// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_session.h" #include #include "base/basictypes.h" #include "base/containers/hash_tables.h" #include "base/rand_util.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "net/quic/crypto/crypto_protocol.h" #include "net/quic/quic_crypto_stream.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_protocol.h" #include "net/quic/quic_utils.h" #include "net/quic/reliable_quic_stream.h" #include "net/quic/test_tools/quic_config_peer.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_data_stream_peer.h" #include "net/quic/test_tools/quic_flow_controller_peer.h" #include "net/quic/test_tools/quic_session_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/quic/test_tools/reliable_quic_stream_peer.h" #include "net/spdy/spdy_framer.h" #include "net/test/gtest_util.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gmock_mutant.h" #include "testing/gtest/include/gtest/gtest.h" using base::hash_map; using std::set; using std::string; using std::vector; using testing::CreateFunctor; using testing::InSequence; using testing::Invoke; using testing::Return; using testing::StrictMock; using testing::_; namespace net { namespace test { namespace { const QuicPriority kHighestPriority = 0; const QuicPriority kSomeMiddlePriority = 3; class TestCryptoStream : public QuicCryptoStream { public: explicit TestCryptoStream(QuicSession* session) : QuicCryptoStream(session) { } void OnHandshakeMessage(const CryptoHandshakeMessage& message) override { encryption_established_ = true; handshake_confirmed_ = true; CryptoHandshakeMessage msg; string error_details; session()->config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session()->config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); session()->config()->ToHandshakeMessage(&msg); const QuicErrorCode error = session()->config()->ProcessPeerHello( msg, CLIENT, &error_details); EXPECT_EQ(QUIC_NO_ERROR, error); session()->OnConfigNegotiated(); session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED); } MOCK_METHOD0(OnCanWrite, void()); }; class TestHeadersStream : public QuicHeadersStream { public: explicit TestHeadersStream(QuicSession* session) : QuicHeadersStream(session) { } MOCK_METHOD0(OnCanWrite, void()); }; class TestStream : public QuicDataStream { public: TestStream(QuicStreamId id, QuicSession* session) : QuicDataStream(id, session) { } using ReliableQuicStream::CloseWriteSide; uint32 ProcessData(const char* data, uint32 data_len) override { return data_len; } void SendBody(const string& data, bool fin) { WriteOrBufferData(data, fin, nullptr); } MOCK_METHOD0(OnCanWrite, void()); }; // Poor man's functor for use as callback in a mock. class StreamBlocker { public: StreamBlocker(QuicSession* session, QuicStreamId stream_id) : session_(session), stream_id_(stream_id) { } void MarkWriteBlocked() { session_->MarkWriteBlocked(stream_id_, kSomeMiddlePriority); } private: QuicSession* const session_; const QuicStreamId stream_id_; }; class TestSession : public QuicSession { public: explicit TestSession(QuicConnection* connection) : QuicSession(connection, DefaultQuicConfig()), crypto_stream_(this), writev_consumes_all_data_(false) { InitializeSession(); } TestCryptoStream* GetCryptoStream() override { return &crypto_stream_; } TestStream* CreateOutgoingDataStream() override { TestStream* stream = new TestStream(GetNextStreamId(), this); ActivateStream(stream); return stream; } TestStream* CreateIncomingDataStream(QuicStreamId id) override { return new TestStream(id, this); } bool IsClosedStream(QuicStreamId id) { return QuicSession::IsClosedStream(id); } QuicDataStream* GetIncomingDataStream(QuicStreamId stream_id) { return QuicSession::GetIncomingDataStream(stream_id); } QuicConsumedData WritevData( QuicStreamId id, const IOVector& data, QuicStreamOffset offset, bool fin, FecProtection fec_protection, QuicAckNotifier::DelegateInterface* ack_notifier_delegate) override { // Always consumes everything. if (writev_consumes_all_data_) { return QuicConsumedData(data.TotalBufferSize(), fin); } else { return QuicSession::WritevData(id, data, offset, fin, fec_protection, ack_notifier_delegate); } } void set_writev_consumes_all_data(bool val) { writev_consumes_all_data_ = val; } QuicConsumedData SendStreamData(QuicStreamId id) { return WritevData(id, MakeIOVector("not empty"), 0, true, MAY_FEC_PROTECT, nullptr); } using QuicSession::PostProcessAfterData; private: StrictMock crypto_stream_; bool writev_consumes_all_data_; }; class QuicSessionTest : public ::testing::TestWithParam { protected: QuicSessionTest() : connection_(new MockConnection(true, SupportedVersions(GetParam()))), session_(connection_) { session_.config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session_.config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); headers_[":host"] = "www.google.com"; headers_[":path"] = "/index.hml"; headers_[":scheme"] = "http"; headers_["cookie"] = "__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; " "__utmc=160408618; " "GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX" "hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX" "RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT" "pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0" "O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh" "1zFMi5vzcns38-8_Sns; " "GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-" "yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339" "47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c" "v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%" "2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4" "SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1" "3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP" "ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6" "edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b" "Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6" "QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG" "tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk" "Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn" "EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr" "JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo "; connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); } void CheckClosedStreams() { for (int i = kCryptoStreamId; i < 100; i++) { if (!ContainsKey(closed_streams_, i)) { EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i; } else { EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i; } } } void CloseStream(QuicStreamId id) { session_.CloseStream(id); closed_streams_.insert(id); } QuicVersion version() const { return connection_->version(); } MockConnection* connection_; TestSession session_; set closed_streams_; SpdyHeaderBlock headers_; }; INSTANTIATE_TEST_CASE_P(Tests, QuicSessionTest, ::testing::ValuesIn(QuicSupportedVersions())); TEST_P(QuicSessionTest, PeerAddress) { EXPECT_EQ(IPEndPoint(Loopback4(), kTestPort), session_.peer_address()); } TEST_P(QuicSessionTest, IsCryptoHandshakeConfirmed) { EXPECT_FALSE(session_.IsCryptoHandshakeConfirmed()); CryptoHandshakeMessage message; session_.GetCryptoStream()->OnHandshakeMessage(message); EXPECT_TRUE(session_.IsCryptoHandshakeConfirmed()); } TEST_P(QuicSessionTest, IsClosedStreamDefault) { // Ensure that no streams are initially closed. for (int i = kCryptoStreamId; i < 100; i++) { EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i; } } TEST_P(QuicSessionTest, ImplicitlyCreatedStreams) { ASSERT_TRUE(session_.GetIncomingDataStream(7) != nullptr); // Both 3 and 5 should be implicitly created. EXPECT_FALSE(session_.IsClosedStream(3)); EXPECT_FALSE(session_.IsClosedStream(5)); ASSERT_TRUE(session_.GetIncomingDataStream(5) != nullptr); ASSERT_TRUE(session_.GetIncomingDataStream(3) != nullptr); } TEST_P(QuicSessionTest, IsClosedStreamLocallyCreated) { TestStream* stream2 = session_.CreateOutgoingDataStream(); EXPECT_EQ(2u, stream2->id()); TestStream* stream4 = session_.CreateOutgoingDataStream(); EXPECT_EQ(4u, stream4->id()); CheckClosedStreams(); CloseStream(4); CheckClosedStreams(); CloseStream(2); CheckClosedStreams(); } TEST_P(QuicSessionTest, IsClosedStreamPeerCreated) { QuicStreamId stream_id1 = kClientDataStreamId1; QuicStreamId stream_id2 = kClientDataStreamId2; QuicDataStream* stream1 = session_.GetIncomingDataStream(stream_id1); QuicDataStreamPeer::SetHeadersDecompressed(stream1, true); QuicDataStream* stream2 = session_.GetIncomingDataStream(stream_id2); QuicDataStreamPeer::SetHeadersDecompressed(stream2, true); CheckClosedStreams(); CloseStream(stream_id1); CheckClosedStreams(); CloseStream(stream_id2); // Create a stream explicitly, and another implicitly. QuicDataStream* stream3 = session_.GetIncomingDataStream(stream_id2 + 4); QuicDataStreamPeer::SetHeadersDecompressed(stream3, true); CheckClosedStreams(); // Close one, but make sure the other is still not closed CloseStream(stream3->id()); CheckClosedStreams(); } TEST_P(QuicSessionTest, StreamIdTooLarge) { QuicStreamId stream_id = kClientDataStreamId1; session_.GetIncomingDataStream(stream_id); EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID)); session_.GetIncomingDataStream(stream_id + kMaxStreamIdDelta + 2); } TEST_P(QuicSessionTest, DecompressionError) { QuicHeadersStream* stream = QuicSessionPeer::GetHeadersStream(&session_); if (version() > QUIC_VERSION_23) { // This test does not apply to HPACK compression. return; } const unsigned char data[] = { 0x80, 0x03, 0x00, 0x01, // SPDY/3 SYN_STREAM frame 0x00, 0x00, 0x00, 0x25, // flags/length 0x00, 0x00, 0x00, 0x05, // stream id 0x00, 0x00, 0x00, 0x00, // associated stream id 0x00, 0x00, 'a', 'b', 'c', 'd' // invalid compressed data }; EXPECT_CALL(*connection_, SendConnectionCloseWithDetails( QUIC_INVALID_HEADERS_STREAM_DATA, "SPDY framing error: DECOMPRESS_FAILURE")); stream->ProcessRawData(reinterpret_cast(data), arraysize(data)); } TEST_P(QuicSessionTest, DebugDFatalIfMarkingClosedStreamWriteBlocked) { TestStream* stream2 = session_.CreateOutgoingDataStream(); // Close the stream. stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD); // TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL. /* QuicStreamId kClosedStreamId = stream2->id(); EXPECT_DEBUG_DFATAL( session_.MarkWriteBlocked(kClosedStreamId, kSomeMiddlePriority), "Marking unknown stream 2 blocked."); */ } TEST_P(QuicSessionTest, DebugDFatalIfMarkWriteBlockedCalledWithWrongPriority) { const QuicPriority kDifferentPriority = 0; TestStream* stream2 = session_.CreateOutgoingDataStream(); EXPECT_NE(kDifferentPriority, stream2->EffectivePriority()); // TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL. /* EXPECT_DEBUG_DFATAL( session_.MarkWriteBlocked(stream2->id(), kDifferentPriority), "Priorities do not match. Got: 0 Expected: 3"); */ } TEST_P(QuicSessionTest, OnCanWrite) { TestStream* stream2 = session_.CreateOutgoingDataStream(); TestStream* stream4 = session_.CreateOutgoingDataStream(); TestStream* stream6 = session_.CreateOutgoingDataStream(); session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); InSequence s; StreamBlocker stream2_blocker(&session_, stream2->id()); // Reregister, to test the loop limit. EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked)); EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTest, OnCanWriteBundlesStreams) { // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingDataStream(); TestStream* stream4 = session_.CreateOutgoingDataStream(); TestStream* stream6 = session_.CreateOutgoingDataStream(); session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillRepeatedly( Return(QuicTime::Delta::Zero())); EXPECT_CALL(*send_algorithm, GetCongestionWindow()) .WillRepeatedly(Return(kMaxPacketSize * 10)); EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(IgnoreResult(Invoke(CreateFunctor( &session_, &TestSession::SendStreamData, stream2->id())))); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(IgnoreResult(Invoke(CreateFunctor( &session_, &TestSession::SendStreamData, stream4->id())))); EXPECT_CALL(*stream6, OnCanWrite()) .WillOnce(IgnoreResult(Invoke(CreateFunctor( &session_, &TestSession::SendStreamData, stream6->id())))); // Expect that we only send one packet, the writes from different streams // should be bundled together. MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, WritePacket(_, _, _, _)).WillOnce( Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)).Times(1); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTest, OnCanWriteCongestionControlBlocks) { InSequence s; // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingDataStream(); TestStream* stream4 = session_.CreateOutgoingDataStream(); TestStream* stream6 = session_.CreateOutgoingDataStream(); session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); StreamBlocker stream2_blocker(&session_, stream2->id()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( QuicTime::Delta::Zero())); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( QuicTime::Delta::Zero())); EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( QuicTime::Delta::Infinite())); // stream4->OnCanWrite is not called. session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // Still congestion-control blocked. EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( QuicTime::Delta::Infinite())); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // stream4->OnCanWrite is called once the connection stops being // congestion-control blocked. EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( QuicTime::Delta::Zero())); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTest, BufferedHandshake) { EXPECT_FALSE(session_.HasPendingHandshake()); // Default value. // Test that blocking other streams does not change our status. TestStream* stream2 = session_.CreateOutgoingDataStream(); StreamBlocker stream2_blocker(&session_, stream2->id()); stream2_blocker.MarkWriteBlocked(); EXPECT_FALSE(session_.HasPendingHandshake()); TestStream* stream3 = session_.CreateOutgoingDataStream(); StreamBlocker stream3_blocker(&session_, stream3->id()); stream3_blocker.MarkWriteBlocked(); EXPECT_FALSE(session_.HasPendingHandshake()); // Blocking (due to buffering of) the Crypto stream is detected. session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority); EXPECT_TRUE(session_.HasPendingHandshake()); TestStream* stream4 = session_.CreateOutgoingDataStream(); StreamBlocker stream4_blocker(&session_, stream4->id()); stream4_blocker.MarkWriteBlocked(); EXPECT_TRUE(session_.HasPendingHandshake()); InSequence s; // Force most streams to re-register, which is common scenario when we block // the Crypto stream, and only the crypto stream can "really" write. // Due to prioritization, we *should* be asked to write the crypto stream // first. // Don't re-register the crypto stream (which signals complete writing). TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); // Re-register all other streams, to show they weren't able to proceed. EXPECT_CALL(*stream2, OnCanWrite()) .WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked)); EXPECT_CALL(*stream3, OnCanWrite()) .WillOnce(Invoke(&stream3_blocker, &StreamBlocker::MarkWriteBlocked)); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(Invoke(&stream4_blocker, &StreamBlocker::MarkWriteBlocked)); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote. } TEST_P(QuicSessionTest, OnCanWriteWithClosedStream) { TestStream* stream2 = session_.CreateOutgoingDataStream(); TestStream* stream4 = session_.CreateOutgoingDataStream(); TestStream* stream6 = session_.CreateOutgoingDataStream(); session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); CloseStream(stream6->id()); InSequence s; EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTest, OnCanWriteLimitsNumWritesIfFlowControlBlocked) { // Ensure connection level flow control blockage. QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0); EXPECT_TRUE(session_.flow_controller()->IsBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); // Mark the crypto and headers streams as write blocked, we expect them to be // allowed to write later. session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority); session_.MarkWriteBlocked(kHeadersStreamId, kHighestPriority); // Create a data stream, and although it is write blocked we never expect it // to be allowed to write as we are connection level flow control blocked. TestStream* stream = session_.CreateOutgoingDataStream(); session_.MarkWriteBlocked(stream->id(), kSomeMiddlePriority); EXPECT_CALL(*stream, OnCanWrite()).Times(0); // The crypto and headers streams should be called even though we are // connection flow control blocked. TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()).Times(1); TestHeadersStream* headers_stream = new TestHeadersStream(&session_); QuicSessionPeer::SetHeadersStream(&session_, headers_stream); EXPECT_CALL(*headers_stream, OnCanWrite()).Times(1); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTest, SendGoAway) { EXPECT_CALL(*connection_, SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away.")); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_.goaway_sent()); EXPECT_CALL(*connection_, SendRstStream(3u, QUIC_STREAM_PEER_GOING_AWAY, 0)).Times(0); EXPECT_TRUE(session_.GetIncomingDataStream(3u)); } TEST_P(QuicSessionTest, DoNotSendGoAwayTwice) { EXPECT_CALL(*connection_, SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away.")).Times(1); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_.goaway_sent()); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); } TEST_P(QuicSessionTest, IncreasedTimeoutAfterCryptoHandshake) { EXPECT_EQ(kInitialIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); EXPECT_EQ(kMaximumIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); } TEST_P(QuicSessionTest, RstStreamBeforeHeadersDecompressed) { // Send two bytes of payload. QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT")); vector frames; frames.push_back(data1); session_.OnStreamFrames(frames); EXPECT_EQ(1u, session_.GetNumOpenStreams()); QuicRstStreamFrame rst1(kClientDataStreamId1, QUIC_STREAM_NO_ERROR, 0); session_.OnRstStream(rst1); EXPECT_EQ(0u, session_.GetNumOpenStreams()); // Connection should remain alive. EXPECT_TRUE(connection_->connected()); } TEST_P(QuicSessionTest, MultipleRstStreamsCauseSingleConnectionClose) { // If multiple invalid reset stream frames arrive in a single packet, this // should trigger a connection close. However there is no need to send // multiple connection close frames. // Create valid stream. QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT")); vector frames; frames.push_back(data1); session_.OnStreamFrames(frames); EXPECT_EQ(1u, session_.GetNumOpenStreams()); // Process first invalid stream reset, resulting in the connection being // closed. EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID)) .Times(1); QuicStreamId kLargeInvalidStreamId = 99999999; QuicRstStreamFrame rst1(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0); session_.OnRstStream(rst1); QuicConnectionPeer::CloseConnection(connection_); // Processing of second invalid stream reset should not result in the // connection being closed for a second time. QuicRstStreamFrame rst2(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0); session_.OnRstStream(rst2); } TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedStream) { // Test that if a stream is flow control blocked, then on receipt of the SHLO // containing a suitable send window offset, the stream becomes unblocked. // Ensure that Writev consumes all the data it is given (simulate no socket // blocking). session_.set_writev_consumes_all_data(true); // Create a stream, and send enough data to make it flow control blocked. TestStream* stream2 = session_.CreateOutgoingDataStream(); string body(kMinimumFlowControlSendWindow, '.'); EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); stream2->SendBody(body, false); EXPECT_TRUE(stream2->flow_controller()->IsBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // The handshake message will call OnCanWrite, so the stream can resume // writing. EXPECT_CALL(*stream2, OnCanWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked. EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedCryptoStream) { // Test that if the crypto stream is flow control blocked, then if the SHLO // contains a larger send window offset, the stream becomes unblocked. session_.set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicHeadersStream* headers_stream = QuicSessionPeer::GetHeadersStream(&session_); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); // Write until the crypto stream is flow control blocked. int i = 0; while (!crypto_stream->flow_controller()->IsBlocked() && i < 1000) { EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicConfig config; CryptoHandshakeMessage crypto_message; config.ToHandshakeMessage(&crypto_message); crypto_stream->SendHandshakeMessage(crypto_message); ++i; } EXPECT_TRUE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.HasDataToWrite()); EXPECT_TRUE(crypto_stream->HasBufferedData()); // The handshake message will call OnCanWrite, so the stream can // resume writing. EXPECT_CALL(*crypto_stream, OnCanWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked and will no longer have buffered data. EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedHeadersStream) { // Test that if the header stream is flow control blocked, then if the SHLO // contains a larger send window offset, the stream becomes unblocked. session_.set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_.GetCryptoStream(); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicHeadersStream* headers_stream = QuicSessionPeer::GetHeadersStream(&session_); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicStreamId stream_id = 5; // Write until the header stream is flow control blocked. SpdyHeaderBlock headers; while (!headers_stream->flow_controller()->IsBlocked() && stream_id < 2000) { EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); headers["header"] = base::Uint64ToString(base::RandUint64()) + base::Uint64ToString(base::RandUint64()) + base::Uint64ToString(base::RandUint64()); headers_stream->WriteHeaders(stream_id, headers, true, 0, nullptr); stream_id += 2; } // Write once more to ensure that the headers stream has buffered data. The // random headers may have exactly filled the flow control window. headers_stream->WriteHeaders(stream_id, headers, true, 0, nullptr); EXPECT_TRUE(headers_stream->HasBufferedData()); EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.HasDataToWrite()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CryptoHandshakeMessage msg; session_.GetCryptoStream()->OnHandshakeMessage(msg); // Stream is now unblocked and will no longer have buffered data. EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(headers_stream->HasBufferedData()); } TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstOutOfOrder) { // Test that when we receive an out of order stream RST we correctly adjust // our connection level flow control receive window. // On close, the stream should mark as consumed all bytes between the highest // byte consumed so far and the final byte offset from the RST frame. TestStream* stream = session_.CreateOutgoingDataStream(); const QuicStreamOffset kByteOffset = 1 + kInitialSessionFlowControlWindowForTest / 2; // Expect no stream WINDOW_UPDATE frames, as stream read side closed. EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0); // We do expect a connection level WINDOW_UPDATE when the stream is reset. EXPECT_CALL(*connection_, SendWindowUpdate(0, kInitialSessionFlowControlWindowForTest + kByteOffset)).Times(1); QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); session_.PostProcessAfterData(); EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAndLocalReset) { // Test the situation where we receive a FIN on a stream, and before we fully // consume all the data from the sequencer buffer we locally RST the stream. // The bytes between highest consumed byte, and the final byte offset that we // determined when the FIN arrived, should be marked as consumed at the // connection level flow controller when the stream is reset. TestStream* stream = session_.CreateOutgoingDataStream(); const QuicStreamOffset kByteOffset = 1 + kInitialSessionFlowControlWindowForTest / 2; QuicStreamFrame frame(stream->id(), true, kByteOffset, IOVector()); vector frames; frames.push_back(frame); session_.OnStreamFrames(frames); session_.PostProcessAfterData(); EXPECT_EQ(0u, stream->flow_controller()->bytes_consumed()); EXPECT_EQ(kByteOffset, stream->flow_controller()->highest_received_byte_offset()); // Reset stream locally. stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAfterRst) { // Test that when we RST the stream (and tear down stream state), and then // receive a FIN from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64 kInitialConnectionBytesConsumed = 567; const uint64 kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingDataStream(); stream->Reset(QUIC_STREAM_CANCELLED); // Now receive a response from the peer with a FIN. We should handle this by // adjusting the connection level flow control receive window to take into // account the total number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; string body = "hello"; IOVector data = MakeIOVector(body); QuicStreamFrame frame(stream->id(), true, kByteOffset, data); vector frames; frames.push_back(frame); session_.OnStreamFrames(frames); QuicStreamOffset total_stream_bytes_sent_by_peer = kByteOffset + body.length(); EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer, session_.flow_controller()->bytes_consumed()); EXPECT_EQ( kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstAfterRst) { // Test that when we RST the stream (and tear down stream state), and then // receive a RST from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64 kInitialConnectionBytesConsumed = 567; const uint64 kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingDataStream(); stream->Reset(QUIC_STREAM_CANCELLED); // Now receive a RST from the peer. We should handle this by adjusting the // connection level flow control receive window to take into account the total // number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset, session_.flow_controller()->bytes_consumed()); EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTest, InvalidStreamFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default) stream flow control window from // the peer results in the connection being torn down. uint32 kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(), kInvalidWindow); EXPECT_CALL(*connection_, SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTest, InvalidSessionFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default) session flow control window // from the peer results in the connection being torn down. uint32 kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(), kInvalidWindow); EXPECT_CALL(*connection_, SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTest, FlowControlWithInvalidFinalOffset) { // Test that if we receive a stream RST with a highest byte offset that // violates flow control, that we close the connection. const uint64 kLargeOffset = kInitialSessionFlowControlWindowForTest + 1; EXPECT_CALL(*connection_, SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA)) .Times(2); // Check that stream frame + FIN results in connection close. TestStream* stream = session_.CreateOutgoingDataStream(); stream->Reset(QUIC_STREAM_CANCELLED); QuicStreamFrame frame(stream->id(), true, kLargeOffset, IOVector()); vector frames; frames.push_back(frame); session_.OnStreamFrames(frames); // Check that RST results in connection close. QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, kLargeOffset); session_.OnRstStream(rst_frame); } TEST_P(QuicSessionTest, WindowUpdateUnblocksHeadersStream) { // Test that a flow control blocked headers stream gets unblocked on recipt of // a WINDOW_UPDATE frame. Regression test for b/17413860. // Set the headers stream to be flow control blocked. QuicHeadersStream* headers_stream = QuicSessionPeer::GetHeadersStream(&session_); QuicFlowControllerPeer::SetSendWindowOffset(headers_stream->flow_controller(), 0); EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // Unblock the headers stream by supplying a WINDOW_UPDATE. QuicWindowUpdateFrame window_update_frame(headers_stream->id(), 2 * kMinimumFlowControlSendWindow); vector frames; frames.push_back(window_update_frame); session_.OnWindowUpdateFrames(frames); EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTest, TooManyUnfinishedStreamsCauseConnectionClose) { // If a buggy/malicious peer creates too many streams that are not ended with // a FIN or RST then we send a connection close. EXPECT_CALL(*connection_, SendConnectionClose(QUIC_TOO_MANY_UNFINISHED_STREAMS)).Times(1); const int kMaxStreams = 5; QuicSessionPeer::SetMaxOpenStreams(&session_, kMaxStreams); // Create kMaxStreams + 1 data streams, and close them all without receiving a // FIN or a RST from the client. const int kFirstStreamId = kClientDataStreamId1; const int kFinalStreamId = kClientDataStreamId1 + 2 * kMaxStreams + 1; for (int i = kFirstStreamId; i < kFinalStreamId; i += 2) { QuicStreamFrame data1(i, false, 0, MakeIOVector("HT")); vector frames; frames.push_back(data1); session_.OnStreamFrames(frames); EXPECT_EQ(1u, session_.GetNumOpenStreams()); session_.CloseStream(i); } // Called after any new data is received by the session, and triggers the call // to close the connection. session_.PostProcessAfterData(); } } // namespace } // namespace test } // namespace net