// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/client_socket_pool_base.h" #include "base/compiler_specific.h" #include "base/message_loop.h" #include "base/stl_util-inl.h" #include "base/time.h" #include "net/base/net_errors.h" #include "net/socket/client_socket_handle.h" using base::TimeDelta; namespace { // The timeout value, in seconds, used to clean up idle sockets that can't be // reused. // // Note: It's important to close idle sockets that have received data as soon // as possible because the received data may cause BSOD on Windows XP under // some conditions. See http://crbug.com/4606. const int kCleanupInterval = 10; // DO NOT INCREASE THIS TIMEOUT. // The maximum duration, in seconds, to keep idle persistent sockets alive. const int kIdleTimeout = 300; // 5 minutes. } // namespace namespace net { bool ClientSocketPoolBase::g_late_binding = false; ConnectJob::ConnectJob(const std::string& group_name, const ClientSocketHandle* key_handle, base::TimeDelta timeout_duration, Delegate* delegate) : group_name_(group_name), key_handle_(key_handle), timeout_duration_(timeout_duration), delegate_(delegate), load_state_(LOAD_STATE_IDLE) { DCHECK(!group_name.empty()); DCHECK(key_handle); DCHECK(delegate); } ConnectJob::~ConnectJob() {} int ConnectJob::Connect() { if (timeout_duration_ != base::TimeDelta()) timer_.Start(timeout_duration_, this, &ConnectJob::OnTimeout); return ConnectInternal(); } void ConnectJob::OnTimeout() { // The delegate will delete |this|. Delegate *delegate = delegate_; delegate_ = NULL; delegate->OnConnectJobComplete(ERR_TIMED_OUT, this); } ClientSocketPoolBase::ClientSocketPoolBase( int max_sockets, int max_sockets_per_group, ConnectJobFactory* connect_job_factory) : idle_socket_count_(0), connecting_socket_count_(0), handed_out_socket_count_(0), max_sockets_(max_sockets), max_sockets_per_group_(max_sockets_per_group), may_have_stalled_group_(false), connect_job_factory_(connect_job_factory) { DCHECK_LE(0, max_sockets_per_group); DCHECK_LE(max_sockets_per_group, max_sockets); } ClientSocketPoolBase::~ClientSocketPoolBase() { if (g_late_binding) CancelAllConnectJobs(); // Clean up any idle sockets. Assert that we have no remaining active // sockets or pending requests. They should have all been cleaned up prior // to the manager being destroyed. CloseIdleSockets(); DCHECK(group_map_.empty()); DCHECK(connect_job_map_.empty()); } // InsertRequestIntoQueue inserts the request into the queue based on // priority. Highest priorities are closest to the front. Older requests are // prioritized over requests of equal priority. // // static void ClientSocketPoolBase::InsertRequestIntoQueue( const Request& r, RequestQueue* pending_requests) { RequestQueue::iterator it = pending_requests->begin(); while (it != pending_requests->end() && r.priority <= it->priority) ++it; pending_requests->insert(it, r); } int ClientSocketPoolBase::RequestSocket( const std::string& group_name, const HostResolver::RequestInfo& resolve_info, int priority, ClientSocketHandle* handle, CompletionCallback* callback) { DCHECK(!resolve_info.hostname().empty()); DCHECK_GE(priority, 0); DCHECK(callback); Group& group = group_map_[group_name]; // Can we make another active socket now? if (ReachedMaxSocketsLimit() || !group.HasAvailableSocketSlot(max_sockets_per_group_)) { if (ReachedMaxSocketsLimit()) { // We could check if we really have a stalled group here, but it requires // a scan of all groups, so just flip a flag here, and do the check later. may_have_stalled_group_ = true; } CHECK(callback); Request r(handle, callback, priority, resolve_info); InsertRequestIntoQueue(r, &group.pending_requests); return ERR_IO_PENDING; } while (!group.idle_sockets.empty()) { IdleSocket idle_socket = group.idle_sockets.back(); group.idle_sockets.pop_back(); DecrementIdleCount(); if (idle_socket.socket->IsConnectedAndIdle()) { // We found one we can reuse! HandOutSocket(idle_socket.socket, idle_socket.used, handle, &group); return OK; } delete idle_socket.socket; } // We couldn't find a socket to reuse, so allocate and connect a new one. CHECK(callback); Request r(handle, callback, priority, resolve_info); scoped_ptr connect_job( connect_job_factory_->NewConnectJob(group_name, r, this)); int rv = connect_job->Connect(); if (rv == OK) { HandOutSocket(connect_job->ReleaseSocket(), false /* not reused */, handle, &group); } else if (rv == ERR_IO_PENDING) { connecting_socket_count_++; ConnectJob* job = connect_job.release(); if (g_late_binding) { CHECK(!ContainsKey(connect_job_map_, handle)); InsertRequestIntoQueue(r, &group.pending_requests); } else { group.connecting_requests[handle] = r; CHECK(!ContainsKey(connect_job_map_, handle)); connect_job_map_[handle] = job; } group.jobs.insert(job); } else if (group.IsEmpty()) { group_map_.erase(group_name); } return rv; } void ClientSocketPoolBase::CancelRequest(const std::string& group_name, const ClientSocketHandle* handle) { CHECK(ContainsKey(group_map_, group_name)); Group& group = group_map_[group_name]; // Search pending_requests for matching handle. RequestQueue::iterator it = group.pending_requests.begin(); for (; it != group.pending_requests.end(); ++it) { if (it->handle == handle) { group.pending_requests.erase(it); if (g_late_binding && group.jobs.size() > group.pending_requests.size() + 1) { // TODO(willchan): Cancel the job in the earliest LoadState. RemoveConnectJob(handle, *group.jobs.begin(), &group); OnAvailableSocketSlot(group_name, &group); } return; } } if (!g_late_binding) { // It's invalid to cancel a non-existent request. CHECK(ContainsKey(group.connecting_requests, handle)); RequestMap::iterator map_it = group.connecting_requests.find(handle); if (map_it != group.connecting_requests.end()) { RemoveConnectJob(handle, NULL, &group); OnAvailableSocketSlot(group_name, &group); } } } void ClientSocketPoolBase::ReleaseSocket(const std::string& group_name, ClientSocket* socket) { // Run this asynchronously to allow the caller to finish before we let // another to begin doing work. This also avoids nasty recursion issues. // NOTE: We cannot refer to the handle argument after this method returns. MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( this, &ClientSocketPoolBase::DoReleaseSocket, group_name, socket)); } void ClientSocketPoolBase::CloseIdleSockets() { CleanupIdleSockets(true); } int ClientSocketPoolBase::IdleSocketCountInGroup( const std::string& group_name) const { GroupMap::const_iterator i = group_map_.find(group_name); CHECK(i != group_map_.end()); return i->second.idle_sockets.size(); } LoadState ClientSocketPoolBase::GetLoadState( const std::string& group_name, const ClientSocketHandle* handle) const { if (!ContainsKey(group_map_, group_name)) { NOTREACHED() << "ClientSocketPool does not contain group: " << group_name << " for handle: " << handle; return LOAD_STATE_IDLE; } // Can't use operator[] since it is non-const. const Group& group = group_map_.find(group_name)->second; // Search connecting_requests for matching handle. RequestMap::const_iterator map_it = group.connecting_requests.find(handle); if (map_it != group.connecting_requests.end()) { ConnectJobMap::const_iterator job_it = connect_job_map_.find(handle); if (job_it == connect_job_map_.end()) { NOTREACHED(); return LOAD_STATE_IDLE; } return job_it->second->load_state(); } // Search pending_requests for matching handle. RequestQueue::const_iterator it = group.pending_requests.begin(); for (size_t i = 0; it != group.pending_requests.end(); ++it, ++i) { if (it->handle == handle) { if (g_late_binding && i < group.jobs.size()) { LoadState max_state = LOAD_STATE_IDLE; for (ConnectJobSet::const_iterator job_it = group.jobs.begin(); job_it != group.jobs.end(); ++job_it) { max_state = std::max(max_state, (*job_it)->load_state()); } return max_state; } else { // TODO(wtc): Add a state for being on the wait list. // See http://www.crbug.com/5077. return LOAD_STATE_IDLE; } } } NOTREACHED(); return LOAD_STATE_IDLE; } bool ClientSocketPoolBase::IdleSocket::ShouldCleanup( base::TimeTicks now) const { bool timed_out = (now - start_time) >= base::TimeDelta::FromSeconds(kIdleTimeout); return timed_out || !(used ? socket->IsConnectedAndIdle() : socket->IsConnected()); } void ClientSocketPoolBase::CleanupIdleSockets(bool force) { if (idle_socket_count_ == 0) return; // Current time value. Retrieving it once at the function start rather than // inside the inner loop, since it shouldn't change by any meaningful amount. base::TimeTicks now = base::TimeTicks::Now(); GroupMap::iterator i = group_map_.begin(); while (i != group_map_.end()) { Group& group = i->second; std::deque::iterator j = group.idle_sockets.begin(); while (j != group.idle_sockets.end()) { if (force || j->ShouldCleanup(now)) { delete j->socket; j = group.idle_sockets.erase(j); DecrementIdleCount(); } else { ++j; } } // Delete group if no longer needed. if (group.IsEmpty()) { group_map_.erase(i++); } else { ++i; } } } void ClientSocketPoolBase::IncrementIdleCount() { if (++idle_socket_count_ == 1) timer_.Start(TimeDelta::FromSeconds(kCleanupInterval), this, &ClientSocketPoolBase::OnCleanupTimerFired); } void ClientSocketPoolBase::DecrementIdleCount() { if (--idle_socket_count_ == 0) timer_.Stop(); } void ClientSocketPoolBase::DoReleaseSocket(const std::string& group_name, ClientSocket* socket) { GroupMap::iterator i = group_map_.find(group_name); CHECK(i != group_map_.end()); Group& group = i->second; CHECK(handed_out_socket_count_ > 0); handed_out_socket_count_--; CHECK(group.active_socket_count > 0); group.active_socket_count--; const bool can_reuse = socket->IsConnectedAndIdle(); if (can_reuse) { AddIdleSocket(socket, true /* used socket */, &group); } else { delete socket; } OnAvailableSocketSlot(group_name, &group); } // Search for the highest priority pending request, amongst the groups that // are not at the |max_sockets_per_group_| limit. Note: for requests with // the same priority, the winner is based on group hash ordering (and not // insertion order). int ClientSocketPoolBase::FindTopStalledGroup(Group** group, std::string* group_name) { Group* top_group = NULL; const std::string* top_group_name = NULL; int stalled_group_count = 0; for (GroupMap::iterator i = group_map_.begin(); i != group_map_.end(); ++i) { Group& group = i->second; const RequestQueue& queue = group.pending_requests; if (queue.empty()) continue; bool has_slot = group.HasAvailableSocketSlot(max_sockets_per_group_); if (has_slot) stalled_group_count++; bool has_higher_priority = !top_group || group.TopPendingPriority() > top_group->TopPendingPriority(); if (has_slot && has_higher_priority) { top_group = &group; top_group_name = &i->first; } } if (top_group) { *group = top_group; *group_name = *top_group_name; } return stalled_group_count; } void ClientSocketPoolBase::OnConnectJobComplete(int result, ConnectJob* job) { DCHECK_NE(ERR_IO_PENDING, result); const std::string group_name = job->group_name(); GroupMap::iterator group_it = group_map_.find(group_name); CHECK(group_it != group_map_.end()); Group& group = group_it->second; const ClientSocketHandle* const key_handle = job->key_handle(); scoped_ptr socket(job->ReleaseSocket()); if (g_late_binding) { RemoveConnectJob(key_handle, job, &group); if (result == OK) { DCHECK(socket.get()); if (!group.pending_requests.empty()) { Request r = group.pending_requests.front(); group.pending_requests.pop_front(); HandOutSocket( socket.release(), false /* unused socket */, r.handle, &group); r.callback->Run(result); } else { AddIdleSocket(socket.release(), false /* unused socket */, &group); OnAvailableSocketSlot(group_name, &group); } } else { DCHECK(!socket.get()); if (!group.pending_requests.empty()) { Request r = group.pending_requests.front(); group.pending_requests.pop_front(); r.callback->Run(result); } MaybeOnAvailableSocketSlot(group_name); } return; } RequestMap* request_map = &group.connecting_requests; RequestMap::iterator it = request_map->find(key_handle); CHECK(it != request_map->end()); ClientSocketHandle* const handle = it->second.handle; CompletionCallback* const callback = it->second.callback; RemoveConnectJob(key_handle, job, &group); if (result != OK) { DCHECK(!socket.get()); callback->Run(result); // |group| is not necessarily valid after this. // |group| may be invalid after the callback, we need to search // |group_map_| again. MaybeOnAvailableSocketSlot(group_name); } else { DCHECK(socket.get()); HandOutSocket(socket.release(), false /* not reused */, handle, &group); callback->Run(result); } } void ClientSocketPoolBase::EnableLateBindingOfSockets(bool enabled) { g_late_binding = enabled; } void ClientSocketPoolBase::RemoveConnectJob( const ClientSocketHandle* handle, const ConnectJob *job, Group* group) { CHECK(connecting_socket_count_ > 0); connecting_socket_count_--; if (g_late_binding) { DCHECK(job); delete job; } else { ConnectJobMap::iterator it = connect_job_map_.find(handle); CHECK(it != connect_job_map_.end()); job = it->second; delete job; connect_job_map_.erase(it); group->connecting_requests.erase(handle); } if (group) { DCHECK(ContainsKey(group->jobs, job)); group->jobs.erase(job); } } void ClientSocketPoolBase::MaybeOnAvailableSocketSlot( const std::string& group_name) { GroupMap::iterator it = group_map_.find(group_name); if (it != group_map_.end()) { Group& group = it->second; if (group.HasAvailableSocketSlot(max_sockets_per_group_)) OnAvailableSocketSlot(group_name, &group); } } void ClientSocketPoolBase::OnAvailableSocketSlot(const std::string& group_name, Group* group) { if (may_have_stalled_group_) { std::string top_group_name; Group* top_group; int stalled_group_count = FindTopStalledGroup(&top_group, &top_group_name); if (stalled_group_count <= 1) may_have_stalled_group_ = false; if (stalled_group_count >= 1) ProcessPendingRequest(top_group_name, top_group); } else if (!group->pending_requests.empty()) { ProcessPendingRequest(group_name, group); // |group| may no longer be valid after this point. Be careful not to // access it again. } else if (group->IsEmpty()) { // Delete |group| if no longer needed. |group| will no longer be valid. group_map_.erase(group_name); } } void ClientSocketPoolBase::ProcessPendingRequest(const std::string& group_name, Group* group) { Request r = group->pending_requests.front(); group->pending_requests.pop_front(); int rv = RequestSocket( group_name, r.resolve_info, r.priority, r.handle, r.callback); if (rv != ERR_IO_PENDING) { r.callback->Run(rv); if (rv != OK) { // |group| may be invalid after the callback, we need to search // |group_map_| again. MaybeOnAvailableSocketSlot(group_name); } } } void ClientSocketPoolBase::HandOutSocket( ClientSocket* socket, bool reused, ClientSocketHandle* handle, Group* group) { DCHECK(socket); handle->set_socket(socket); handle->set_is_reused(reused); handed_out_socket_count_++; group->active_socket_count++; } void ClientSocketPoolBase::AddIdleSocket( ClientSocket* socket, bool used, Group* group) { DCHECK(socket); IdleSocket idle_socket; idle_socket.socket = socket; idle_socket.start_time = base::TimeTicks::Now(); idle_socket.used = used; group->idle_sockets.push_back(idle_socket); IncrementIdleCount(); } void ClientSocketPoolBase::CancelAllConnectJobs() { for (GroupMap::iterator i = group_map_.begin(); i != group_map_.end();) { Group& group = i->second; STLDeleteElements(&group.jobs); // Delete group if no longer needed. if (group.IsEmpty()) { group_map_.erase(i++); } else { ++i; } } } bool ClientSocketPoolBase::ReachedMaxSocketsLimit() const { // Each connecting socket will eventually connect and be handed out. int total = handed_out_socket_count_ + connecting_socket_count_; DCHECK_LE(total, max_sockets_); return total == max_sockets_; } } // namespace net