// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_stream_sequencer.h" #include #include #include "base/logging.h" #include "base/metrics/sparse_histogram.h" #include "net/quic/reliable_quic_stream.h" using std::make_pair; using std::min; using std::numeric_limits; namespace net { QuicStreamSequencer::QuicStreamSequencer(ReliableQuicStream* quic_stream) : stream_(quic_stream), num_bytes_consumed_(0), close_offset_(numeric_limits::max()), blocked_(false), num_bytes_buffered_(0), num_frames_received_(0), num_duplicate_frames_received_(0) { } QuicStreamSequencer::~QuicStreamSequencer() { } void QuicStreamSequencer::OnStreamFrame(const QuicStreamFrame& frame) { ++num_frames_received_; if (IsDuplicate(frame)) { ++num_duplicate_frames_received_; // Silently ignore duplicates. return; } if (FrameOverlapsBufferedData(frame)) { stream_->CloseConnectionWithDetails( QUIC_INVALID_STREAM_FRAME, "Stream frame overlaps with buffered data."); return; } QuicStreamOffset byte_offset = frame.offset; size_t data_len = frame.data.TotalBufferSize(); if (data_len == 0 && !frame.fin) { // Stream frames must have data or a fin flag. stream_->CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, "Empty stream frame without FIN set."); return; } if (frame.fin) { CloseStreamAtOffset(frame.offset + data_len); if (data_len == 0) { return; } } IOVector data; data.AppendIovec(frame.data.iovec(), frame.data.Size()); // If the frame has arrived in-order then we can process it immediately, only // buffering if the stream is unable to process it. if (!blocked_ && byte_offset == num_bytes_consumed_) { DVLOG(1) << "Processing byte offset " << byte_offset; size_t bytes_consumed = 0; for (size_t i = 0; i < data.Size(); ++i) { bytes_consumed += stream_->ProcessRawData( static_cast(data.iovec()[i].iov_base), data.iovec()[i].iov_len); } num_bytes_consumed_ += bytes_consumed; stream_->AddBytesConsumed(bytes_consumed); if (MaybeCloseStream()) { return; } if (bytes_consumed > data_len) { stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); return; } else if (bytes_consumed == data_len) { FlushBufferedFrames(); return; // it's safe to ack this frame. } else { // Set ourselves up to buffer what's left. data_len -= bytes_consumed; data.Consume(bytes_consumed); byte_offset += bytes_consumed; } } // Buffer any remaining data to be consumed by the stream when ready. for (size_t i = 0; i < data.Size(); ++i) { DVLOG(1) << "Buffering stream data at offset " << byte_offset; const iovec& iov = data.iovec()[i]; buffered_frames_.insert(make_pair( byte_offset, string(static_cast(iov.iov_base), iov.iov_len))); byte_offset += iov.iov_len; num_bytes_buffered_ += iov.iov_len; } return; } void QuicStreamSequencer::CloseStreamAtOffset(QuicStreamOffset offset) { const QuicStreamOffset kMaxOffset = numeric_limits::max(); // If we have a scheduled termination or close, any new offset should match // it. if (close_offset_ != kMaxOffset && offset != close_offset_) { stream_->Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS); return; } close_offset_ = offset; MaybeCloseStream(); } bool QuicStreamSequencer::MaybeCloseStream() { if (!blocked_ && IsClosed()) { DVLOG(1) << "Passing up termination, as we've processed " << num_bytes_consumed_ << " of " << close_offset_ << " bytes."; // Technically it's an error if num_bytes_consumed isn't exactly // equal, but error handling seems silly at this point. stream_->OnFinRead(); buffered_frames_.clear(); num_bytes_buffered_ = 0; return true; } return false; } int QuicStreamSequencer::GetReadableRegions(iovec* iov, size_t iov_len) { DCHECK(!blocked_); FrameMap::iterator it = buffered_frames_.begin(); size_t index = 0; QuicStreamOffset offset = num_bytes_consumed_; while (it != buffered_frames_.end() && index < iov_len) { if (it->first != offset) return index; iov[index].iov_base = static_cast( const_cast(it->second.data())); iov[index].iov_len = it->second.size(); offset += it->second.size(); ++index; ++it; } return index; } int QuicStreamSequencer::Readv(const struct iovec* iov, size_t iov_len) { DCHECK(!blocked_); FrameMap::iterator it = buffered_frames_.begin(); size_t iov_index = 0; size_t iov_offset = 0; size_t frame_offset = 0; size_t initial_bytes_consumed = num_bytes_consumed_; while (iov_index < iov_len && it != buffered_frames_.end() && it->first == num_bytes_consumed_) { int bytes_to_read = min(iov[iov_index].iov_len - iov_offset, it->second.size() - frame_offset); char* iov_ptr = static_cast(iov[iov_index].iov_base) + iov_offset; memcpy(iov_ptr, it->second.data() + frame_offset, bytes_to_read); frame_offset += bytes_to_read; iov_offset += bytes_to_read; if (iov[iov_index].iov_len == iov_offset) { // We've filled this buffer. iov_offset = 0; ++iov_index; } if (it->second.size() == frame_offset) { // We've copied this whole frame RecordBytesConsumed(it->second.size()); buffered_frames_.erase(it); it = buffered_frames_.begin(); frame_offset = 0; } } // We've finished copying. If we have a partial frame, update it. if (frame_offset != 0) { buffered_frames_.insert( make_pair(it->first + frame_offset, it->second.substr(frame_offset))); buffered_frames_.erase(buffered_frames_.begin()); RecordBytesConsumed(frame_offset); } return num_bytes_consumed_ - initial_bytes_consumed; } bool QuicStreamSequencer::HasBytesToRead() const { FrameMap::const_iterator it = buffered_frames_.begin(); return it != buffered_frames_.end() && it->first == num_bytes_consumed_; } bool QuicStreamSequencer::IsClosed() const { return num_bytes_consumed_ >= close_offset_; } bool QuicStreamSequencer::FrameOverlapsBufferedData( const QuicStreamFrame& frame) const { if (buffered_frames_.empty()) { return false; } FrameMap::const_iterator next_frame = buffered_frames_.lower_bound(frame.offset); // Duplicate frames should have been dropped in IsDuplicate. DCHECK(next_frame == buffered_frames_.end() || next_frame->first != frame.offset); // If there is a buffered frame with a higher starting offset, then we check // to see if the new frame runs into the higher frame. if (next_frame != buffered_frames_.end() && (frame.offset + frame.data.TotalBufferSize()) > next_frame->first) { DVLOG(1) << "New frame overlaps next frame: " << frame.offset << " + " << frame.data.TotalBufferSize() << " > " << next_frame->first; return true; } // If there is a buffered frame with a lower starting offset, then we check // to see if the buffered frame runs into the new frame. if (next_frame != buffered_frames_.begin()) { FrameMap::const_iterator preceeding_frame = --next_frame; QuicStreamOffset offset = preceeding_frame->first; uint64 data_length = preceeding_frame->second.length(); if ((offset + data_length) > frame.offset) { DVLOG(1) << "Preceeding frame overlaps new frame: " << offset << " + " << data_length << " > " << frame.offset; return true; } } return false; } bool QuicStreamSequencer::IsDuplicate(const QuicStreamFrame& frame) const { // A frame is duplicate if the frame offset is smaller than our bytes consumed // or we have stored the frame in our map. // TODO(pwestin): Is it possible that a new frame contain more data even if // the offset is the same? return frame.offset < num_bytes_consumed_ || buffered_frames_.find(frame.offset) != buffered_frames_.end(); } void QuicStreamSequencer::SetBlockedUntilFlush() { blocked_ = true; } void QuicStreamSequencer::FlushBufferedFrames() { blocked_ = false; FrameMap::iterator it = buffered_frames_.find(num_bytes_consumed_); while (it != buffered_frames_.end()) { DVLOG(1) << "Flushing buffered packet at offset " << it->first; string* data = &it->second; size_t bytes_consumed = stream_->ProcessRawData(data->c_str(), data->size()); RecordBytesConsumed(bytes_consumed); if (MaybeCloseStream()) { return; } if (bytes_consumed > data->size()) { stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); // Programming error return; } else if (bytes_consumed == data->size()) { buffered_frames_.erase(it); it = buffered_frames_.find(num_bytes_consumed_); } else { string new_data = it->second.substr(bytes_consumed); buffered_frames_.erase(it); buffered_frames_.insert(make_pair(num_bytes_consumed_, new_data)); return; } } MaybeCloseStream(); } void QuicStreamSequencer::RecordBytesConsumed(size_t bytes_consumed) { num_bytes_consumed_ += bytes_consumed; num_bytes_buffered_ -= bytes_consumed; stream_->AddBytesConsumed(bytes_consumed); } } // namespace net