// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_utils.h" #include #include #include #include #include "base/containers/adapters.h" #include "base/logging.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/stringprintf.h" #include "net/base/ip_address.h" #include "net/quic/quic_flags.h" #include "net/quic/quic_write_blocked_list.h" using base::StringPiece; using std::string; namespace net { namespace { // We know that >= GCC 4.8 and Clang have a __uint128_t intrinsic. Other // compilers don't necessarily, notably MSVC. #if defined(__x86_64__) && \ ((defined(__GNUC__) && \ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \ defined(__clang__)) #define QUIC_UTIL_HAS_UINT128 1 #endif #ifdef QUIC_UTIL_HAS_UINT128 uint128 IncrementalHashFast(uint128 uhash, const char* data, size_t len) { // This code ends up faster than the naive implementation for 2 reasons: // 1. uint128 from base/int128.h is sufficiently complicated that the compiler // cannot transform the multiplication by kPrime into a shift-multiply-add; // it has go through all of the instructions for a 128-bit multiply. // 2. Because there are so fewer instructions (around 13), the hot loop fits // nicely in the instruction queue of many Intel CPUs. // kPrime = 309485009821345068724781371 static const __uint128_t kPrime = (static_cast<__uint128_t>(16777216) << 64) + 315; __uint128_t xhash = (static_cast<__uint128_t>(Uint128High64(uhash)) << 64) + Uint128Low64(uhash); const uint8_t* octets = reinterpret_cast(data); for (size_t i = 0; i < len; ++i) { xhash = (xhash ^ octets[i]) * kPrime; } return uint128(static_cast(xhash >> 64), static_cast(xhash & UINT64_C(0xFFFFFFFFFFFFFFFF))); } #endif #ifndef QUIC_UTIL_HAS_UINT128 // Slow implementation of IncrementalHash. In practice, only used by Chromium. uint128 IncrementalHashSlow(uint128 hash, const char* data, size_t len) { // kPrime = 309485009821345068724781371 static const uint128 kPrime(16777216, 315); const uint8_t* octets = reinterpret_cast(data); for (size_t i = 0; i < len; ++i) { hash = hash ^ uint128(0, octets[i]); hash = hash * kPrime; } return hash; } #endif uint128 IncrementalHash(uint128 hash, const char* data, size_t len) { #ifdef QUIC_UTIL_HAS_UINT128 return IncrementalHashFast(hash, data, len); #else return IncrementalHashSlow(hash, data, len); #endif } bool IsInitializedIPEndPoint(const IPEndPoint& address) { return net::GetAddressFamily(address.address().bytes()) != net::ADDRESS_FAMILY_UNSPECIFIED; } } // namespace // static uint64_t QuicUtils::FNV1a_64_Hash(const char* data, int len) { static const uint64_t kOffset = UINT64_C(14695981039346656037); static const uint64_t kPrime = UINT64_C(1099511628211); const uint8_t* octets = reinterpret_cast(data); uint64_t hash = kOffset; for (int i = 0; i < len; ++i) { hash = hash ^ octets[i]; hash = hash * kPrime; } return hash; } // static uint128 QuicUtils::FNV1a_128_Hash(const char* data, int len) { return FNV1a_128_Hash_Two(data, len, nullptr, 0); } // static uint128 QuicUtils::FNV1a_128_Hash_Two(const char* data1, int len1, const char* data2, int len2) { // The two constants are defined as part of the hash algorithm. // see http://www.isthe.com/chongo/tech/comp/fnv/ // kOffset = 144066263297769815596495629667062367629 const uint128 kOffset(UINT64_C(7809847782465536322), UINT64_C(7113472399480571277)); uint128 hash = IncrementalHash(kOffset, data1, len1); if (data2 == nullptr) { return hash; } return IncrementalHash(hash, data2, len2); } // static bool QuicUtils::FindMutualTag(const QuicTagVector& our_tags_vector, const QuicTag* their_tags, size_t num_their_tags, Priority priority, QuicTag* out_result, size_t* out_index) { if (our_tags_vector.empty()) { return false; } const size_t num_our_tags = our_tags_vector.size(); const QuicTag* our_tags = &our_tags_vector[0]; size_t num_priority_tags, num_inferior_tags; const QuicTag* priority_tags; const QuicTag* inferior_tags; if (priority == LOCAL_PRIORITY) { num_priority_tags = num_our_tags; priority_tags = our_tags; num_inferior_tags = num_their_tags; inferior_tags = their_tags; } else { num_priority_tags = num_their_tags; priority_tags = their_tags; num_inferior_tags = num_our_tags; inferior_tags = our_tags; } for (size_t i = 0; i < num_priority_tags; i++) { for (size_t j = 0; j < num_inferior_tags; j++) { if (priority_tags[i] == inferior_tags[j]) { *out_result = priority_tags[i]; if (out_index) { if (priority == LOCAL_PRIORITY) { *out_index = j; } else { *out_index = i; } } return true; } } } return false; } // static void QuicUtils::SerializeUint128Short(uint128 v, uint8_t* out) { const uint64_t lo = Uint128Low64(v); const uint64_t hi = Uint128High64(v); // This assumes that the system is little-endian. memcpy(out, &lo, sizeof(lo)); memcpy(out + sizeof(lo), &hi, sizeof(hi) / 2); } #define RETURN_STRING_LITERAL(x) \ case x: \ return #x; // static const char* QuicUtils::StreamErrorToString(QuicRstStreamErrorCode error) { switch (error) { RETURN_STRING_LITERAL(QUIC_STREAM_NO_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_CONNECTION_ERROR); RETURN_STRING_LITERAL(QUIC_ERROR_PROCESSING_STREAM); RETURN_STRING_LITERAL(QUIC_MULTIPLE_TERMINATION_OFFSETS); RETURN_STRING_LITERAL(QUIC_BAD_APPLICATION_PAYLOAD); RETURN_STRING_LITERAL(QUIC_STREAM_PEER_GOING_AWAY); RETURN_STRING_LITERAL(QUIC_STREAM_CANCELLED); RETURN_STRING_LITERAL(QUIC_RST_ACKNOWLEDGEMENT); RETURN_STRING_LITERAL(QUIC_REFUSED_STREAM); RETURN_STRING_LITERAL(QUIC_STREAM_LAST_ERROR); RETURN_STRING_LITERAL(QUIC_INVALID_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_UNAUTHORIZED_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_DUPLICATE_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_PROMISE_VARY_MISMATCH); RETURN_STRING_LITERAL(QUIC_INVALID_PROMISE_METHOD); } // Return a default value so that we return this when |error| doesn't match // any of the QuicRstStreamErrorCodes. This can happen when the RstStream // frame sent by the peer (attacker) has invalid error code. return "INVALID_RST_STREAM_ERROR_CODE"; } // static const char* QuicUtils::ErrorToString(QuicErrorCode error) { switch (error) { RETURN_STRING_LITERAL(QUIC_NO_ERROR); RETURN_STRING_LITERAL(QUIC_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_DATA_AFTER_TERMINATION); RETURN_STRING_LITERAL(QUIC_INVALID_PACKET_HEADER); RETURN_STRING_LITERAL(QUIC_INVALID_FRAME_DATA); RETURN_STRING_LITERAL(QUIC_MISSING_PAYLOAD); RETURN_STRING_LITERAL(QUIC_INVALID_FEC_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_UNENCRYPTED_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_RST_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_CONNECTION_CLOSE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_GOAWAY_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_WINDOW_UPDATE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_BLOCKED_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_STOP_WAITING_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_PATH_CLOSE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_ACK_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); RETURN_STRING_LITERAL(QUIC_INVALID_PUBLIC_RST_PACKET); RETURN_STRING_LITERAL(QUIC_DECRYPTION_FAILURE); RETURN_STRING_LITERAL(QUIC_ENCRYPTION_FAILURE); RETURN_STRING_LITERAL(QUIC_PACKET_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_PEER_GOING_AWAY); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_FAILED); RETURN_STRING_LITERAL(QUIC_CRYPTO_TAGS_OUT_OF_ORDER); RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_ENTRIES); RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_REJECTS); RETURN_STRING_LITERAL(QUIC_CRYPTO_INVALID_VALUE_LENGTH) RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE); RETURN_STRING_LITERAL(QUIC_CRYPTO_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_CRYPTO_VERSION_NOT_SUPPORTED); RETURN_STRING_LITERAL(QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT); RETURN_STRING_LITERAL(QUIC_CRYPTO_NO_SUPPORT); RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_TYPE); RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_ID); RETURN_STRING_LITERAL(QUIC_INVALID_PRIORITY); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OPEN_STREAMS); RETURN_STRING_LITERAL(QUIC_PUBLIC_RESET); RETURN_STRING_LITERAL(QUIC_INVALID_VERSION); RETURN_STRING_LITERAL(QUIC_INVALID_HEADER_ID); RETURN_STRING_LITERAL(QUIC_INVALID_NEGOTIATED_VALUE); RETURN_STRING_LITERAL(QUIC_DECOMPRESSION_FAILURE); RETURN_STRING_LITERAL(QUIC_NETWORK_IDLE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_ERROR_MIGRATING_ADDRESS); RETURN_STRING_LITERAL(QUIC_ERROR_MIGRATING_PORT); RETURN_STRING_LITERAL(QUIC_PACKET_WRITE_ERROR); RETURN_STRING_LITERAL(QUIC_PACKET_READ_ERROR); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_FRAME); RETURN_STRING_LITERAL(QUIC_INVALID_HEADERS_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_INVALID_WINDOW); RETURN_STRING_LITERAL(QUIC_CONNECTION_IP_POOLED); RETURN_STRING_LITERAL(QUIC_PROOF_INVALID); RETURN_STRING_LITERAL(QUIC_CRYPTO_DUPLICATE_TAG); RETURN_STRING_LITERAL(QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT); RETURN_STRING_LITERAL(QUIC_CRYPTO_SERVER_CONFIG_EXPIRED); RETURN_STRING_LITERAL(QUIC_INVALID_CHANNEL_ID_SIGNATURE); RETURN_STRING_LITERAL(QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_WHILE_VALIDATING_CLIENT_HELLO); RETURN_STRING_LITERAL(QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE); RETURN_STRING_LITERAL(QUIC_VERSION_NEGOTIATION_MISMATCH); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS); RETURN_STRING_LITERAL(QUIC_CONNECTION_CANCELLED); RETURN_STRING_LITERAL(QUIC_BAD_PACKET_LOSS_RATE); RETURN_STRING_LITERAL(QUIC_PUBLIC_RESETS_POST_HANDSHAKE); RETURN_STRING_LITERAL(QUIC_TIMEOUTS_WITH_OPEN_STREAMS); RETURN_STRING_LITERAL(QUIC_FAILED_TO_SERIALIZE_PACKET); RETURN_STRING_LITERAL(QUIC_TOO_MANY_AVAILABLE_STREAMS); RETURN_STRING_LITERAL(QUIC_UNENCRYPTED_FEC_DATA); RETURN_STRING_LITERAL(QUIC_BAD_MULTIPATH_FLAG); RETURN_STRING_LITERAL(QUIC_IP_ADDRESS_CHANGED); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NO_MIGRATABLE_STREAMS); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_TOO_MANY_CHANGES); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NO_NEW_NETWORK); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NON_MIGRATABLE_STREAM); RETURN_STRING_LITERAL(QUIC_TOO_MANY_RTOS); RETURN_STRING_LITERAL(QUIC_LAST_ERROR); // Intentionally have no default case, so we'll break the build // if we add errors and don't put them here. } // Return a default value so that we return this when |error| doesn't match // any of the QuicErrorCodes. This can happen when the ConnectionClose // frame sent by the peer (attacker) has invalid error code. return "INVALID_ERROR_CODE"; } // static const char* QuicUtils::EncryptionLevelToString(EncryptionLevel level) { switch (level) { RETURN_STRING_LITERAL(ENCRYPTION_NONE); RETURN_STRING_LITERAL(ENCRYPTION_INITIAL); RETURN_STRING_LITERAL(ENCRYPTION_FORWARD_SECURE); RETURN_STRING_LITERAL(NUM_ENCRYPTION_LEVELS); } return "INVALID_ENCRYPTION_LEVEL"; } // static const char* QuicUtils::TransmissionTypeToString(TransmissionType type) { switch (type) { RETURN_STRING_LITERAL(NOT_RETRANSMISSION); RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMISSION); RETURN_STRING_LITERAL(LOSS_RETRANSMISSION); RETURN_STRING_LITERAL(ALL_UNACKED_RETRANSMISSION); RETURN_STRING_LITERAL(ALL_INITIAL_RETRANSMISSION); RETURN_STRING_LITERAL(RTO_RETRANSMISSION); RETURN_STRING_LITERAL(TLP_RETRANSMISSION); } return "INVALID_TRANSMISSION_TYPE"; } // static string QuicUtils::TagToString(QuicTag tag) { char chars[sizeof tag]; bool ascii = true; const QuicTag orig_tag = tag; for (size_t i = 0; i < arraysize(chars); i++) { chars[i] = static_cast(tag); if ((chars[i] == 0 || chars[i] == '\xff') && i == arraysize(chars) - 1) { chars[i] = ' '; } if (!isprint(static_cast(chars[i]))) { ascii = false; break; } tag >>= 8; } if (ascii) { return string(chars, sizeof(chars)); } return base::UintToString(orig_tag); } // static QuicTagVector QuicUtils::ParseQuicConnectionOptions( const std::string& connection_options) { QuicTagVector options; // Tokens are expected to be no more than 4 characters long, but we // handle overflow gracefully. for (const base::StringPiece& token : base::SplitStringPiece(connection_options, ",", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL)) { uint32_t option = 0; for (char token_char : base::Reversed(token)) { option <<= 8; option |= static_cast(token_char); } options.push_back(option); } return options; } // static string QuicUtils::StringToHexASCIIDump(StringPiece in_buffer) { int offset = 0; const int kBytesPerLine = 16; // Max bytes dumped per line const char* buf = in_buffer.data(); int bytes_remaining = in_buffer.size(); string s; // our output const char* p = buf; while (bytes_remaining > 0) { const int line_bytes = std::min(bytes_remaining, kBytesPerLine); base::StringAppendF(&s, "0x%04x: ", offset); // Do the line header for (int i = 0; i < kBytesPerLine; ++i) { if (i < line_bytes) { base::StringAppendF(&s, "%02x", static_cast(p[i])); } else { s += " "; // two-space filler instead of two-space hex digits } if (i % 2) s += ' '; } s += ' '; for (int i = 0; i < line_bytes; ++i) { // Do the ASCII dump s += (p[i] > 32 && p[i] < 127) ? p[i] : '.'; } bytes_remaining -= line_bytes; offset += line_bytes; p += line_bytes; s += '\n'; } return s; } // static void QuicUtils::DeleteFrames(QuicFrames* frames) { for (QuicFrame& frame : *frames) { switch (frame.type) { // Frames smaller than a pointer are inlined, so don't need to be deleted. case PADDING_FRAME: case MTU_DISCOVERY_FRAME: case PING_FRAME: break; case STREAM_FRAME: delete frame.stream_frame; break; case ACK_FRAME: delete frame.ack_frame; break; case STOP_WAITING_FRAME: delete frame.stop_waiting_frame; break; case RST_STREAM_FRAME: delete frame.rst_stream_frame; break; case CONNECTION_CLOSE_FRAME: delete frame.connection_close_frame; break; case GOAWAY_FRAME: delete frame.goaway_frame; break; case BLOCKED_FRAME: delete frame.blocked_frame; break; case WINDOW_UPDATE_FRAME: delete frame.window_update_frame; break; case PATH_CLOSE_FRAME: delete frame.path_close_frame; break; case NUM_FRAME_TYPES: DCHECK(false) << "Cannot delete type: " << frame.type; } } frames->clear(); } // static void QuicUtils::RemoveFramesForStream(QuicFrames* frames, QuicStreamId stream_id) { QuicFrames::iterator it = frames->begin(); while (it != frames->end()) { if (it->type != STREAM_FRAME || it->stream_frame->stream_id != stream_id) { ++it; continue; } delete it->stream_frame; it = frames->erase(it); } } // static void QuicUtils::ClearSerializedPacket(SerializedPacket* serialized_packet) { if (!serialized_packet->retransmittable_frames.empty()) { DeleteFrames(&serialized_packet->retransmittable_frames); } serialized_packet->encrypted_buffer = nullptr; serialized_packet->encrypted_length = 0; } // static uint64_t QuicUtils::PackPathIdAndPacketNumber(QuicPathId path_id, QuicPacketNumber packet_number) { // Setting the nonce below relies on QuicPathId and QuicPacketNumber being // specific sizes. static_assert(sizeof(path_id) == 1, "Size of QuicPathId changed."); static_assert(sizeof(packet_number) == 8, "Size of QuicPacketNumber changed."); // Use path_id and lower 7 bytes of packet_number as lower 8 bytes of nonce. uint64_t path_id_packet_number = (static_cast(path_id) << 56) | packet_number; DCHECK(path_id != kDefaultPathId || path_id_packet_number == packet_number); return path_id_packet_number; } // static char* QuicUtils::CopyBuffer(const SerializedPacket& packet) { char* dst_buffer = new char[packet.encrypted_length]; memcpy(dst_buffer, packet.encrypted_buffer, packet.encrypted_length); return dst_buffer; } // static PeerAddressChangeType QuicUtils::DetermineAddressChangeType( const IPEndPoint& old_address, const IPEndPoint& new_address) { if (!IsInitializedIPEndPoint(old_address) || !IsInitializedIPEndPoint(new_address) || old_address == new_address) { return NO_CHANGE; } if (old_address.address() == new_address.address()) { return PORT_CHANGE; } bool old_ip_is_ipv4 = old_address.address().IsIPv4(); bool migrating_ip_is_ipv4 = new_address.address().IsIPv4(); if (old_ip_is_ipv4 && !migrating_ip_is_ipv4) { return IPV4_TO_IPV6_CHANGE; } if (!old_ip_is_ipv4) { return migrating_ip_is_ipv4 ? IPV6_TO_IPV4_CHANGE : IPV6_TO_IPV6_CHANGE; } if (IPAddressMatchesPrefix(old_address.address(), new_address.address(), 24)) { // Subnet part does not change (here, we use /24), which is considered to be // caused by NATs. return IPV4_SUBNET_CHANGE; } return UNSPECIFIED_CHANGE; } } // namespace net