kCryptoStreamId; i < 100; i++) { EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i; } } TEST_P(QuicSessionTestServer, AvailableStreams) { ASSERT_TRUE(session_.GetOrCreateDynamicStream(9) != nullptr); // Both 5 and 7 should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(&session_, 5)); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(&session_, 7)); ASSERT_TRUE(session_.GetOrCreateDynamicStream(7) != nullptr); ASSERT_TRUE(session_.GetOrCreateDynamicStream(5) != nullptr); } TEST_P(QuicSessionTestServer, IsClosedStreamLocallyCreated) { TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); EXPECT_EQ(2u, stream2->id()); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); EXPECT_EQ(4u, stream4->id()); CheckClosedStreams(); CloseStream(4); CheckClosedStreams(); CloseStream(2); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, IsClosedStreamPeerCreated) { QuicStreamId stream_id1 = kClientDataStreamId1; QuicStreamId stream_id2 = kClientDataStreamId2; session_.GetOrCreateDynamicStream(stream_id1); session_.GetOrCreateDynamicStream(stream_id2); CheckClosedStreams(); CloseStream(stream_id1); CheckClosedStreams(); CloseStream(stream_id2); // Create a stream, and make another available. ReliableQuicStream* stream3 = session_.GetOrCreateDynamicStream(stream_id2 + 4); CheckClosedStreams(); // Close one, but make sure the other is still not closed CloseStream(stream3->id()); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, MaximumAvailableOpenedStreams) { QuicStreamId stream_id = kClientDataStreamId1; session_.GetOrCreateDynamicStream(stream_id); EXPECT_CALL(*connection_, SendConnectionCloseWithDetails(_, _)).Times(0); EXPECT_NE(nullptr, session_.GetOrCreateDynamicStream( stream_id + 2 * (session_.max_open_incoming_streams() - 1))); } TEST_P(QuicSessionTestServer, TooManyAvailableStreams) { QuicStreamId stream_id1 = kClientDataStreamId1; QuicStreamId stream_id2; EXPECT_NE(nullptr, session_.GetOrCreateDynamicStream(stream_id1)); // A stream ID which is too large to create. stream_id2 = stream_id1 + 2 * session_.MaxAvailableStreams() + 4; EXPECT_CALL(*connection_, SendConnectionCloseWithDetails( QUIC_TOO_MANY_AVAILABLE_STREAMS, _)); EXPECT_EQ(nullptr, session_.GetOrCreateDynamicStream(stream_id2)); } TEST_P(QuicSessionTestServer, ManyAvailableStreams) { // When max_open_streams_ is 200, should be able to create 200 streams // out-of-order, that is, creating the one with the largest stream ID first. QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, 200); QuicStreamId stream_id = kClientDataStreamId1; // Create one stream. session_.GetOrCreateDynamicStream(stream_id); EXPECT_CALL(*connection_, SendConnectionCloseWithDetails(_, _)).Times(0); // Create the largest stream ID of a threatened total of 200 streams. session_.GetOrCreateDynamicStream(stream_id + 2 * (200 - 1)); } TEST_P(QuicSessionTestServer, DebugDFatalIfMarkingClosedStreamWriteBlocked) { TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); QuicStreamId closed_stream_id = stream2->id(); // Close the stream. EXPECT_CALL(*connection_, SendRstStream(closed_stream_id, _, _)); stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD); EXPECT_DEBUG_DFATAL( session_.MarkConnectionLevelWriteBlocked(closed_stream_id), "Marking unknown stream 2 blocked."); } TEST_P(QuicSessionTestServer, OnCanWrite) { TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream6 = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); InSequence s; StreamBlocker stream2_blocker(&session_, stream2->id()); // Reregister, to test the loop limit. EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked)); // 2 will get called a second time as it didn't finish its block EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); // 4 will not get called, as we exceeded the loop limit. session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, TestBatchedWrites) { TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream6 = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.set_writev_consumes_all_data(true); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); StreamBlocker stream2_blocker(&session_, stream2->id()); StreamBlocker stream4_blocker(&session_, stream4->id()); StreamBlocker stream6_blocker(&session_, stream6->id()); // With two sessions blocked, we should get two write calls. They should both // go to the first stream as it will only write 6k and mark itself blocked // again. InSequence s; EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream2->id(), 6000))), Invoke(&stream2_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream2->id(), 6000))), Invoke(&stream2_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); session_.OnCanWrite(); // We should get one more call for stream2, at which point it has used its // write quota and we move over to stream 4. EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream2->id(), 6000))), Invoke(&stream2_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream4->id(), 6000))), Invoke(&stream4_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); session_.OnCanWrite(); // Now let stream 4 do the 2nd of its 3 writes, but add a block for a high // priority stream 6. 4 should be preempted. 6 will write but *not* block so // will cede back to 4. stream6->SetPriority(kHighestPriority); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream4->id(), 6000))), Invoke(&stream4_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked), Invoke(&stream6_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); EXPECT_CALL(*stream6, OnCanWrite()) .WillOnce(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream4->id(), 6000)))); session_.OnCanWrite(); // Stream4 alread did 6k worth of writes, so after doing another 12k it should // cede and 2 should resume. EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream4->id(), 12000))), Invoke(&stream4_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(DoAll(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendLargeFakeData, base::Unretained(&session_), stream2->id(), 6000))), Invoke(&stream2_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked))); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, OnCanWriteBundlesStreams) { // Encryption needs to be established before data can be sent. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream6 = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillRepeatedly(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 10)); EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendStreamData, base::Unretained(&session_), stream2->id())))); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendStreamData, base::Unretained(&session_), stream4->id())))); EXPECT_CALL(*stream6, OnCanWrite()) .WillOnce(testing::IgnoreResult(Invoke(CreateFunctor( &TestSession::SendStreamData, base::Unretained(&session_), stream6->id())))); // Expect that we only send one packet, the writes from different streams // should be bundled together. MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, OnCanWriteCongestionControlBlocks) { InSequence s; // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream6 = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); StreamBlocker stream2_blocker(&session_, stream2->id()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillOnce(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillOnce(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillOnce(Return(QuicTime::Delta::Infinite())); // stream4->OnCanWrite is not called. session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // Still congestion-control blocked. EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillOnce(Return(QuicTime::Delta::Infinite())); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // stream4->OnCanWrite is called once the connection stops being // congestion-control blocked. EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _)) .WillOnce(Return(QuicTime::Delta::Zero())); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, BufferedHandshake) { EXPECT_FALSE(session_.HasPendingHandshake()); // Default value. // Test that blocking other streams does not change our status. TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); StreamBlocker stream2_blocker(&session_, stream2->id()); stream2_blocker.MarkConnectionLevelWriteBlocked(); EXPECT_FALSE(session_.HasPendingHandshake()); TestStream* stream3 = session_.CreateOutgoingDynamicStream(kDefaultPriority); StreamBlocker stream3_blocker(&session_, stream3->id()); stream3_blocker.MarkConnectionLevelWriteBlocked(); EXPECT_FALSE(session_.HasPendingHandshake()); // Blocking (due to buffering of) the Crypto stream is detected. session_.MarkConnectionLevelWriteBlocked(kCryptoStreamId); EXPECT_TRUE(session_.HasPendingHandshake()); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); StreamBlocker stream4_blocker(&session_, stream4->id()); stream4_blocker.MarkConnectionLevelWriteBlocked(); EXPECT_TRUE(session_.HasPendingHandshake()); InSequence s; // Force most streams to re-register, which is common scenario when we block // the Crypto stream, and only the crypto stream can "really" write. // Due to prioritization, we *should* be asked to write the crypto stream // first. // Don't re-register the crypto stream (which signals complete writing). TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream3, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(Invoke(&stream4_blocker, &StreamBlocker::MarkConnectionLevelWriteBlocked)); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote. } TEST_P(QuicSessionTestServer, OnCanWriteWithClosedStream) { TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream4 = session_.CreateOutgoingDynamicStream(kDefaultPriority); TestStream* stream6 = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); CloseStream(stream6->id()); InSequence s; EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, OnCanWriteLimitsNumWritesIfFlowControlBlocked) { // Ensure connection level flow control blockage. QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0); EXPECT_TRUE(session_.flow_controller()->IsBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); // Mark the crypto and headers streams as write blocked, we expect them to be // allowed to write later. session_.MarkConnectionLevelWriteBlocked(kCryptoStreamId); session_.MarkConnectionLevelWriteBlocked(kHeadersStreamId); // Create a data stream, and although it is write blocked we never expect it // to be allowed to write as we are connection level flow control blocked. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); session_.MarkConnectionLevelWriteBlocked(stream->id()); EXPECT_CALL(*stream, OnCanWrite()).Times(0); // The crypto and headers streams should be called even though we are // connection flow control blocked. TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); TestHeadersStream* headers_stream = new TestHeadersStream(&session_); QuicSpdySessionPeer::SetHeadersStream(&session_, headers_stream); EXPECT_CALL(*headers_stream, OnCanWrite()); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, SendGoAway) { MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*connection_, SendGoAway(_, _, _)) .WillOnce(Invoke(connection_, &MockConnection::ReallySendGoAway)); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_.goaway_sent()); const QuicStreamId kTestStreamId = 5u; EXPECT_CALL(*connection_, SendRstStream(kTestStreamId, QUIC_STREAM_PEER_GOING_AWAY, 0)) .Times(0); EXPECT_TRUE(session_.GetOrCreateDynamicStream(kTestStreamId)); } TEST_P(QuicSessionTestServer, IncreasedTimeoutAfterCryptoHandshake) { EXPECT_EQ(kInitialIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); EXPECT_EQ(kMaximumIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); } TEST_P(QuicSessionTestServer, RstStreamBeforeHeadersDecompressed) { // Send two bytes of payload. QuicStreamFrame data1(kClientDataStreamId1, false, 0, StringPiece("HT")); session_.OnStreamFrame(data1); EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams()); EXPECT_CALL(*connection_, SendRstStream(kClientDataStreamId1, _, _)); QuicRstStreamFrame rst1(kClientDataStreamId1, QUIC_ERROR_PROCESSING_STREAM, 0); session_.OnRstStream(rst1); EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams()); // Connection should remain alive. EXPECT_TRUE(connection_->connected()); } TEST_P(QuicSessionTestServer, HandshakeUnblocksFlowControlBlockedStream) { // Test that if a stream is flow control blocked, then on receipt of the SHLO // containing a suitable send window offset, the stream becomes unblocked. // Ensure that Writev consumes all the data it is given (simulate no socket // blocking). session_.set_writev_consumes_all_data(true); // Create a stream, and send enough data to make it flow control blocked. TestStream* stream2 = session_.CreateOutgoingDynamicStream(kDefaultPriority); string body(kMinimumFlowControlSendWindow, '.'); EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_CALL(*connection_, SendBlocked(stream2->id())); EXPECT_CALL(*connection_, SendBlocked(0)); stream2->WriteOrBufferBody(body, false, nullptr); EXPECT_TRUE(stream2->flow_controller()->IsBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // The handshake message will call OnCanWrite, so the stream can resume // writing. EXPECT_CALL(*stream2, OnCanWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked. EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTestServer, HandshakeUnblocksFlowControlBlockedCryptoStream) { // Test that if the crypto stream is flow control blocked, then if the SHLO // contains a larger send window offset, the stream becomes unblocked. session_.set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicHeadersStream* headers_stream = QuicSpdySessionPeer::GetHeadersStream(&session_); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); // Write until the crypto stream is flow control blocked. EXPECT_CALL(*connection_, SendBlocked(kCryptoStreamId)); for (QuicStreamId i = 0; !crypto_stream->flow_controller()->IsBlocked() && i < 1000u; i++) { EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicConfig config; CryptoHandshakeMessage crypto_message; config.ToHandshakeMessage(&crypto_message); crypto_stream->SendHandshakeMessage(crypto_message); } EXPECT_TRUE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.HasDataToWrite()); EXPECT_TRUE(crypto_stream->HasBufferedData()); // The handshake message will call OnCanWrite, so the stream can // resume writing. EXPECT_CALL(*crypto_stream, OnCanWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked and will no longer have buffered data. EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } #if !defined(OS_IOS) // This test is failing flakily for iOS bots. // http://crbug.com/425050 // NOTE: It's not possible to use the standard MAYBE_ convention to disable // this test on iOS because when this test gets instantiated it ends up with // various names that are dependent on the parameters passed. TEST_P(QuicSessionTestServer, HandshakeUnblocksFlowControlBlockedHeadersStream) { // Test that if the header stream is flow control blocked, then if the SHLO // contains a larger send window offset, the stream becomes unblocked. session_.set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicHeadersStream* headers_stream = QuicSpdySessionPeer::GetHeadersStream(&session_); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicStreamId stream_id = 5; // Write until the header stream is flow control blocked. EXPECT_CALL(*connection_, SendBlocked(kHeadersStreamId)); SpdyHeaderBlock headers; while (!headers_stream->flow_controller()->IsBlocked() && stream_id < 2000) { EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); headers["header"] = base::Uint64ToString(base::RandUint64()) + base::Uint64ToString(base::RandUint64()) + base::Uint64ToString(base::RandUint64()); headers_stream->WriteHeaders(stream_id, headers, true, 0, nullptr); stream_id += 2; } // Write once more to ensure that the headers stream has buffered data. The // random headers may have exactly filled the flow control window. headers_stream->WriteHeaders(stream_id, headers, true, 0, nullptr); EXPECT_TRUE(headers_stream->HasBufferedData()); EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.HasDataToWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked and will no longer have buffered data. EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(headers_stream->HasBufferedData()); } #endif // !defined(OS_IOS) TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingRstOutOfOrder) { // Test that when we receive an out of order stream RST we correctly adjust // our connection level flow control receive window. // On close, the stream should mark as consumed all bytes between the highest // byte consumed so far and the final byte offset from the RST frame. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); const QuicStreamOffset kByteOffset = 1 + kInitialSessionFlowControlWindowForTest / 2; // Expect no stream WINDOW_UPDATE frames, as stream read side closed. EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0); // We do expect a connection level WINDOW_UPDATE when the stream is reset. EXPECT_CALL(*connection_, SendWindowUpdate( 0, kInitialSessionFlowControlWindowForTest + kByteOffset)); EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); session_.PostProcessAfterData(); EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingFinAndLocalReset) { // Test the situation where we receive a FIN on a stream, and before we fully // consume all the data from the sequencer buffer we locally RST the stream. // The bytes between highest consumed byte, and the final byte offset that we // determined when the FIN arrived, should be marked as consumed at the // connection level flow controller when the stream is reset. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); const QuicStreamOffset kByteOffset = kInitialSessionFlowControlWindowForTest / 2; QuicStreamFrame frame(stream->id(), true, kByteOffset, StringPiece()); session_.OnStreamFrame(frame); session_.PostProcessAfterData(); EXPECT_TRUE(connection_->connected()); EXPECT_EQ(0u, stream->flow_controller()->bytes_consumed()); EXPECT_EQ(kByteOffset, stream->flow_controller()->highest_received_byte_offset()); // Reset stream locally. EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingFinAfterRst) { // Test that when we RST the stream (and tear down stream state), and then // receive a FIN from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64_t kInitialConnectionBytesConsumed = 567; const uint64_t kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); stream->Reset(QUIC_STREAM_CANCELLED); // Now receive a response from the peer with a FIN. We should handle this by // adjusting the connection level flow control receive window to take into // account the total number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; string body = "hello"; QuicStreamFrame frame(stream->id(), true, kByteOffset, StringPiece(body)); session_.OnStreamFrame(frame); QuicStreamOffset total_stream_bytes_sent_by_peer = kByteOffset + body.length(); EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer, session_.flow_controller()->bytes_consumed()); EXPECT_EQ( kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingRstAfterRst) { // Test that when we RST the stream (and tear down stream state), and then // receive a RST from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64_t kInitialConnectionBytesConsumed = 567; const uint64_t kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_TRUE(ReliableQuicStreamPeer::read_side_closed(stream)); // Now receive a RST from the peer. We should handle this by adjusting the // connection level flow control receive window to take into account the total // number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset, session_.flow_controller()->bytes_consumed()); EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTestServer, InvalidStreamFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default) stream flow control window from // the peer results in the connection being torn down. const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(), kInvalidWindow); EXPECT_CALL(*connection_, SendConnectionCloseWithDetails( QUIC_FLOW_CONTROL_INVALID_WINDOW, _)); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestServer, InvalidSessionFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default) session flow control window // from the peer results in the connection being torn down. const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(), kInvalidWindow); EXPECT_CALL(*connection_, SendConnectionCloseWithDetails( QUIC_FLOW_CONTROL_INVALID_WINDOW, _)); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestServer, FlowControlWithInvalidFinalOffset) { // Test that if we receive a stream RST with a highest byte offset that // violates flow control, that we close the connection. const uint64_t kLargeOffset = kInitialSessionFlowControlWindowForTest + 1; EXPECT_CALL(*connection_, SendConnectionCloseWithDetails( QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _)) .Times(2); // Check that stream frame + FIN results in connection close. TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); stream->Reset(QUIC_STREAM_CANCELLED); QuicStreamFrame frame(stream->id(), true, kLargeOffset, StringPiece()); session_.OnStreamFrame(frame); // Check that RST results in connection close. QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kLargeOffset); session_.OnRstStream(rst_frame); } TEST_P(QuicSessionTestServer, WindowUpdateUnblocksHeadersStream) { // Test that a flow control blocked headers stream gets unblocked on recipt of // a WINDOW_UPDATE frame. // Set the headers stream to be flow control blocked. QuicHeadersStream* headers_stream = QuicSpdySessionPeer::GetHeadersStream(&session_); QuicFlowControllerPeer::SetSendWindowOffset(headers_stream->flow_controller(), 0); EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // Unblock the headers stream by supplying a WINDOW_UPDATE. QuicWindowUpdateFrame window_update_frame(headers_stream->id(), 2 * kMinimumFlowControlSendWindow); session_.OnWindowUpdateFrame(window_update_frame); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTestServer, TooManyUnfinishedStreamsCauseServerRejectStream) { // If a buggy/malicious peer creates too many streams that are not ended // with a FIN or RST then we send a connection close or an RST to // refuse streams. const QuicStreamId kMaxStreams = 5; QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams); const QuicStreamId kFirstStreamId = kClientDataStreamId1; const QuicStreamId kFinalStreamId = kClientDataStreamId1 + 2 * kMaxStreams; // Create kMaxStreams data streams, and close them all without receiving a // FIN or a RST_STREAM from the client. for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += 2) { QuicStreamFrame data1(i, false, 0, StringPiece("HT")); session_.OnStreamFrame(data1); // EXPECT_EQ(1u, session_.GetNumOpenStreams()); EXPECT_CALL(*connection_, SendRstStream(i, _, _)); session_.CloseStream(i); } if (GetParam() <= QUIC_VERSION_27) { EXPECT_CALL(*connection_, SendConnectionCloseWithDetails(QUIC_TOO_MANY_OPEN_STREAMS, _)); EXPECT_CALL(*connection_, SendRstStream(kFinalStreamId, _, _)).Times(0); } else { EXPECT_CALL(*connection_, SendRstStream(kFinalStreamId, QUIC_REFUSED_STREAM, _)) .Times(1); } // Create one more data streams to exceed limit of open stream. QuicStreamFrame data1(kFinalStreamId, false, 0, StringPiece("HT")); session_.OnStreamFrame(data1); // Called after any new data is received by the session, and triggers the // call to close the connection. session_.PostProcessAfterData(); } TEST_P(QuicSessionTestServer, DrainingStreamsDoNotCountAsOpened) { // Verify that a draining stream (which has received a FIN but not consumed // it) does not count against the open quota (because it is closed from the // protocol point of view). if (GetParam() <= QUIC_VERSION_27) { EXPECT_CALL(*connection_, SendConnectionCloseWithDetails(QUIC_TOO_MANY_OPEN_STREAMS, _)) .Times(0); } else { EXPECT_CALL(*connection_, SendRstStream(_, QUIC_REFUSED_STREAM, _)) .Times(0); } const QuicStreamId kMaxStreams = 5; QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams); // Create kMaxStreams + 1 data streams, and mark them draining. const QuicStreamId kFirstStreamId = kClientDataStreamId1; const QuicStreamId kFinalStreamId = kClientDataStreamId1 + 2 * kMaxStreams + 1; for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += 2) { QuicStreamFrame data1(i, true, 0, StringPiece("HT")); session_.OnStreamFrame(data1); EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams()); session_.StreamDraining(i); EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams()); } // Called after any new data is received by the session, and triggers the call // to close the connection. session_.PostProcessAfterData(); } TEST_P(QuicSessionTestServer, TestMaxIncomingAndOutgoingStreamsAllowed) { // Tests that on server side, the value of max_open_incoming/outgoing streams // are setup correctly during negotiation. // When FLAGS_quic_different_max_num_open_streams is off, both of them are a // little larger than negotiated values. When flag is true, the value for // outgoing stream is limited to negotiated value and for incoming stream it // is set to be larger than that. session_.OnConfigNegotiated(); if (FLAGS_quic_different_max_num_open_streams) { // The max number of open outgoing streams is less than that of incoming // streams, and it should be same as negotiated value. EXPECT_LT(session_.max_open_outgoing_streams(), session_.max_open_incoming_streams()); EXPECT_EQ(session_.max_open_outgoing_streams(), kDefaultMaxStreamsPerConnection); } else { // The max number of outgoing/incoming streams are the same. EXPECT_EQ(session_.max_open_outgoing_streams(), session_.max_open_incoming_streams()); } EXPECT_GT(session_.max_open_incoming_streams(), kDefaultMaxStreamsPerConnection); } class QuicSessionTestClient : public QuicSessionTestBase { protected: QuicSessionTestClient() : QuicSessionTestBase(Perspective::IS_CLIENT) {} }; INSTANTIATE_TEST_CASE_P(Tests, QuicSessionTestClient, ::testing::ValuesIn(QuicSupportedVersions())); TEST_P(QuicSessionTestClient, AvailableStreamsClient) { ASSERT_TRUE(session_.GetOrCreateDynamicStream(6) != nullptr); // Both 2 and 4 should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(&session_, 2)); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(&session_, 4)); ASSERT_TRUE(session_.GetOrCreateDynamicStream(2) != nullptr); ASSERT_TRUE(session_.GetOrCreateDynamicStream(4) != nullptr); // And 5 should be not available. EXPECT_FALSE(QuicSessionPeer::IsStreamAvailable(&session_, 5)); } TEST_P(QuicSessionTestClient, RecordFinAfterReadSideClosed) { // Verify that an incoming FIN is recorded in a stream object even if the read // side has been closed. This prevents an entry from being made in // locally_closed_streams_highest_offset_ (which will never be deleted). TestStream* stream = session_.CreateOutgoingDynamicStream(kDefaultPriority); QuicStreamId stream_id = stream->id(); // Close the read side manually. ReliableQuicStreamPeer::CloseReadSide(stream); // Receive a stream data frame with FIN. QuicStreamFrame frame(stream_id, true, 0, StringPiece()); session_.OnStreamFrame(frame); EXPECT_TRUE(stream->fin_received()); // Reset stream locally. EXPECT_CALL(*connection_, SendRstStream(stream->id(), _, _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_TRUE(ReliableQuicStreamPeer::read_side_closed(stream)); // Allow the session to delete the stream object. session_.PostProcessAfterData(); EXPECT_TRUE(connection_->connected()); EXPECT_TRUE(QuicSessionPeer::IsStreamClosed(&session_, stream_id)); EXPECT_EQ(nullptr, QuicSessionPeer::dynamic_streams(&session_)[stream_id]); // The stream is not waiting for the arrival of the peer's final offset as it // was received with the FIN earlier. EXPECT_EQ( 0u, QuicSessionPeer::GetLocallyClosedStreamsHighestOffset(&session_).size()); } TEST_P(QuicSessionTestClient, TestMaxIncomingAndOutgoingStreamsAllowed) { // Tests that on client side, the value of max_open_incoming/outgoing streams // are setup correctly during negotiation. // When FLAGS_quic_different_max_num_open_streams is off, both of them are // same as negotiated value. When flag is true, the value for outgoing stream // is limited to negotiated value and for incoming stream it is set to be // larger than that. session_.OnConfigNegotiated(); if (FLAGS_quic_different_max_num_open_streams) { EXPECT_LT(session_.max_open_outgoing_streams(), session_.max_open_incoming_streams()); } else { EXPECT_EQ(session_.max_open_outgoing_streams(), session_.max_open_incoming_streams()); } EXPECT_EQ(session_.max_open_outgoing_streams(), kDefaultMaxStreamsPerConnection); } } // namespace } // namespace test } // namespace net