// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // QuicTime represents one point in time, stored in microsecond resolution. // QuicTime is monotonically increasing, even across system clock adjustments. // The epoch (time 0) of QuicTime is unspecified. // // This implementation wraps the classes base::TimeTicks and base::TimeDelta. #ifndef NET_QUIC_QUIC_TIME_H_ #define NET_QUIC_QUIC_TIME_H_ #include #include "base/compiler_specific.h" #include "base/time/time.h" #include "net/base/net_export.h" #define QUICTIME_CONSTEXPR inline namespace net { static const int kNumSecondsPerMinute = 60; static const int kNumSecondsPerHour = kNumSecondsPerMinute * 60; static const uint64_t kNumMicrosPerSecond = base::Time::kMicrosecondsPerSecond; static const uint64_t kNumMicrosPerMilli = base::Time::kMicrosecondsPerMillisecond; // A QuicTime is a purely relative time. QuicTime values from different clocks // cannot be compared to each other. If you need an absolute time, see // QuicWallTime, below. class NET_EXPORT_PRIVATE QuicTime { public: // A QuicTime::Delta represents the signed difference between two points in // time, stored in microsecond resolution. class NET_EXPORT_PRIVATE Delta { public: explicit Delta(base::TimeDelta delta); // Create a object with an offset of 0. static QUICTIME_CONSTEXPR Delta Zero() { return Delta(0); } // Create a object with infinite offset time. static QUICTIME_CONSTEXPR Delta Infinite() { return Delta(kQuicInfiniteTimeUs); } // Converts a number of seconds to a time offset. static QUICTIME_CONSTEXPR Delta FromSeconds(int64_t secs) { return Delta(secs * 1000 * 1000); } // Converts a number of milliseconds to a time offset. static QUICTIME_CONSTEXPR Delta FromMilliseconds(int64_t ms) { return Delta(ms * 1000); } // Converts a number of microseconds to a time offset. static QUICTIME_CONSTEXPR Delta FromMicroseconds(int64_t us) { return Delta(us); } // Converts the time offset to a rounded number of seconds. inline int64_t ToSeconds() const { return time_offset_ / 1000 / 1000; } // Converts the time offset to a rounded number of milliseconds. inline int64_t ToMilliseconds() const { return time_offset_ / 1000; } // Converts the time offset to a rounded number of microseconds. inline int64_t ToMicroseconds() const { return time_offset_; } inline Delta Add(Delta delta) const WARN_UNUSED_RESULT { return Delta(time_offset_ + delta.time_offset_); } inline Delta Subtract(Delta delta) const WARN_UNUSED_RESULT { return Delta(time_offset_ - delta.time_offset_); } inline Delta Multiply(int i) const WARN_UNUSED_RESULT { return Delta(time_offset_ * i); } inline Delta Multiply(double d) const WARN_UNUSED_RESULT { return Delta(time_offset_ * d); } // Returns the larger delta of time1 and time2. static inline Delta Max(Delta delta1, Delta delta2) { return delta1 < delta2 ? delta2 : delta1; } // Returns the smaller delta of time1 and time2. static inline Delta Min(Delta delta1, Delta delta2) { return delta1 < delta2 ? delta1 : delta2; } inline bool IsZero() const { return time_offset_ == 0; } inline bool IsInfinite() const { return time_offset_ == kQuicInfiniteTimeUs; } private: base::TimeDelta delta_; friend inline bool operator==(QuicTime::Delta lhs, QuicTime::Delta rhs); friend inline bool operator<(QuicTime::Delta lhs, QuicTime::Delta rhs); // Highest number of microseconds that DateTimeOffset can hold. static const int64_t kQuicInfiniteTimeUs = INT64_C(0x7fffffffffffffff) / 10; explicit QUICTIME_CONSTEXPR Delta(int64_t time_offset) : time_offset_(time_offset) {} int64_t time_offset_; friend class QuicTime; friend class QuicClock; }; explicit QuicTime(base::TimeTicks ticks) : time_(ticks.ToInternalValue()) {} // Creates a new QuicTime with an internal value of 0. IsInitialized() // will return false for these times. static QUICTIME_CONSTEXPR QuicTime Zero() { return QuicTime(0); } // Creates a new QuicTime with an infinite time. static QUICTIME_CONSTEXPR QuicTime Infinite() { return QuicTime(Delta::kQuicInfiniteTimeUs); } // Returns the later time of time1 and time2. static inline QuicTime Max(QuicTime time1, QuicTime time2) { return time1 < time2 ? time2 : time1; } // Produce the internal value to be used when logging. This value // represents the number of microseconds since some epoch. It may // be the UNIX epoch on some platforms. On others, it may // be a CPU ticks based value. inline int64_t ToDebuggingValue() const { return time_; } inline bool IsInitialized() const { return 0 != time_; } inline QuicTime Add(Delta delta) const WARN_UNUSED_RESULT { return QuicTime(time_ + delta.time_offset_); } inline QuicTime Subtract(Delta delta) const WARN_UNUSED_RESULT { return QuicTime(time_ - delta.time_offset_); } inline Delta Subtract(QuicTime other) const WARN_UNUSED_RESULT { return Delta(time_ - other.time_); } private: friend inline bool operator==(QuicTime lhs, QuicTime rhs); friend inline bool operator<(QuicTime lhs, QuicTime rhs); friend class QuicClock; friend class QuicClockTest; explicit QUICTIME_CONSTEXPR QuicTime(int64_t time) : time_(time) {} int64_t time_; }; // A QuicWallTime represents an absolute time that is globally consistent. In // practice, clock-skew means that comparing values from different machines // requires some flexibility in interpretation. class NET_EXPORT_PRIVATE QuicWallTime { public: // FromUNIXSeconds constructs a QuicWallTime from a count of the seconds // since the UNIX epoch. static QUICTIME_CONSTEXPR QuicWallTime FromUNIXSeconds(uint64_t seconds) { return QuicWallTime(seconds * 1000000); } static QUICTIME_CONSTEXPR QuicWallTime FromUNIXMicroseconds(uint64_t microseconds) { return QuicWallTime(microseconds); } // Zero returns a QuicWallTime set to zero. IsZero will return true for this // value. static QUICTIME_CONSTEXPR QuicWallTime Zero() { return QuicWallTime(0); } // Returns the number of seconds since the UNIX epoch. uint64_t ToUNIXSeconds() const; // Returns the number of microseconds since the UNIX epoch. uint64_t ToUNIXMicroseconds() const; bool IsAfter(QuicWallTime other) const; bool IsBefore(QuicWallTime other) const; // IsZero returns true if this object is the result of calling |Zero|. bool IsZero() const; // AbsoluteDifference returns the absolute value of the time difference // between |this| and |other|. QuicTime::Delta AbsoluteDifference(QuicWallTime other) const; // Add returns a new QuicWallTime that represents the time of |this| plus // |delta|. QuicWallTime Add(QuicTime::Delta delta) const WARN_UNUSED_RESULT; // Subtract returns a new QuicWallTime that represents the time of |this| // minus |delta|. QuicWallTime Subtract(QuicTime::Delta delta) const WARN_UNUSED_RESULT; private: explicit QUICTIME_CONSTEXPR QuicWallTime(uint64_t microseconds) : microseconds_(microseconds) {} uint64_t microseconds_; }; // Non-member relational operators for QuicTime::Delta. inline bool operator==(QuicTime::Delta lhs, QuicTime::Delta rhs) { return lhs.time_offset_ == rhs.time_offset_; } inline bool operator!=(QuicTime::Delta lhs, QuicTime::Delta rhs) { return !(lhs == rhs); } inline bool operator<(QuicTime::Delta lhs, QuicTime::Delta rhs) { return lhs.time_offset_ < rhs.time_offset_; } inline bool operator>(QuicTime::Delta lhs, QuicTime::Delta rhs) { return rhs < lhs; } inline bool operator<=(QuicTime::Delta lhs, QuicTime::Delta rhs) { return !(rhs < lhs); } inline bool operator>=(QuicTime::Delta lhs, QuicTime::Delta rhs) { return !(lhs < rhs); } // Non-member relational operators for QuicTime. inline bool operator==(QuicTime lhs, QuicTime rhs) { return lhs.time_ == rhs.time_; } inline bool operator!=(QuicTime lhs, QuicTime rhs) { return !(lhs == rhs); } inline bool operator<(QuicTime lhs, QuicTime rhs) { return lhs.time_ < rhs.time_; } inline bool operator>(QuicTime lhs, QuicTime rhs) { return rhs < lhs; } inline bool operator<=(QuicTime lhs, QuicTime rhs) { return !(rhs < lhs); } inline bool operator>=(QuicTime lhs, QuicTime rhs) { return !(lhs < rhs); } } // namespace net #endif // NET_QUIC_QUIC_TIME_H_