// Copyright (c) 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_stream_sequencer_buffer.h" #include "base/logging.h" #include "base/macros.h" #include "base/rand_util.h" #include "net/quic/test_tools/mock_clock.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/test/gtest_util.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gmock_mutant.h" #include "testing/gtest/include/gtest/gtest.h" using std::min; namespace net { namespace test { char GetCharFromIOVecs(size_t offset, iovec iov[], size_t count) { size_t start_offset = 0; for (size_t i = 0; i < count; i++) { if (iov[i].iov_len == 0) { continue; } size_t end_offset = start_offset + iov[i].iov_len - 1; if (offset >= start_offset && offset <= end_offset) { const char* buf = reinterpret_cast(iov[i].iov_base); return buf[offset - start_offset]; } start_offset += iov[i].iov_len; } LOG(ERROR) << "Could not locate char at offset " << offset << " in " << count << " iovecs"; for (size_t i = 0; i < count; ++i) { LOG(ERROR) << " iov[" << i << "].iov_len = " << iov[i].iov_len; } return '\0'; } static const size_t kBlockSizeBytes = QuicStreamSequencerBuffer::kBlockSizeBytes; typedef QuicStreamSequencerBuffer::BufferBlock BufferBlock; typedef QuicStreamSequencerBuffer::Gap Gap; typedef QuicStreamSequencerBuffer::FrameInfo FrameInfo; class QuicStreamSequencerBufferPeer { public: explicit QuicStreamSequencerBufferPeer(QuicStreamSequencerBuffer* buffer) : buffer_(buffer) {} // Read from this buffer_->into the given destination buffer_-> up to the // size of the destination. Returns the number of bytes read. Reading from // an empty buffer_->returns 0. size_t Read(char* dest_buffer, size_t size) { iovec dest; dest.iov_base = dest_buffer, dest.iov_len = size; return buffer_->Readv(&dest, 1); } // If buffer is empty, the blocks_ array must be empty, which means all // blocks are deallocated. bool CheckEmptyInvariants() { return !buffer_->Empty() || IsBlockArrayEmpty(); } bool IsBlockArrayEmpty() { size_t count = buffer_->blocks_count_; for (size_t i = 0; i < count; i++) { if (buffer_->blocks_[i] != nullptr) { return false; } } return true; } bool CheckInitialState() { EXPECT_TRUE(buffer_->Empty() && buffer_->total_bytes_read_ == 0 && buffer_->num_bytes_buffered_ == 0); return CheckBufferInvariants(); } bool CheckBufferInvariants() { QuicStreamOffset data_span = buffer_->gaps_.back().begin_offset - buffer_->total_bytes_read_; bool capacity_sane = data_span <= buffer_->max_buffer_capacity_bytes_ && data_span >= buffer_->num_bytes_buffered_; if (!capacity_sane) { LOG(ERROR) << "data span is larger than capacity."; LOG(ERROR) << "total read: " << buffer_->total_bytes_read_ << " last byte: " << buffer_->gaps_.back().begin_offset; } bool total_read_sane = buffer_->gaps_.front().begin_offset >= buffer_->total_bytes_read_; if (!total_read_sane) { LOG(ERROR) << "read across 1st gap."; } bool read_offset_sane = buffer_->ReadOffset() < kBlockSizeBytes; if (!capacity_sane) { LOG(ERROR) << "read offset go beyond 1st block"; } bool block_match_capacity = (buffer_->max_buffer_capacity_bytes_ <= buffer_->blocks_count_ * kBlockSizeBytes) && (buffer_->max_buffer_capacity_bytes_ > (buffer_->blocks_count_ - 1) * kBlockSizeBytes); if (!capacity_sane) { LOG(ERROR) << "block number not match capcaity."; } bool block_retired_when_empty = CheckEmptyInvariants(); if (!block_retired_when_empty) { LOG(ERROR) << "block is not retired after use."; } return capacity_sane && total_read_sane && read_offset_sane && block_match_capacity && block_retired_when_empty; } size_t GetInBlockOffset(QuicStreamOffset offset) { return buffer_->GetInBlockOffset(offset); } BufferBlock* GetBlock(size_t index) { return buffer_->blocks_[index]; } int GapSize() { return buffer_->gaps_.size(); } std::list GetGaps() { return buffer_->gaps_; } size_t max_buffer_capacity() { return buffer_->max_buffer_capacity_bytes_; } size_t ReadableBytes() { return buffer_->ReadableBytes(); } std::map* frame_arrival_time_map() { return &(buffer_->frame_arrival_time_map_); } void set_total_bytes_read(QuicStreamOffset total_bytes_read) { buffer_->total_bytes_read_ = total_bytes_read; } void set_gaps(const std::list& gaps) { buffer_->gaps_ = gaps; } private: QuicStreamSequencerBuffer* buffer_; }; namespace { class QuicStreamSequencerBufferTest : public testing::Test { public: void SetUp() override { Initialize(); } void ResetMaxCapacityBytes(size_t max_capacity_bytes) { max_capacity_bytes_ = max_capacity_bytes; Initialize(); } protected: void Initialize() { buffer_.reset(new QuicStreamSequencerBuffer(max_capacity_bytes_)); helper_.reset(new QuicStreamSequencerBufferPeer(buffer_.get())); } // Use 2.5 here to make sure the buffer has more than one block and its end // doesn't align with the end of a block in order to test all the offset // calculation. size_t max_capacity_bytes_ = 2.5 * kBlockSizeBytes; MockClock clock_; std::unique_ptr buffer_; std::unique_ptr helper_; string error_details_; }; TEST_F(QuicStreamSequencerBufferTest, InitializationWithDifferentSizes) { const size_t kCapacity = 2 * QuicStreamSequencerBuffer::kBlockSizeBytes; ResetMaxCapacityBytes(kCapacity); EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity()); EXPECT_TRUE(helper_->CheckInitialState()); const size_t kCapacity1 = 8 * QuicStreamSequencerBuffer::kBlockSizeBytes; ResetMaxCapacityBytes(kCapacity1); EXPECT_EQ(kCapacity1, helper_->max_buffer_capacity()); EXPECT_TRUE(helper_->CheckInitialState()); } TEST_F(QuicStreamSequencerBufferTest, ClearOnEmpty) { buffer_->Clear(); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamData0length) { size_t written; QuicErrorCode error = buffer_->OnStreamData(800, "", clock_.ApproximateNow(), &written, &error_details_); EXPECT_EQ(error, QUIC_EMPTY_STREAM_FRAME_NO_FIN); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithinBlock) { std::string source(1024, 'a'); size_t written; clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t = clock_.ApproximateNow(); EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(800, source, t, &written, &error_details_)); BufferBlock* block_ptr = helper_->GetBlock(0); for (size_t i = 0; i < source.size(); ++i) { ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]); } EXPECT_EQ(2, helper_->GapSize()); std::list gaps = helper_->GetGaps(); EXPECT_EQ(800u, gaps.front().end_offset); EXPECT_EQ(1824u, gaps.back().begin_offset); auto frame_map = helper_->frame_arrival_time_map(); EXPECT_EQ(1u, frame_map->size()); EXPECT_EQ(800u, frame_map->begin()->first); EXPECT_EQ(t, (*frame_map)[800].timestamp); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithOverlap) { std::string source(1024, 'a'); // Write something into [800, 1824) size_t written; clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t1 = clock_.ApproximateNow(); EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(800, source, t1, &written, &error_details_)); // Try to write to [0, 1024) and [1024, 2048). // But no byte will be written since overlap. clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t2 = clock_.ApproximateNow(); EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA, buffer_->OnStreamData(0, source, t2, &written, &error_details_)); EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA, buffer_->OnStreamData(1024, source, t2, &written, &error_details_)); auto frame_map = helper_->frame_arrival_time_map(); EXPECT_EQ(1u, frame_map->size()); EXPECT_EQ(t1, (*frame_map)[800].timestamp); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataOverlapAndDuplicateCornerCases) { std::string source(1024, 'a'); // Write something into [800, 1824) size_t written; buffer_->OnStreamData(800, source, clock_.ApproximateNow(), &written, &error_details_); source = std::string(800, 'b'); // Try to write to [1, 801), but should fail due to overlapping EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA, buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written, &error_details_)); // write to [0, 800) EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_)); // Try to write one byte to [1823, 1824), but should count as duplicate std::string one_byte = "c"; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(1823, one_byte, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(0u, written); // write one byte to [1824, 1825) EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(1824, one_byte, clock_.ApproximateNow(), &written, &error_details_)); auto frame_map = helper_->frame_arrival_time_map(); EXPECT_EQ(3u, frame_map->size()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithoutOverlap) { std::string source(1024, 'a'); // Write something into [800, 1824). size_t written; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(800, source, clock_.ApproximateNow(), &written, &error_details_)); source = std::string(100, 'b'); // Write something into [kBlockSizeBytes * 2 - 20, kBlockSizeBytes * 2 + 80). EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(kBlockSizeBytes * 2 - 20, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(3, helper_->GapSize()); EXPECT_EQ(1024u + 100u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataInLongStreamWithOverlap) { // Assume a stream has already buffered almost 4GB. uint64_t total_bytes_read = pow(2, 32) - 1; helper_->set_total_bytes_read(total_bytes_read); helper_->set_gaps(std::list( 1, Gap(total_bytes_read, std::numeric_limits::max()))); // Three new out of order frames arrive. const size_t kBytesToWrite = 100; string source(kBytesToWrite, 'a'); size_t written; // Frame [2^32 + 500, 2^32 + 600). QuicStreamOffset offset = pow(2, 32) + 500; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(offset, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(2, helper_->GapSize()); // Frame [2^32 + 700, 2^32 + 800). offset = pow(2, 32) + 700; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(offset, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(3, helper_->GapSize()); // Another frame [2^32 + 300, 2^32 + 400). offset = pow(2, 32) + 300; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(offset, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(4, helper_->GapSize()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEnd) { // Write 50 bytes to the end. const size_t kBytesToWrite = 50; std::string source(kBytesToWrite, 'a'); size_t written; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(50u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEndCorner) { // Write 1 byte to the end. const size_t kBytesToWrite = 1; std::string source(kBytesToWrite, 'a'); size_t written; EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(1u, buffer_->BytesBuffered()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataBeyondCapacity) { std::string source(60, 'a'); size_t written; EXPECT_EQ(QUIC_INTERNAL_ERROR, buffer_->OnStreamData(max_capacity_bytes_ - 50, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_TRUE(helper_->CheckBufferInvariants()); source = "b"; EXPECT_EQ(QUIC_INTERNAL_ERROR, buffer_->OnStreamData(max_capacity_bytes_, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_EQ(QUIC_INTERNAL_ERROR, buffer_->OnStreamData(max_capacity_bytes_ * 1000, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_EQ(0u, buffer_->BytesBuffered()); } TEST_F(QuicStreamSequencerBufferTest, Readv100Bytes) { std::string source(1024, 'a'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t1 = clock_.ApproximateNow(); // Write something into [kBlockSizeBytes, kBlockSizeBytes + 1024). size_t written; buffer_->OnStreamData(kBlockSizeBytes, source, t1, &written, &error_details_); EXPECT_FALSE(buffer_->HasBytesToRead()); source = std::string(100, 'b'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t2 = clock_.ApproximateNow(); // Write something into [0, 100). buffer_->OnStreamData(0, source, t2, &written, &error_details_); EXPECT_TRUE(buffer_->HasBytesToRead()); EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size()); // Read into a iovec array with total capacity of 120 bytes. char dest[120]; iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}}; size_t read = buffer_->Readv(iovecs, 3); EXPECT_EQ(100u, read); EXPECT_EQ(100u, buffer_->BytesConsumed()); EXPECT_EQ(source, std::string(dest, read)); EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossBlocks) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full and extand 50 bytes to next block. size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); EXPECT_EQ(source.size(), helper_->ReadableBytes()); // Iteratively read 512 bytes from buffer_-> Overwrite dest[] each time. char dest[512]; while (helper_->ReadableBytes()) { std::fill(dest, dest + 512, 0); iovec iovecs[2]{iovec{dest, 256}, iovec{dest + 256, 256}}; buffer_->Readv(iovecs, 2); } // The last read only reads the rest 50 bytes in 2nd block. EXPECT_EQ(std::string(50, 'a'), std::string(dest, 50)); EXPECT_EQ(0, dest[50]) << "Dest[50] shouln't be filled."; EXPECT_EQ(source.size(), buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ClearAfterRead) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full with 'a'. size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; buffer_->Readv(&iov, 1); // Clear() should make buffer empty while preserving BytesConsumed() buffer_->Clear(); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataAcrossLastBlockAndFillCapacity) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full with 'a'. size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; buffer_->Readv(&iov, 1); EXPECT_EQ(source.size(), written); // Write more than half block size of bytes in the last block with 'b', which // will wrap to the beginning and reaches the full capacity. source = std::string(0.5 * kBlockSizeBytes + 512, 'b'); EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(2 * kBlockSizeBytes, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_EQ(source.size(), written); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, OnStreamDataAcrossLastBlockAndExceedCapacity) { std::string source(kBlockSizeBytes + 50, 'a'); // Write 1st block to full. size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); // Read first 512 bytes from buffer to make space at the beginning. char dest[512]{0}; const iovec iov{dest, 512}; buffer_->Readv(&iov, 1); // Try to write from [max_capacity_bytes_ - 0.5 * kBlockSizeBytes, // max_capacity_bytes_ + 512 + 1). But last bytes exceeds current capacity. source = std::string(0.5 * kBlockSizeBytes + 512 + 1, 'b'); EXPECT_EQ(QUIC_INTERNAL_ERROR, buffer_->OnStreamData(2 * kBlockSizeBytes, source, clock_.ApproximateNow(), &written, &error_details_)); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossLastBlock) { // Write to full capacity and read out 512 bytes at beginning and continue // appending 256 bytes. std::string source(max_capacity_bytes_, 'a'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t = clock_.ApproximateNow(); size_t written; buffer_->OnStreamData(0, source, t, &written, &error_details_); char dest[512]{0}; const iovec iov{dest, 512}; buffer_->Readv(&iov, 1); source = std::string(256, 'b'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t2 = clock_.ApproximateNow(); buffer_->OnStreamData(max_capacity_bytes_, source, t2, &written, &error_details_); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size()); // Read all data out. std::unique_ptr dest1{new char[max_capacity_bytes_]{0}}; const iovec iov1{dest1.get(), max_capacity_bytes_}; EXPECT_EQ(max_capacity_bytes_ - 512 + 256, buffer_->Readv(&iov1, 1)); EXPECT_EQ(max_capacity_bytes_ + 256, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size()); } TEST_F(QuicStreamSequencerBufferTest, ReadvEmpty) { char dest[512]{0}; iovec iov{dest, 512}; size_t read = buffer_->Readv(&iov, 1); EXPECT_EQ(0u, read); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsEmpty) { iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(0, iov_count); EXPECT_EQ(nullptr, iovs[iov_count].iov_base); EXPECT_EQ(0u, iovs[iov_count].iov_len); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsBlockedByGap) { // Write into [1, 1024). std::string source(1023, 'a'); size_t written; buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written, &error_details_); // Try to get readable regions, but none is there. iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(0, iov_count); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsTillEndOfBlock) { // Write first block to full with [0, 256) 'a' and the rest 'b' then read out // [0, 256) std::string source(kBlockSizeBytes, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(1, iov_count); EXPECT_EQ(std::string(kBlockSizeBytes - 256, 'a'), std::string(reinterpret_cast(iovs[0].iov_base), iovs[0].iov_len)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithinOneBlock) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(1, iov_count); EXPECT_EQ(std::string(1024 - 256, 'a'), std::string(reinterpret_cast(iovs[0].iov_base), iovs[0].iov_len)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsAcrossBlockWithLongIOV) { // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024) std::string source(2 * kBlockSizeBytes + 1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[1024]; helper_->Read(dest, 1024); iovec iovs[4]; int iov_count = buffer_->GetReadableRegions(iovs, 4); EXPECT_EQ(3, iov_count); EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len); EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len); EXPECT_EQ(1024u, iovs[2].iov_len); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithMultipleIOVsAcrossEnd) { // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024) // and then append 1024 + 512 bytes. std::string source(2.5 * kBlockSizeBytes - 1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[1024]; helper_->Read(dest, 1024); // Write across the end. source = std::string(1024 + 512, 'b'); buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source, clock_.ApproximateNow(), &written, &error_details_); // Use short iovec's. iovec iovs[2]; int iov_count = buffer_->GetReadableRegions(iovs, 2); EXPECT_EQ(2, iov_count); EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len); EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len); // Use long iovec's and wrap the end of buffer. iovec iovs1[5]; EXPECT_EQ(4, buffer_->GetReadableRegions(iovs1, 5)); EXPECT_EQ(0.5 * kBlockSizeBytes, iovs1[2].iov_len); EXPECT_EQ(512u, iovs1[3].iov_len); EXPECT_EQ(std::string(512, 'b'), std::string(reinterpret_cast(iovs1[3].iov_base), iovs1[3].iov_len)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionEmpty) { iovec iov; QuicTime t = QuicTime::Zero(); EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t)); EXPECT_EQ(nullptr, iov.iov_base); EXPECT_EQ(0u, iov.iov_len); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionBeforeGap) { // Write into [1, 1024). std::string source(1023, 'a'); size_t written; buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written, &error_details_); // GetReadableRegion should return false because range [0,1) hasn't been // filled yet. iovec iov; QuicTime t = QuicTime::Zero(); EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillEndOfBlock) { // Write into [0, kBlockSizeBytes + 1) and then read out [0, 256) std::string source(kBlockSizeBytes + 1, 'a'); size_t written; clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t = clock_.ApproximateNow(); buffer_->OnStreamData(0, source, t, &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1024) iovec iov; QuicTime t2 = QuicTime::Zero(); EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2)); EXPECT_EQ(t, t2); EXPECT_EQ( std::string(kBlockSizeBytes - 256, 'a'), std::string(reinterpret_cast(iov.iov_base), iov.iov_len)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillGap) { // Write into [0, kBlockSizeBytes - 1) and then read out [0, 256) std::string source(kBlockSizeBytes - 1, 'a'); size_t written; clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t = clock_.ApproximateNow(); buffer_->OnStreamData(0, source, t, &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Get readable region from [256, 1023) iovec iov; QuicTime t2 = QuicTime::Zero(); EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2)); EXPECT_EQ(t, t2); EXPECT_EQ( std::string(kBlockSizeBytes - 1 - 256, 'a'), std::string(reinterpret_cast(iov.iov_base), iov.iov_len)); } TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionByArrivalTime) { // Write into [0, kBlockSizeBytes - 100) and then read out [0, 256) std::string source(kBlockSizeBytes - 100, 'a'); size_t written; clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t = clock_.ApproximateNow(); buffer_->OnStreamData(0, source, t, &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Write into [kBlockSizeBytes - 100, kBlockSizeBytes - 50)] in same time std::string source2(50, 'b'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); buffer_->OnStreamData(kBlockSizeBytes - 100, source2, t, &written, &error_details_); // Write into [kBlockSizeBytes - 50, kBlockSizeBytes)] in another time std::string source3(50, 'c'); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicTime t3 = clock_.ApproximateNow(); buffer_->OnStreamData(kBlockSizeBytes - 50, source3, t3, &written, &error_details_); // Get readable region from [256, 1024 - 50) iovec iov; QuicTime t4 = QuicTime::Zero(); EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t4)); EXPECT_EQ(t, t4); EXPECT_EQ( std::string(kBlockSizeBytes - 100 - 256, 'a') + source2, std::string(reinterpret_cast(iov.iov_base), iov.iov_len)); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedInOneBlock) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[256]; helper_->Read(dest, 256); EXPECT_TRUE(buffer_->MarkConsumed(512)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); EXPECT_EQ(256u, helper_->ReadableBytes()); EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size()); buffer_->MarkConsumed(256); EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedNotEnoughBytes) { // Write into [0, 1024) and then read out [0, 256) std::string source(1024, 'a'); size_t written; QuicTime t = clock_.ApproximateNow(); buffer_->OnStreamData(0, source, t, &written, &error_details_); char dest[256]; helper_->Read(dest, 256); // Consume 1st 512 bytes EXPECT_TRUE(buffer_->MarkConsumed(512)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); EXPECT_EQ(256u, helper_->ReadableBytes()); // Try to consume one bytes more than available. Should return false. EXPECT_FALSE(buffer_->MarkConsumed(257)); EXPECT_EQ(256u + 512u, buffer_->BytesConsumed()); QuicTime t2 = QuicTime::Zero(); iovec iov; EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2)); EXPECT_EQ(t, t2); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossBlock) { // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024) std::string source(2 * kBlockSizeBytes + 1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[1024]; helper_->Read(dest, 1024); buffer_->MarkConsumed(2 * kBlockSizeBytes); EXPECT_EQ(source.size(), buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossEnd) { // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024) // and then append 1024 + 512 bytes. std::string source(2.5 * kBlockSizeBytes - 1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[1024]; helper_->Read(dest, 1024); source = std::string(1024 + 512, 'b'); buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source, clock_.ApproximateNow(), &written, &error_details_); EXPECT_EQ(1024u, buffer_->BytesConsumed()); // Consume to the end of 2nd block. buffer_->MarkConsumed(2 * kBlockSizeBytes - 1024); EXPECT_EQ(2 * kBlockSizeBytes, buffer_->BytesConsumed()); // Consume across the physical end of buffer buffer_->MarkConsumed(0.5 * kBlockSizeBytes + 500); EXPECT_EQ(max_capacity_bytes_ + 500, buffer_->BytesConsumed()); EXPECT_EQ(12u, helper_->ReadableBytes()); // Consume to the logical end of buffer buffer_->MarkConsumed(12); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } TEST_F(QuicStreamSequencerBufferTest, FlushBufferedFrames) { // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024). std::string source(max_capacity_bytes_ - 1024, 'a'); size_t written; buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written, &error_details_); char dest[1024]; helper_->Read(dest, 1024); EXPECT_EQ(1024u, buffer_->BytesConsumed()); // Write [1024, 512) to the physical beginning. source = std::string(512, 'b'); buffer_->OnStreamData(max_capacity_bytes_, source, clock_.ApproximateNow(), &written, &error_details_); EXPECT_EQ(512u, written); EXPECT_EQ(max_capacity_bytes_ - 1024 + 512, buffer_->FlushBufferedFrames()); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(buffer_->Empty()); EXPECT_TRUE(helper_->CheckBufferInvariants()); // Clear buffer at this point should still preserve BytesConsumed(). buffer_->Clear(); EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed()); EXPECT_TRUE(helper_->CheckBufferInvariants()); } class QuicStreamSequencerBufferRandomIOTest : public QuicStreamSequencerBufferTest { public: typedef std::pair OffsetSizePair; void SetUp() override { // Test against a larger capacity then above tests. Also make sure the last // block is partially available to use. max_capacity_bytes_ = 6.25 * kBlockSizeBytes; // Stream to be buffered should be larger than the capacity to test wrap // around. bytes_to_buffer_ = 2 * max_capacity_bytes_; Initialize(); uint32_t seed = base::RandInt(0, std::numeric_limits::max()); LOG(INFO) << "RandomWriteAndProcessInPlace test seed is " << seed; rng_.set_seed(seed); } // Create an out-of-order source stream with given size to populate // shuffled_buf_. void CreateSourceAndShuffle(size_t max_chunk_size_bytes) { max_chunk_size_bytes_ = max_chunk_size_bytes; std::unique_ptr chopped_stream( new OffsetSizePair[bytes_to_buffer_]); // Split stream into small chunks with random length. chopped_stream will be // populated with segmented stream chunks. size_t start_chopping_offset = 0; size_t iterations = 0; while (start_chopping_offset < bytes_to_buffer_) { size_t max_chunk = min(max_chunk_size_bytes_, bytes_to_buffer_ - start_chopping_offset); size_t chunk_size = rng_.RandUint64() % max_chunk + 1; chopped_stream[iterations] = OffsetSizePair(start_chopping_offset, chunk_size); start_chopping_offset += chunk_size; ++iterations; } DCHECK(start_chopping_offset == bytes_to_buffer_); size_t chunk_num = iterations; // Randomly change the sequence of in-ordered OffsetSizePairs to make a // out-of-order array of OffsetSizePairs. for (int i = chunk_num - 1; i >= 0; --i) { size_t random_idx = rng_.RandUint64() % (i + 1); DVLOG(1) << "chunk offset " << chopped_stream[random_idx].first << " size " << chopped_stream[random_idx].second; shuffled_buf_.push_front(chopped_stream[random_idx]); chopped_stream[random_idx] = chopped_stream[i]; } } // Write the currently first chunk of data in the out-of-order stream into // QuicStreamSequencerBuffer. If current chuck cannot be written into buffer // because it goes beyond current capacity, move it to the end of // shuffled_buf_ and write it later. void WriteNextChunkToBuffer() { OffsetSizePair& chunk = shuffled_buf_.front(); QuicStreamOffset offset = chunk.first; const size_t num_to_write = chunk.second; std::unique_ptr write_buf{new char[max_chunk_size_bytes_]}; for (size_t i = 0; i < num_to_write; ++i) { write_buf[i] = (offset + i) % 256; } base::StringPiece string_piece_w(write_buf.get(), num_to_write); size_t written; auto result = buffer_->OnStreamData(offset, string_piece_w, clock_.ApproximateNow(), &written, &error_details_); if (result == QUIC_NO_ERROR) { shuffled_buf_.pop_front(); total_bytes_written_ += num_to_write; } else { // This chunk offset exceeds window size. shuffled_buf_.push_back(chunk); shuffled_buf_.pop_front(); } DVLOG(1) << " write at offset: " << offset << " len to write: " << num_to_write << " write result: " << result << " left over: " << shuffled_buf_.size(); } protected: std::list shuffled_buf_; size_t max_chunk_size_bytes_; QuicStreamOffset bytes_to_buffer_; size_t total_bytes_written_ = 0; size_t total_bytes_read_ = 0; SimpleRandom rng_; }; TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndReadv) { // Set kMaxReadSize larger than kBlockSizeBytes to test both small and large // read. const size_t kMaxReadSize = kBlockSizeBytes * 2; // kNumReads is larger than 1 to test how multiple read destinations work. const size_t kNumReads = 2; // Since write and read operation have equal possibility to be called. Bytes // to be written into and read out of should roughly the same. const size_t kMaxWriteSize = kNumReads * kMaxReadSize; size_t iterations = 0; CreateSourceAndShuffle(kMaxWriteSize); while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) && iterations <= 2 * bytes_to_buffer_) { uint8_t next_action = shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2; DVLOG(1) << "iteration: " << iterations; switch (next_action) { case 0: { // write WriteNextChunkToBuffer(); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } case 1: { // readv std::unique_ptr read_buf{ new char[kNumReads][kMaxReadSize]}; iovec dest_iov[kNumReads]; size_t num_to_read = 0; for (size_t i = 0; i < kNumReads; ++i) { dest_iov[i].iov_base = reinterpret_cast(const_cast(read_buf[i])); dest_iov[i].iov_len = rng_.RandUint64() % kMaxReadSize; num_to_read += dest_iov[i].iov_len; } size_t actually_read = buffer_->Readv(dest_iov, kNumReads); ASSERT_LE(actually_read, num_to_read); DVLOG(1) << " read from offset: " << total_bytes_read_ << " size: " << num_to_read << " actual read: " << actually_read; for (size_t i = 0; i < actually_read; ++i) { char ch = (i + total_bytes_read_) % 256; ASSERT_EQ(ch, GetCharFromIOVecs(i, dest_iov, kNumReads)) << " at iteration " << iterations; } total_bytes_read_ += actually_read; ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed()); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } } ++iterations; ASSERT_LE(total_bytes_read_, total_bytes_written_); } EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test"; EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: " << iterations; EXPECT_LE(bytes_to_buffer_, total_bytes_written_); } TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndConsumeInPlace) { // The value 4 is chosen such that the max write size is no larger than the // maximum buffer capacity. const size_t kMaxNumReads = 4; // Adjust write amount be roughly equal to that GetReadableRegions() can get. const size_t kMaxWriteSize = kMaxNumReads * kBlockSizeBytes; ASSERT_LE(kMaxWriteSize, max_capacity_bytes_); size_t iterations = 0; CreateSourceAndShuffle(kMaxWriteSize); while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) && iterations <= 2 * bytes_to_buffer_) { uint8_t next_action = shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2; DVLOG(1) << "iteration: " << iterations; switch (next_action) { case 0: { // write WriteNextChunkToBuffer(); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } case 1: { // GetReadableRegions and then MarkConsumed size_t num_read = rng_.RandUint64() % kMaxNumReads + 1; iovec dest_iov[kMaxNumReads]; ASSERT_TRUE(helper_->CheckBufferInvariants()); size_t actually_num_read = buffer_->GetReadableRegions(dest_iov, num_read); ASSERT_LE(actually_num_read, num_read); size_t avail_bytes = 0; for (size_t i = 0; i < actually_num_read; ++i) { avail_bytes += dest_iov[i].iov_len; } // process random number of bytes (check the value of each byte). size_t bytes_to_process = rng_.RandUint64() % (avail_bytes + 1); size_t bytes_processed = 0; for (size_t i = 0; i < actually_num_read; ++i) { size_t bytes_in_block = min( bytes_to_process - bytes_processed, dest_iov[i].iov_len); if (bytes_in_block == 0) { break; } for (size_t j = 0; j < bytes_in_block; ++j) { ASSERT_LE(bytes_processed, bytes_to_process); char char_expected = (buffer_->BytesConsumed() + bytes_processed) % 256; ASSERT_EQ(char_expected, reinterpret_cast(dest_iov[i].iov_base)[j]) << " at iteration " << iterations; ++bytes_processed; } } buffer_->MarkConsumed(bytes_processed); DVLOG(1) << "iteration " << iterations << ": try to get " << num_read << " readable regions, actually get " << actually_num_read << " from offset: " << total_bytes_read_ << "\nprocesse bytes: " << bytes_processed; total_bytes_read_ += bytes_processed; ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed()); ASSERT_TRUE(helper_->CheckBufferInvariants()); break; } } ++iterations; ASSERT_LE(total_bytes_read_, total_bytes_written_); } EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test"; EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: " << iterations; EXPECT_LE(bytes_to_buffer_, total_bytes_written_); } } // anonymous namespace } // namespace test } // namespace net