// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_stream_sequencer.h" #include #include #include "base/logging.h" #include "net/quic/reliable_quic_stream.h" using std::min; using std::numeric_limits; namespace net { QuicStreamSequencer::QuicStreamSequencer(ReliableQuicStream* quic_stream) : stream_(quic_stream), num_bytes_consumed_(0), max_frame_memory_(numeric_limits::max()), close_offset_(numeric_limits::max()), blocked_(false), num_bytes_buffered_(0) { } QuicStreamSequencer::QuicStreamSequencer(size_t max_frame_memory, ReliableQuicStream* quic_stream) : stream_(quic_stream), num_bytes_consumed_(0), max_frame_memory_(max_frame_memory), close_offset_(numeric_limits::max()), blocked_(false), num_bytes_buffered_(0) { if (max_frame_memory < kMaxPacketSize) { LOG(DFATAL) << "Setting max frame memory to " << max_frame_memory << ". Some frames will be impossible to handle."; } } QuicStreamSequencer::~QuicStreamSequencer() { } bool QuicStreamSequencer::WillAcceptStreamFrame( const QuicStreamFrame& frame) const { size_t data_len = frame.data.TotalBufferSize(); if (data_len > max_frame_memory_) { LOG(DFATAL) << "data_len: " << data_len << " > max_frame_memory_: " << max_frame_memory_; return false; } if (IsDuplicate(frame)) { return true; } QuicStreamOffset byte_offset = frame.offset; if (data_len > max_frame_memory_) { // We're never going to buffer this frame and we can't pass it up. // The stream might only consume part of it and we'd need a partial ack. // // Ideally this should never happen, as we check that // max_frame_memory_ > kMaxPacketSize and lower levels should reject // frames larger than that. return false; } if (byte_offset + data_len - num_bytes_consumed_ > max_frame_memory_) { // We can buffer this but not right now. Toss it. // It might be worth trying an experiment where we try best-effort buffering return false; } return true; } bool QuicStreamSequencer::OnStreamFrame(const QuicStreamFrame& frame) { if (!WillAcceptStreamFrame(frame)) { // This should not happen, as WillAcceptFrame should be called before // OnStreamFrame. Error handling should be done by the caller. return false; } if (IsDuplicate(frame)) { // Silently ignore duplicates. return true; } QuicStreamOffset byte_offset = frame.offset; size_t data_len = frame.data.TotalBufferSize(); if (data_len == 0 && !frame.fin) { // Stream frames must have data or a fin flag. stream_->CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, "Empty stream frame without FIN set."); return false; } if (frame.fin) { CloseStreamAtOffset(frame.offset + data_len); if (data_len == 0) { return true; } } IOVector data; data.AppendIovec(frame.data.iovec(), frame.data.Size()); // If the frame has arrived in-order then we can process it immediately, only // buffering if the stream is unable to process it. if (!blocked_ && byte_offset == num_bytes_consumed_) { DVLOG(1) << "Processing byte offset " << byte_offset; size_t bytes_consumed = 0; for (size_t i = 0; i < data.Size(); ++i) { bytes_consumed += stream_->ProcessRawData( static_cast(data.iovec()[i].iov_base), data.iovec()[i].iov_len); } num_bytes_consumed_ += bytes_consumed; if (MaybeCloseStream()) { return true; } if (bytes_consumed > data_len) { stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); return false; } else if (bytes_consumed == data_len) { FlushBufferedFrames(); return true; // it's safe to ack this frame. } else { // Set ourselves up to buffer what's left. data_len -= bytes_consumed; data.Consume(bytes_consumed); byte_offset += bytes_consumed; } } // Buffer any remaining data to be consumed by the stream when ready. for (size_t i = 0; i < data.Size(); ++i) { DVLOG(1) << "Buffering stream data at offset " << byte_offset; const iovec& iov = data.iovec()[i]; frames_.insert(make_pair( byte_offset, string(static_cast(iov.iov_base), iov.iov_len))); byte_offset += iov.iov_len; num_bytes_buffered_ += iov.iov_len; } return true; } void QuicStreamSequencer::CloseStreamAtOffset(QuicStreamOffset offset) { const QuicStreamOffset kMaxOffset = numeric_limits::max(); // If we have a scheduled termination or close, any new offset should match // it. if (close_offset_ != kMaxOffset && offset != close_offset_) { stream_->Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS); return; } close_offset_ = offset; MaybeCloseStream(); } bool QuicStreamSequencer::MaybeCloseStream() { if (!blocked_ && IsClosed()) { DVLOG(1) << "Passing up termination, as we've processed " << num_bytes_consumed_ << " of " << close_offset_ << " bytes."; // Technically it's an error if num_bytes_consumed isn't exactly // equal, but error handling seems silly at this point. stream_->OnFinRead(); frames_.clear(); num_bytes_buffered_ = 0; return true; } return false; } int QuicStreamSequencer::GetReadableRegions(iovec* iov, size_t iov_len) { DCHECK(!blocked_); FrameMap::iterator it = frames_.begin(); size_t index = 0; QuicStreamOffset offset = num_bytes_consumed_; while (it != frames_.end() && index < iov_len) { if (it->first != offset) return index; iov[index].iov_base = static_cast( const_cast(it->second.data())); iov[index].iov_len = it->second.size(); offset += it->second.size(); ++index; ++it; } return index; } int QuicStreamSequencer::Readv(const struct iovec* iov, size_t iov_len) { DCHECK(!blocked_); FrameMap::iterator it = frames_.begin(); size_t iov_index = 0; size_t iov_offset = 0; size_t frame_offset = 0; size_t initial_bytes_consumed = num_bytes_consumed_; while (iov_index < iov_len && it != frames_.end() && it->first == num_bytes_consumed_) { int bytes_to_read = min(iov[iov_index].iov_len - iov_offset, it->second.size() - frame_offset); char* iov_ptr = static_cast(iov[iov_index].iov_base) + iov_offset; memcpy(iov_ptr, it->second.data() + frame_offset, bytes_to_read); frame_offset += bytes_to_read; iov_offset += bytes_to_read; if (iov[iov_index].iov_len == iov_offset) { // We've filled this buffer. iov_offset = 0; ++iov_index; } if (it->second.size() == frame_offset) { // We've copied this whole frame RecordBytesConsumed(it->second.size()); frames_.erase(it); it = frames_.begin(); frame_offset = 0; } } // We've finished copying. If we have a partial frame, update it. if (frame_offset != 0) { frames_.insert(make_pair(it->first + frame_offset, it->second.substr(frame_offset))); frames_.erase(frames_.begin()); RecordBytesConsumed(frame_offset); } return num_bytes_consumed_ - initial_bytes_consumed; } void QuicStreamSequencer::MarkConsumed(size_t num_bytes_consumed) { DCHECK(!blocked_); size_t end_offset = num_bytes_consumed_ + num_bytes_consumed; while (!frames_.empty() && end_offset != num_bytes_consumed_) { FrameMap::iterator it = frames_.begin(); if (it->first != num_bytes_consumed_) { LOG(DFATAL) << "Invalid argument to MarkConsumed. " << " num_bytes_consumed_: " << num_bytes_consumed_ << " end_offset: " << end_offset << " offset: " << it->first << " length: " << it->second.length(); stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); return; } if (it->first + it->second.length() <= end_offset) { num_bytes_consumed_ += it->second.length(); num_bytes_buffered_ -= it->second.length(); // This chunk is entirely consumed. frames_.erase(it); continue; } // Partially consume this frame. size_t delta = end_offset - it->first; RecordBytesConsumed(delta); frames_.insert(make_pair(end_offset, it->second.substr(delta))); frames_.erase(it); break; } } bool QuicStreamSequencer::HasBytesToRead() const { FrameMap::const_iterator it = frames_.begin(); return it != frames_.end() && it->first == num_bytes_consumed_; } bool QuicStreamSequencer::IsClosed() const { return num_bytes_consumed_ >= close_offset_; } bool QuicStreamSequencer::IsDuplicate(const QuicStreamFrame& frame) const { // A frame is duplicate if the frame offset is smaller than our bytes consumed // or we have stored the frame in our map. // TODO(pwestin): Is it possible that a new frame contain more data even if // the offset is the same? return frame.offset < num_bytes_consumed_ || frames_.find(frame.offset) != frames_.end(); } void QuicStreamSequencer::SetBlockedUntilFlush() { blocked_ = true; } void QuicStreamSequencer::FlushBufferedFrames() { blocked_ = false; FrameMap::iterator it = frames_.find(num_bytes_consumed_); while (it != frames_.end()) { DVLOG(1) << "Flushing buffered packet at offset " << it->first; string* data = &it->second; size_t bytes_consumed = stream_->ProcessRawData(data->c_str(), data->size()); RecordBytesConsumed(bytes_consumed); if (MaybeCloseStream()) { return; } if (bytes_consumed > data->size()) { stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); // Programming error return; } else if (bytes_consumed == data->size()) { frames_.erase(it); it = frames_.find(num_bytes_consumed_); } else { string new_data = it->second.substr(bytes_consumed); frames_.erase(it); frames_.insert(make_pair(num_bytes_consumed_, new_data)); return; } } MaybeCloseStream(); } void QuicStreamSequencer::RecordBytesConsumed(size_t bytes_consumed) { num_bytes_consumed_ += bytes_consumed; num_bytes_buffered_ -= bytes_consumed; } } // namespace net