// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/client_socket_pool_base.h" #include "base/callback.h" #include "base/compiler_specific.h" #include "base/message_loop.h" #include "base/platform_thread.h" #include "base/ref_counted.h" #include "base/scoped_vector.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "net/base/net_log.h" #include "net/base/net_log_unittest.h" #include "net/base/net_errors.h" #include "net/base/request_priority.h" #include "net/base/test_completion_callback.h" #include "net/http/http_response_headers.h" #include "net/socket/client_socket.h" #include "net/socket/client_socket_factory.h" #include "net/socket/client_socket_handle.h" #include "net/socket/client_socket_pool_histograms.h" #include "net/socket/socket_test_util.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace { const int kDefaultMaxSockets = 4; const int kDefaultMaxSocketsPerGroup = 2; const net::RequestPriority kDefaultPriority = MEDIUM; class TestSocketParams : public base::RefCounted { private: friend class base::RefCounted; ~TestSocketParams() {} }; typedef ClientSocketPoolBase TestClientSocketPoolBase; class MockClientSocket : public ClientSocket { public: MockClientSocket() : connected_(false) {} // Socket methods: virtual int Read( IOBuffer* /* buf */, int /* len */, CompletionCallback* /* callback */) { return ERR_UNEXPECTED; } virtual int Write( IOBuffer* /* buf */, int /* len */, CompletionCallback* /* callback */) { return ERR_UNEXPECTED; } virtual bool SetReceiveBufferSize(int32 size) { return true; } virtual bool SetSendBufferSize(int32 size) { return true; } // ClientSocket methods: virtual int Connect(CompletionCallback* callback) { connected_ = true; return OK; } virtual void Disconnect() { connected_ = false; } virtual bool IsConnected() const { return connected_; } virtual bool IsConnectedAndIdle() const { return connected_; } virtual int GetPeerAddress(AddressList* /* address */) const { return ERR_UNEXPECTED; } virtual const BoundNetLog& NetLog() const { return net_log_; } virtual void SetSubresourceSpeculation() {} virtual void SetOmniboxSpeculation() {} private: bool connected_; BoundNetLog net_log_; DISALLOW_COPY_AND_ASSIGN(MockClientSocket); }; class TestConnectJob; class MockClientSocketFactory : public ClientSocketFactory { public: MockClientSocketFactory() : allocation_count_(0) {} virtual ClientSocket* CreateTCPClientSocket( const AddressList& addresses, NetLog* /* net_log */, const NetLog::Source& /*source*/) { allocation_count_++; return NULL; } virtual SSLClientSocket* CreateSSLClientSocket( ClientSocketHandle* transport_socket, const std::string& hostname, const SSLConfig& ssl_config) { NOTIMPLEMENTED(); return NULL; } void WaitForSignal(TestConnectJob* job) { waiting_jobs_.push_back(job); } void SignalJobs(); int allocation_count() const { return allocation_count_; } private: int allocation_count_; std::vector waiting_jobs_; }; class TestConnectJob : public ConnectJob { public: enum JobType { kMockJob, kMockFailingJob, kMockPendingJob, kMockPendingFailingJob, kMockWaitingJob, kMockAdvancingLoadStateJob, kMockRecoverableJob, kMockPendingRecoverableJob, kMockAdditionalErrorStateJob, kMockPendingAdditionalErrorStateJob, }; // The kMockPendingJob uses a slight delay before allowing the connect // to complete. static const int kPendingConnectDelay = 2; TestConnectJob(JobType job_type, const std::string& group_name, const TestClientSocketPoolBase::Request& request, base::TimeDelta timeout_duration, ConnectJob::Delegate* delegate, MockClientSocketFactory* client_socket_factory, NetLog* net_log) : ConnectJob(group_name, timeout_duration, delegate, BoundNetLog::Make(net_log, NetLog::SOURCE_CONNECT_JOB)), job_type_(job_type), client_socket_factory_(client_socket_factory), method_factory_(ALLOW_THIS_IN_INITIALIZER_LIST(this)), load_state_(LOAD_STATE_IDLE), store_additional_error_state_(false) {} void Signal() { DoConnect(waiting_success_, true /* async */, false /* recoverable */); } virtual LoadState GetLoadState() const { return load_state_; } virtual void GetAdditionalErrorState(ClientSocketHandle* handle) { if (store_additional_error_state_) { // Set all of the additional error state fields in some way. handle->set_is_ssl_error(true); HttpResponseInfo info; info.headers = new HttpResponseHeaders(""); handle->set_ssl_error_response_info(info); } } private: // ConnectJob methods: virtual int ConnectInternal() { AddressList ignored; client_socket_factory_->CreateTCPClientSocket( ignored, NULL, net::NetLog::Source()); set_socket(new MockClientSocket()); switch (job_type_) { case kMockJob: return DoConnect(true /* successful */, false /* sync */, false /* recoverable */); case kMockFailingJob: return DoConnect(false /* error */, false /* sync */, false /* recoverable */); case kMockPendingJob: set_load_state(LOAD_STATE_CONNECTING); // Depending on execution timings, posting a delayed task can result // in the task getting executed the at the earliest possible // opportunity or only after returning once from the message loop and // then a second call into the message loop. In order to make behavior // more deterministic, we change the default delay to 2ms. This should // always require us to wait for the second call into the message loop. // // N.B. The correct fix for this and similar timing problems is to // abstract time for the purpose of unittests. Unfortunately, we have // a lot of third-party components that directly call the various // time functions, so this change would be rather invasive. MessageLoop::current()->PostDelayedTask( FROM_HERE, method_factory_.NewRunnableMethod( &TestConnectJob::DoConnect, true /* successful */, true /* async */, false /* recoverable */), kPendingConnectDelay); return ERR_IO_PENDING; case kMockPendingFailingJob: set_load_state(LOAD_STATE_CONNECTING); MessageLoop::current()->PostDelayedTask( FROM_HERE, method_factory_.NewRunnableMethod( &TestConnectJob::DoConnect, false /* error */, true /* async */, false /* recoverable */), 2); return ERR_IO_PENDING; case kMockWaitingJob: client_socket_factory_->WaitForSignal(this); waiting_success_ = true; return ERR_IO_PENDING; case kMockAdvancingLoadStateJob: MessageLoop::current()->PostTask( FROM_HERE, method_factory_.NewRunnableMethod( &TestConnectJob::AdvanceLoadState, load_state_)); return ERR_IO_PENDING; case kMockRecoverableJob: return DoConnect(false /* error */, false /* sync */, true /* recoverable */); case kMockPendingRecoverableJob: set_load_state(LOAD_STATE_CONNECTING); MessageLoop::current()->PostDelayedTask( FROM_HERE, method_factory_.NewRunnableMethod( &TestConnectJob::DoConnect, false /* error */, true /* async */, true /* recoverable */), 2); return ERR_IO_PENDING; case kMockAdditionalErrorStateJob: store_additional_error_state_ = true; return DoConnect(false /* error */, false /* sync */, false /* recoverable */); case kMockPendingAdditionalErrorStateJob: set_load_state(LOAD_STATE_CONNECTING); store_additional_error_state_ = true; MessageLoop::current()->PostDelayedTask( FROM_HERE, method_factory_.NewRunnableMethod( &TestConnectJob::DoConnect, false /* error */, true /* async */, false /* recoverable */), 2); return ERR_IO_PENDING; default: NOTREACHED(); set_socket(NULL); return ERR_FAILED; } } void set_load_state(LoadState load_state) { load_state_ = load_state; } int DoConnect(bool succeed, bool was_async, bool recoverable) { int result = OK; if (succeed) { socket()->Connect(NULL); } else if (recoverable) { result = ERR_PROXY_AUTH_REQUESTED; } else { result = ERR_CONNECTION_FAILED; set_socket(NULL); } if (was_async) NotifyDelegateOfCompletion(result); return result; } // This function helps simulate the progress of load states on a ConnectJob. // Each time it is called it advances the load state and posts a task to be // called again. It stops at the last connecting load state (the one // before LOAD_STATE_SENDING_REQUEST). void AdvanceLoadState(LoadState state) { int tmp = state; tmp++; if (tmp < LOAD_STATE_SENDING_REQUEST) { state = static_cast(tmp); set_load_state(state); MessageLoop::current()->PostTask( FROM_HERE, method_factory_.NewRunnableMethod(&TestConnectJob::AdvanceLoadState, state)); } } bool waiting_success_; const JobType job_type_; MockClientSocketFactory* const client_socket_factory_; ScopedRunnableMethodFactory method_factory_; LoadState load_state_; bool store_additional_error_state_; DISALLOW_COPY_AND_ASSIGN(TestConnectJob); }; class TestConnectJobFactory : public TestClientSocketPoolBase::ConnectJobFactory { public: explicit TestConnectJobFactory(MockClientSocketFactory* client_socket_factory) : job_type_(TestConnectJob::kMockJob), client_socket_factory_(client_socket_factory) {} virtual ~TestConnectJobFactory() {} void set_job_type(TestConnectJob::JobType job_type) { job_type_ = job_type; } void set_timeout_duration(base::TimeDelta timeout_duration) { timeout_duration_ = timeout_duration; } // ConnectJobFactory methods: virtual ConnectJob* NewConnectJob( const std::string& group_name, const TestClientSocketPoolBase::Request& request, ConnectJob::Delegate* delegate) const { return new TestConnectJob(job_type_, group_name, request, timeout_duration_, delegate, client_socket_factory_, NULL); } virtual base::TimeDelta ConnectionTimeout() const { return timeout_duration_; } private: TestConnectJob::JobType job_type_; base::TimeDelta timeout_duration_; MockClientSocketFactory* const client_socket_factory_; DISALLOW_COPY_AND_ASSIGN(TestConnectJobFactory); }; class TestClientSocketPool : public ClientSocketPool { public: TestClientSocketPool( int max_sockets, int max_sockets_per_group, const scoped_refptr& histograms, base::TimeDelta unused_idle_socket_timeout, base::TimeDelta used_idle_socket_timeout, TestClientSocketPoolBase::ConnectJobFactory* connect_job_factory) : base_(max_sockets, max_sockets_per_group, histograms, unused_idle_socket_timeout, used_idle_socket_timeout, connect_job_factory) {} virtual int RequestSocket( const std::string& group_name, const void* params, net::RequestPriority priority, ClientSocketHandle* handle, CompletionCallback* callback, const BoundNetLog& net_log) { const scoped_refptr* casted_socket_params = static_cast*>(params); return base_.RequestSocket(group_name, *casted_socket_params, priority, handle, callback, net_log); } virtual void CancelRequest( const std::string& group_name, ClientSocketHandle* handle) { base_.CancelRequest(group_name, handle); } virtual void ReleaseSocket( const std::string& group_name, ClientSocket* socket, int id) { base_.ReleaseSocket(group_name, socket, id); } virtual void Flush() { base_.Flush(); } virtual void CloseIdleSockets() { base_.CloseIdleSockets(); } virtual int IdleSocketCount() const { return base_.idle_socket_count(); } virtual int IdleSocketCountInGroup(const std::string& group_name) const { return base_.IdleSocketCountInGroup(group_name); } virtual LoadState GetLoadState(const std::string& group_name, const ClientSocketHandle* handle) const { return base_.GetLoadState(group_name, handle); } virtual Value* GetInfoAsValue(const std::string& name, const std::string& type) const { return base_.GetInfoAsValue(name, type); } virtual base::TimeDelta ConnectionTimeout() const { return base_.ConnectionTimeout(); } virtual scoped_refptr histograms() const { return base_.histograms(); } const TestClientSocketPoolBase* base() const { return &base_; } int NumConnectJobsInGroup(const std::string& group_name) const { return base_.NumConnectJobsInGroup(group_name); } bool HasGroup(const std::string& group_name) const { return base_.HasGroup(group_name); } void CleanupTimedOutIdleSockets() { base_.CleanupIdleSockets(false); } void EnableConnectBackupJobs() { base_.EnableConnectBackupJobs(); } private: ~TestClientSocketPool() {} TestClientSocketPoolBase base_; DISALLOW_COPY_AND_ASSIGN(TestClientSocketPool); }; } // namespace REGISTER_SOCKET_PARAMS_FOR_POOL(TestClientSocketPool, TestSocketParams); namespace { void MockClientSocketFactory::SignalJobs() { for (std::vector::iterator it = waiting_jobs_.begin(); it != waiting_jobs_.end(); ++it) { (*it)->Signal(); } waiting_jobs_.clear(); } class TestConnectJobDelegate : public ConnectJob::Delegate { public: TestConnectJobDelegate() : have_result_(false), waiting_for_result_(false), result_(OK) {} virtual ~TestConnectJobDelegate() {} virtual void OnConnectJobComplete(int result, ConnectJob* job) { result_ = result; scoped_ptr socket(job->ReleaseSocket()); // socket.get() should be NULL iff result != OK EXPECT_EQ(socket.get() == NULL, result != OK); delete job; have_result_ = true; if (waiting_for_result_) MessageLoop::current()->Quit(); } int WaitForResult() { DCHECK(!waiting_for_result_); while (!have_result_) { waiting_for_result_ = true; MessageLoop::current()->Run(); waiting_for_result_ = false; } have_result_ = false; // auto-reset for next callback return result_; } private: bool have_result_; bool waiting_for_result_; int result_; }; class ClientSocketPoolBaseTest : public ClientSocketPoolTest { protected: ClientSocketPoolBaseTest() : params_(new TestSocketParams()), histograms_(new ClientSocketPoolHistograms("ClientSocketPoolTest")) {} void CreatePool(int max_sockets, int max_sockets_per_group) { CreatePoolWithIdleTimeouts( max_sockets, max_sockets_per_group, base::TimeDelta::FromSeconds( ClientSocketPool::unused_idle_socket_timeout()), base::TimeDelta::FromSeconds(kUsedIdleSocketTimeout)); } void CreatePoolWithIdleTimeouts( int max_sockets, int max_sockets_per_group, base::TimeDelta unused_idle_socket_timeout, base::TimeDelta used_idle_socket_timeout) { DCHECK(!pool_.get()); connect_job_factory_ = new TestConnectJobFactory(&client_socket_factory_); pool_ = new TestClientSocketPool(max_sockets, max_sockets_per_group, histograms_, unused_idle_socket_timeout, used_idle_socket_timeout, connect_job_factory_); } int StartRequest(const std::string& group_name, net::RequestPriority priority) { return StartRequestUsingPool( pool_, group_name, priority, params_); } virtual void TearDown() { // We post all of our delayed tasks with a 2ms delay. I.e. they don't // actually become pending until 2ms after they have been created. In order // to flush all tasks, we need to wait so that we know there are no // soon-to-be-pending tasks waiting. PlatformThread::Sleep(10); MessageLoop::current()->RunAllPending(); // Need to delete |pool_| before we turn late binding back off. We also need // to delete |requests_| because the pool is reference counted and requests // keep reference to it. // TODO(willchan): Remove this part when late binding becomes the default. TestClientSocketPool* pool = pool_.get(); pool_ = NULL; requests_.reset(); pool = NULL; ClientSocketPoolTest::TearDown(); } MockClientSocketFactory client_socket_factory_; TestConnectJobFactory* connect_job_factory_; scoped_refptr params_; scoped_refptr pool_; scoped_refptr histograms_; }; // Even though a timeout is specified, it doesn't time out on a synchronous // completion. TEST_F(ClientSocketPoolBaseTest, ConnectJob_NoTimeoutOnSynchronousCompletion) { TestConnectJobDelegate delegate; ClientSocketHandle ignored; TestClientSocketPoolBase::Request request( &ignored, NULL, kDefaultPriority, params_, BoundNetLog()); scoped_ptr job( new TestConnectJob(TestConnectJob::kMockJob, "a", request, base::TimeDelta::FromMicroseconds(1), &delegate, &client_socket_factory_, NULL)); EXPECT_EQ(OK, job->Connect()); } TEST_F(ClientSocketPoolBaseTest, ConnectJob_TimedOut) { TestConnectJobDelegate delegate; ClientSocketHandle ignored; CapturingNetLog log(CapturingNetLog::kUnbounded); TestClientSocketPoolBase::Request request( &ignored, NULL, kDefaultPriority, params_, BoundNetLog()); // Deleted by TestConnectJobDelegate. TestConnectJob* job = new TestConnectJob(TestConnectJob::kMockPendingJob, "a", request, base::TimeDelta::FromMicroseconds(1), &delegate, &client_socket_factory_, &log); ASSERT_EQ(ERR_IO_PENDING, job->Connect()); PlatformThread::Sleep(1); EXPECT_EQ(ERR_TIMED_OUT, delegate.WaitForResult()); EXPECT_EQ(6u, log.entries().size()); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 0, NetLog::TYPE_SOCKET_POOL_CONNECT_JOB)); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_CONNECT)); EXPECT_TRUE(LogContainsEvent( log.entries(), 2, NetLog::TYPE_CONNECT_JOB_SET_SOCKET, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEvent( log.entries(), 3, NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_TIMED_OUT, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 4, NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_CONNECT)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 5, NetLog::TYPE_SOCKET_POOL_CONNECT_JOB)); } TEST_F(ClientSocketPoolBaseTest, BasicSynchronous) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); TestCompletionCallback callback; ClientSocketHandle handle; CapturingBoundNetLog log(CapturingNetLog::kUnbounded); EXPECT_EQ(OK, handle.Init("a", params_, kDefaultPriority, &callback, pool_, log.bound())); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); handle.Reset(); EXPECT_EQ(4u, log.entries().size()); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 0, NetLog::TYPE_SOCKET_POOL)); EXPECT_TRUE(LogContainsEvent( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_BOUND_TO_CONNECT_JOB, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEvent( log.entries(), 2, NetLog::TYPE_SOCKET_POOL_BOUND_TO_SOCKET, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 3, NetLog::TYPE_SOCKET_POOL)); } TEST_F(ClientSocketPoolBaseTest, InitConnectionFailure) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockFailingJob); CapturingBoundNetLog log(CapturingNetLog::kUnbounded); TestSocketRequest req(&request_order_, &completion_count_); // Set the additional error state members to ensure that they get cleared. req.handle()->set_is_ssl_error(true); HttpResponseInfo info; info.headers = new HttpResponseHeaders(""); req.handle()->set_ssl_error_response_info(info); EXPECT_EQ(ERR_CONNECTION_FAILED, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, log.bound())); EXPECT_FALSE(req.handle()->socket()); EXPECT_FALSE(req.handle()->is_ssl_error()); EXPECT_TRUE(req.handle()->ssl_error_response_info().headers.get() == NULL); EXPECT_EQ(3u, log.entries().size()); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 0, NetLog::TYPE_SOCKET_POOL)); EXPECT_TRUE(LogContainsEvent( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_BOUND_TO_CONNECT_JOB, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 2, NetLog::TYPE_SOCKET_POOL)); } TEST_F(ClientSocketPoolBaseTest, TotalLimit) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); // TODO(eroman): Check that the NetLog contains this event. EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("c", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("d", kDefaultPriority)); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); EXPECT_EQ(ERR_IO_PENDING, StartRequest("e", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("f", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("g", kDefaultPriority)); ReleaseAllConnections(NO_KEEP_ALIVE); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); EXPECT_EQ(5, GetOrderOfRequest(5)); EXPECT_EQ(6, GetOrderOfRequest(6)); EXPECT_EQ(7, GetOrderOfRequest(7)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(8)); } TEST_F(ClientSocketPoolBaseTest, TotalLimitReachedNewGroup) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); // TODO(eroman): Check that the NetLog contains this event. // Reach all limits: max total sockets, and max sockets per group. EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); // Now create a new group and verify that we don't starve it. EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", kDefaultPriority)); ReleaseAllConnections(NO_KEEP_ALIVE); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); EXPECT_EQ(5, GetOrderOfRequest(5)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(6)); } TEST_F(ClientSocketPoolBaseTest, TotalLimitRespectsPriority) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("b", LOWEST)); EXPECT_EQ(OK, StartRequest("a", MEDIUM)); EXPECT_EQ(OK, StartRequest("b", HIGHEST)); EXPECT_EQ(OK, StartRequest("a", LOWEST)); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("b", HIGHEST)); ReleaseAllConnections(NO_KEEP_ALIVE); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); // First 4 requests don't have to wait, and finish in order. EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); // Request ("b", HIGHEST) has the highest priority, then ("a", MEDIUM), // and then ("c", LOWEST). EXPECT_EQ(7, GetOrderOfRequest(5)); EXPECT_EQ(6, GetOrderOfRequest(6)); EXPECT_EQ(5, GetOrderOfRequest(7)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(9)); } TEST_F(ClientSocketPoolBaseTest, TotalLimitRespectsGroupLimit) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("a", LOWEST)); EXPECT_EQ(OK, StartRequest("a", LOW)); EXPECT_EQ(OK, StartRequest("b", HIGHEST)); EXPECT_EQ(OK, StartRequest("b", MEDIUM)); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("b", HIGHEST)); ReleaseAllConnections(NO_KEEP_ALIVE); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSockets, completion_count_); // First 4 requests don't have to wait, and finish in order. EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); // Request ("b", 7) has the highest priority, but we can't make new socket for // group "b", because it has reached the per-group limit. Then we make // socket for ("c", 6), because it has higher priority than ("a", 4), // and we still can't make a socket for group "b". EXPECT_EQ(5, GetOrderOfRequest(5)); EXPECT_EQ(6, GetOrderOfRequest(6)); EXPECT_EQ(7, GetOrderOfRequest(7)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(8)); } // Make sure that we count connecting sockets against the total limit. TEST_F(ClientSocketPoolBaseTest, TotalLimitCountsConnectingSockets) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("c", kDefaultPriority)); // Create one asynchronous request. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); EXPECT_EQ(ERR_IO_PENDING, StartRequest("d", kDefaultPriority)); // We post all of our delayed tasks with a 2ms delay. I.e. they don't // actually become pending until 2ms after they have been created. In order // to flush all tasks, we need to wait so that we know there are no // soon-to-be-pending tasks waiting. PlatformThread::Sleep(10); MessageLoop::current()->RunAllPending(); // The next synchronous request should wait for its turn. connect_job_factory_->set_job_type(TestConnectJob::kMockJob); EXPECT_EQ(ERR_IO_PENDING, StartRequest("e", kDefaultPriority)); ReleaseAllConnections(NO_KEEP_ALIVE); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); EXPECT_EQ(5, GetOrderOfRequest(5)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(6)); } TEST_F(ClientSocketPoolBaseTest, CorrectlyCountStalledGroups) { CreatePool(kDefaultMaxSockets, kDefaultMaxSockets); connect_job_factory_->set_job_type(TestConnectJob::kMockJob); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_EQ(ERR_IO_PENDING, StartRequest("b", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", kDefaultPriority)); EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); EXPECT_EQ(kDefaultMaxSockets + 1, client_socket_factory_.allocation_count()); EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); EXPECT_EQ(kDefaultMaxSockets + 2, client_socket_factory_.allocation_count()); EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); EXPECT_EQ(kDefaultMaxSockets + 2, client_socket_factory_.allocation_count()); } TEST_F(ClientSocketPoolBaseTest, StallAndThenCancelAndTriggerAvailableSocket) { CreatePool(kDefaultMaxSockets, kDefaultMaxSockets); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); ClientSocketHandle handles[4]; for (size_t i = 0; i < arraysize(handles); ++i) { TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handles[i].Init("b", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); } // One will be stalled, cancel all the handles now. // This should hit the OnAvailableSocketSlot() code where we previously had // stalled groups, but no longer have any. for (size_t i = 0; i < arraysize(handles); ++i) handles[i].Reset(); } TEST_F(ClientSocketPoolBaseTest, CancelStalledSocketAtSocketLimit) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockJob); { ClientSocketHandle handles[kDefaultMaxSockets]; TestCompletionCallback callbacks[kDefaultMaxSockets]; for (int i = 0; i < kDefaultMaxSockets; ++i) { EXPECT_EQ(OK, handles[i].Init(base::IntToString(i), params_, kDefaultPriority, &callbacks[i], pool_, BoundNetLog())); } // Force a stalled group. ClientSocketHandle stalled_handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, stalled_handle.Init("foo", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Cancel the stalled request. stalled_handle.Reset(); EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_EQ(0, pool_->IdleSocketCount()); // Dropping out of scope will close all handles and return them to idle. } EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_EQ(kDefaultMaxSockets, pool_->IdleSocketCount()); } TEST_F(ClientSocketPoolBaseTest, CancelPendingSocketAtSocketLimit) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); { ClientSocketHandle handles[kDefaultMaxSockets]; for (int i = 0; i < kDefaultMaxSockets; ++i) { TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handles[i].Init(base::IntToString(i), params_, kDefaultPriority, &callback, pool_, BoundNetLog())); } // Force a stalled group. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle stalled_handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, stalled_handle.Init("foo", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Since it is stalled, it should have no connect jobs. EXPECT_EQ(0, pool_->NumConnectJobsInGroup("foo")); // Cancel the stalled request. handles[0].Reset(); // Now we should have a connect job. EXPECT_EQ(1, pool_->NumConnectJobsInGroup("foo")); // The stalled socket should connect. EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_EQ(kDefaultMaxSockets + 1, client_socket_factory_.allocation_count()); EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("foo")); // Dropping out of scope will close all handles and return them to idle. } EXPECT_EQ(1, pool_->IdleSocketCount()); } TEST_F(ClientSocketPoolBaseTest, WaitForStalledSocketAtSocketLimit) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockJob); ClientSocketHandle stalled_handle; TestCompletionCallback callback; { ClientSocketHandle handles[kDefaultMaxSockets]; for (int i = 0; i < kDefaultMaxSockets; ++i) { TestCompletionCallback callback; EXPECT_EQ(OK, handles[i].Init(StringPrintf("Take 2: %d", i), params_, kDefaultPriority, &callback, pool_, BoundNetLog())); } EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_EQ(0, pool_->IdleSocketCount()); // Now we will hit the socket limit. EXPECT_EQ(ERR_IO_PENDING, stalled_handle.Init("foo", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Dropping out of scope will close all handles and return them to idle. } // But if we wait for it, the released idle sockets will be closed in // preference of the waiting request. EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_EQ(kDefaultMaxSockets + 1, client_socket_factory_.allocation_count()); EXPECT_EQ(3, pool_->IdleSocketCount()); } // Regression test for http://crbug.com/40952. TEST_F(ClientSocketPoolBaseTest, CloseIdleSocketAtSocketLimitDeleteGroup) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); pool_->EnableConnectBackupJobs(); connect_job_factory_->set_job_type(TestConnectJob::kMockJob); for (int i = 0; i < kDefaultMaxSockets; ++i) { ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(OK, handle.Init(base::IntToString(i), params_, kDefaultPriority, &callback, pool_, BoundNetLog())); } // Flush all the DoReleaseSocket tasks. MessageLoop::current()->RunAllPending(); // Stall a group. Set a pending job so it'll trigger a backup job if we don't // reuse a socket. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; TestCompletionCallback callback; // "0" is special here, since it should be the first entry in the sorted map, // which is the one which we would close an idle socket for. We shouldn't // close an idle socket though, since we should reuse the idle socket. EXPECT_EQ(OK, handle.Init("0", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); EXPECT_EQ(kDefaultMaxSockets - 1, pool_->IdleSocketCount()); } TEST_F(ClientSocketPoolBaseTest, PendingRequests) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", IDLE)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); ReleaseAllConnections(KEEP_ALIVE); EXPECT_EQ(kDefaultMaxSocketsPerGroup, client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSocketsPerGroup, completion_count_); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(8, GetOrderOfRequest(3)); EXPECT_EQ(6, GetOrderOfRequest(4)); EXPECT_EQ(4, GetOrderOfRequest(5)); EXPECT_EQ(3, GetOrderOfRequest(6)); EXPECT_EQ(5, GetOrderOfRequest(7)); EXPECT_EQ(7, GetOrderOfRequest(8)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(9)); } TEST_F(ClientSocketPoolBaseTest, PendingRequests_NoKeepAlive) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); ReleaseAllConnections(NO_KEEP_ALIVE); for (size_t i = kDefaultMaxSocketsPerGroup; i < requests_.size(); ++i) EXPECT_EQ(OK, requests_[i]->WaitForResult()); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSocketsPerGroup, completion_count_); } // This test will start up a RequestSocket() and then immediately Cancel() it. // The pending connect job will be cancelled and should not call back into // ClientSocketPoolBase. TEST_F(ClientSocketPoolBaseTest, CancelRequestClearGroup) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); req.handle()->Reset(); } TEST_F(ClientSocketPoolBaseTest, ConnectCancelConnect) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; TestCompletionCallback callback; TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); handle.Reset(); TestCompletionCallback callback2; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback2, pool_, BoundNetLog())); EXPECT_EQ(OK, callback2.WaitForResult()); EXPECT_FALSE(callback.have_result()); handle.Reset(); } TEST_F(ClientSocketPoolBaseTest, CancelRequest) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); // Cancel a request. size_t index_to_cancel = kDefaultMaxSocketsPerGroup + 2; EXPECT_FALSE(requests_[index_to_cancel]->handle()->is_initialized()); requests_[index_to_cancel]->handle()->Reset(); ReleaseAllConnections(KEEP_ALIVE); EXPECT_EQ(kDefaultMaxSocketsPerGroup, client_socket_factory_.allocation_count()); EXPECT_EQ(requests_.size() - kDefaultMaxSocketsPerGroup - 1, completion_count_); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(5, GetOrderOfRequest(3)); EXPECT_EQ(3, GetOrderOfRequest(4)); EXPECT_EQ(kRequestNotFound, GetOrderOfRequest(5)); // Canceled request. EXPECT_EQ(4, GetOrderOfRequest(6)); EXPECT_EQ(6, GetOrderOfRequest(7)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(8)); } class RequestSocketCallback : public CallbackRunner< Tuple1 > { public: RequestSocketCallback(ClientSocketHandle* handle, TestClientSocketPool* pool, TestConnectJobFactory* test_connect_job_factory, TestConnectJob::JobType next_job_type) : handle_(handle), pool_(pool), within_callback_(false), test_connect_job_factory_(test_connect_job_factory), next_job_type_(next_job_type) {} virtual void RunWithParams(const Tuple1& params) { callback_.RunWithParams(params); ASSERT_EQ(OK, params.a); if (!within_callback_) { test_connect_job_factory_->set_job_type(next_job_type_); // Don't allow reuse of the socket. Disconnect it and then release it and // run through the MessageLoop once to get it completely released. handle_->socket()->Disconnect(); handle_->Reset(); { MessageLoop::ScopedNestableTaskAllower nestable( MessageLoop::current()); MessageLoop::current()->RunAllPending(); } within_callback_ = true; TestCompletionCallback next_job_callback; scoped_refptr params = new TestSocketParams(); int rv = handle_->Init("a", params, kDefaultPriority, &next_job_callback, pool_, BoundNetLog()); switch (next_job_type_) { case TestConnectJob::kMockJob: EXPECT_EQ(OK, rv); break; case TestConnectJob::kMockPendingJob: EXPECT_EQ(ERR_IO_PENDING, rv); // For pending jobs, wait for new socket to be created. This makes // sure there are no more pending operations nor any unclosed sockets // when the test finishes. // We need to give it a little bit of time to run, so that all the // operations that happen on timers (e.g. cleanup of idle // connections) can execute. { MessageLoop::ScopedNestableTaskAllower nestable( MessageLoop::current()); PlatformThread::Sleep(10); EXPECT_EQ(OK, next_job_callback.WaitForResult()); } break; default: FAIL() << "Unexpected job type: " << next_job_type_; break; } } } int WaitForResult() { return callback_.WaitForResult(); } private: ClientSocketHandle* const handle_; const scoped_refptr pool_; bool within_callback_; TestConnectJobFactory* const test_connect_job_factory_; TestConnectJob::JobType next_job_type_; TestCompletionCallback callback_; }; TEST_F(ClientSocketPoolBaseTest, RequestPendingJobTwice) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; RequestSocketCallback callback( &handle, pool_.get(), connect_job_factory_, TestConnectJob::kMockPendingJob); int rv = handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog()); ASSERT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(OK, callback.WaitForResult()); } TEST_F(ClientSocketPoolBaseTest, RequestPendingJobThenSynchronous) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; RequestSocketCallback callback( &handle, pool_.get(), connect_job_factory_, TestConnectJob::kMockJob); int rv = handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog()); ASSERT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(OK, callback.WaitForResult()); } // Make sure that pending requests get serviced after active requests get // cancelled. TEST_F(ClientSocketPoolBaseTest, CancelActiveRequestWithPendingRequests) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); // Now, kDefaultMaxSocketsPerGroup requests should be active. // Let's cancel them. for (int i = 0; i < kDefaultMaxSocketsPerGroup; ++i) { ASSERT_FALSE(requests_[i]->handle()->is_initialized()); requests_[i]->handle()->Reset(); } // Let's wait for the rest to complete now. for (size_t i = kDefaultMaxSocketsPerGroup; i < requests_.size(); ++i) { EXPECT_EQ(OK, requests_[i]->WaitForResult()); requests_[i]->handle()->Reset(); } EXPECT_EQ(requests_.size() - kDefaultMaxSocketsPerGroup, completion_count_); } // Make sure that pending requests get serviced after active requests fail. TEST_F(ClientSocketPoolBaseTest, FailingActiveRequestWithPendingRequests) { const size_t kMaxSockets = 5; CreatePool(kMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingFailingJob); const size_t kNumberOfRequests = 2 * kDefaultMaxSocketsPerGroup + 1; ASSERT_LE(kNumberOfRequests, kMaxSockets); // Otherwise the test will hang. // Queue up all the requests for (size_t i = 0; i < kNumberOfRequests; ++i) EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); for (size_t i = 0; i < kNumberOfRequests; ++i) EXPECT_EQ(ERR_CONNECTION_FAILED, requests_[i]->WaitForResult()); } TEST_F(ClientSocketPoolBaseTest, CancelActiveRequestThenRequestSocket) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); TestSocketRequest req(&request_order_, &completion_count_); int rv = req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); // Cancel the active request. req.handle()->Reset(); rv = req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(OK, req.WaitForResult()); EXPECT_FALSE(req.handle()->is_reused()); EXPECT_EQ(1U, completion_count_); EXPECT_EQ(2, client_socket_factory_.allocation_count()); } // Regression test for http://crbug.com/17985. TEST_F(ClientSocketPoolBaseTest, GroupWithPendingRequestsIsNotEmpty) { const int kMaxSockets = 3; const int kMaxSocketsPerGroup = 2; CreatePool(kMaxSockets, kMaxSocketsPerGroup); const RequestPriority kHighPriority = HIGHEST; EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); // This is going to be a pending request in an otherwise empty group. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); // Reach the maximum socket limit. EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); // Create a stalled group with high priorities. EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", kHighPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("c", kHighPriority)); // Release the first two sockets from "a". Because this is a keepalive, // the first release will unblock the pending request for "a". The // second release will unblock a request for "c", becaue it is the next // high priority socket. EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); EXPECT_TRUE(ReleaseOneConnection(KEEP_ALIVE)); // Closing idle sockets should not get us into trouble, but in the bug // we were hitting a CHECK here. EXPECT_EQ(0, pool_->IdleSocketCountInGroup("a")); pool_->CloseIdleSockets(); MessageLoop::current()->RunAllPending(); // Run the released socket wakeups } TEST_F(ClientSocketPoolBaseTest, BasicAsynchronous) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); TestSocketRequest req(&request_order_, &completion_count_); CapturingBoundNetLog log(CapturingNetLog::kUnbounded); int rv = req.handle()->Init("a", params_, LOWEST, &req, pool_, log.bound()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req.handle())); EXPECT_EQ(OK, req.WaitForResult()); EXPECT_TRUE(req.handle()->is_initialized()); EXPECT_TRUE(req.handle()->socket()); req.handle()->Reset(); EXPECT_EQ(4u, log.entries().size()); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 0, NetLog::TYPE_SOCKET_POOL)); EXPECT_TRUE(LogContainsEvent( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_BOUND_TO_CONNECT_JOB, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEvent( log.entries(), 2, NetLog::TYPE_SOCKET_POOL_BOUND_TO_SOCKET, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 3, NetLog::TYPE_SOCKET_POOL)); } TEST_F(ClientSocketPoolBaseTest, InitConnectionAsynchronousFailure) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingFailingJob); TestSocketRequest req(&request_order_, &completion_count_); CapturingBoundNetLog log(CapturingNetLog::kUnbounded); // Set the additional error state members to ensure that they get cleared. req.handle()->set_is_ssl_error(true); HttpResponseInfo info; info.headers = new HttpResponseHeaders(""); req.handle()->set_ssl_error_response_info(info); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, log.bound())); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req.handle())); EXPECT_EQ(ERR_CONNECTION_FAILED, req.WaitForResult()); EXPECT_FALSE(req.handle()->is_ssl_error()); EXPECT_TRUE(req.handle()->ssl_error_response_info().headers.get() == NULL); EXPECT_EQ(3u, log.entries().size()); EXPECT_TRUE(LogContainsBeginEvent( log.entries(), 0, NetLog::TYPE_SOCKET_POOL)); EXPECT_TRUE(LogContainsEvent( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_BOUND_TO_CONNECT_JOB, NetLog::PHASE_NONE)); EXPECT_TRUE(LogContainsEndEvent( log.entries(), 2, NetLog::TYPE_SOCKET_POOL)); } TEST_F(ClientSocketPoolBaseTest, TwoRequestsCancelOne) { // TODO(eroman): Add back the log expectations! Removed them because the // ordering is difficult, and some may fire during destructor. CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); TestSocketRequest req(&request_order_, &completion_count_); TestSocketRequest req2(&request_order_, &completion_count_); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); CapturingBoundNetLog log2(CapturingNetLog::kUnbounded); EXPECT_EQ(ERR_IO_PENDING, req2.handle()->Init("a", params_, kDefaultPriority, &req2, pool_, BoundNetLog())); req.handle()->Reset(); // At this point, request 2 is just waiting for the connect job to finish. EXPECT_EQ(OK, req2.WaitForResult()); req2.handle()->Reset(); // Now request 2 has actually finished. // TODO(eroman): Add back log expectations. } TEST_F(ClientSocketPoolBaseTest, CancelRequestLimitsJobs) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(kDefaultMaxSocketsPerGroup, pool_->NumConnectJobsInGroup("a")); requests_[2]->handle()->Reset(); requests_[3]->handle()->Reset(); EXPECT_EQ(kDefaultMaxSocketsPerGroup, pool_->NumConnectJobsInGroup("a")); requests_[1]->handle()->Reset(); EXPECT_EQ(kDefaultMaxSocketsPerGroup, pool_->NumConnectJobsInGroup("a")); requests_[0]->handle()->Reset(); EXPECT_EQ(kDefaultMaxSocketsPerGroup, pool_->NumConnectJobsInGroup("a")); } // When requests and ConnectJobs are not coupled, the request will get serviced // by whatever comes first. TEST_F(ClientSocketPoolBaseTest, ReleaseSockets) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); // Start job 1 (async OK) connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); TestSocketRequest req1(&request_order_, &completion_count_); int rv = req1.handle()->Init("a", params_, kDefaultPriority, &req1, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(OK, req1.WaitForResult()); // Job 1 finished OK. Start job 2 (also async OK). Request 3 is pending // without a job. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); TestSocketRequest req2(&request_order_, &completion_count_); rv = req2.handle()->Init("a", params_, kDefaultPriority, &req2, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); TestSocketRequest req3(&request_order_, &completion_count_); rv = req3.handle()->Init("a", params_, kDefaultPriority, &req3, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); // Both Requests 2 and 3 are pending. We release socket 1 which should // service request 2. Request 3 should still be waiting. req1.handle()->Reset(); MessageLoop::current()->RunAllPending(); // Run the released socket wakeups ASSERT_TRUE(req2.handle()->socket()); EXPECT_EQ(OK, req2.WaitForResult()); EXPECT_FALSE(req3.handle()->socket()); // Signal job 2, which should service request 3. client_socket_factory_.SignalJobs(); EXPECT_EQ(OK, req3.WaitForResult()); ASSERT_EQ(3U, request_order_.size()); EXPECT_EQ(&req1, request_order_[0]); EXPECT_EQ(&req2, request_order_[1]); EXPECT_EQ(&req3, request_order_[2]); EXPECT_EQ(0, pool_->IdleSocketCountInGroup("a")); } // The requests are not coupled to the jobs. So, the requests should finish in // their priority / insertion order. TEST_F(ClientSocketPoolBaseTest, PendingJobCompletionOrder) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); // First two jobs are async. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingFailingJob); TestSocketRequest req1(&request_order_, &completion_count_); int rv = req1.handle()->Init("a", params_, kDefaultPriority, &req1, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); TestSocketRequest req2(&request_order_, &completion_count_); rv = req2.handle()->Init("a", params_, kDefaultPriority, &req2, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); // The pending job is sync. connect_job_factory_->set_job_type(TestConnectJob::kMockJob); TestSocketRequest req3(&request_order_, &completion_count_); rv = req3.handle()->Init("a", params_, kDefaultPriority, &req3, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(ERR_CONNECTION_FAILED, req1.WaitForResult()); EXPECT_EQ(OK, req2.WaitForResult()); EXPECT_EQ(ERR_CONNECTION_FAILED, req3.WaitForResult()); ASSERT_EQ(3U, request_order_.size()); EXPECT_EQ(&req1, request_order_[0]); EXPECT_EQ(&req2, request_order_[1]); EXPECT_EQ(&req3, request_order_[2]); } TEST_F(ClientSocketPoolBaseTest, LoadState) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type( TestConnectJob::kMockAdvancingLoadStateJob); TestSocketRequest req1(&request_order_, &completion_count_); int rv = req1.handle()->Init("a", params_, kDefaultPriority, &req1, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(LOAD_STATE_IDLE, req1.handle()->GetLoadState()); MessageLoop::current()->RunAllPending(); TestSocketRequest req2(&request_order_, &completion_count_); rv = req2.handle()->Init("a", params_, kDefaultPriority, &req2, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_NE(LOAD_STATE_IDLE, req1.handle()->GetLoadState()); EXPECT_NE(LOAD_STATE_IDLE, req2.handle()->GetLoadState()); } TEST_F(ClientSocketPoolBaseTest, Recoverable) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockRecoverableJob); TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_PROXY_AUTH_REQUESTED, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); EXPECT_TRUE(req.handle()->is_initialized()); EXPECT_TRUE(req.handle()->socket()); req.handle()->Reset(); } TEST_F(ClientSocketPoolBaseTest, AsyncRecoverable) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type( TestConnectJob::kMockPendingRecoverableJob); TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req.handle())); EXPECT_EQ(ERR_PROXY_AUTH_REQUESTED, req.WaitForResult()); EXPECT_TRUE(req.handle()->is_initialized()); EXPECT_TRUE(req.handle()->socket()); req.handle()->Reset(); } TEST_F(ClientSocketPoolBaseTest, AdditionalErrorStateSynchronous) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type( TestConnectJob::kMockAdditionalErrorStateJob); TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_CONNECTION_FAILED, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); EXPECT_FALSE(req.handle()->is_initialized()); EXPECT_FALSE(req.handle()->socket()); EXPECT_TRUE(req.handle()->is_ssl_error()); EXPECT_FALSE(req.handle()->ssl_error_response_info().headers.get() == NULL); req.handle()->Reset(); } TEST_F(ClientSocketPoolBaseTest, AdditionalErrorStateAsynchronous) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type( TestConnectJob::kMockPendingAdditionalErrorStateJob); TestSocketRequest req(&request_order_, &completion_count_); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req.handle())); EXPECT_EQ(ERR_CONNECTION_FAILED, req.WaitForResult()); EXPECT_FALSE(req.handle()->is_initialized()); EXPECT_FALSE(req.handle()->socket()); EXPECT_TRUE(req.handle()->is_ssl_error()); EXPECT_FALSE(req.handle()->ssl_error_response_info().headers.get() == NULL); req.handle()->Reset(); } TEST_F(ClientSocketPoolBaseTest, CleanupTimedOutIdleSockets) { CreatePoolWithIdleTimeouts( kDefaultMaxSockets, kDefaultMaxSocketsPerGroup, base::TimeDelta(), // Time out unused sockets immediately. base::TimeDelta::FromDays(1)); // Don't time out used sockets. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); // Startup two mock pending connect jobs, which will sit in the MessageLoop. TestSocketRequest req(&request_order_, &completion_count_); int rv = req.handle()->Init("a", params_, LOWEST, &req, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req.handle())); TestSocketRequest req2(&request_order_, &completion_count_); rv = req2.handle()->Init("a", params_, LOWEST, &req2, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_EQ(LOAD_STATE_CONNECTING, pool_->GetLoadState("a", req2.handle())); // Cancel one of the requests. Wait for the other, which will get the first // job. Release the socket. Run the loop again to make sure the second // socket is sitting idle and the first one is released (since ReleaseSocket() // just posts a DoReleaseSocket() task). req.handle()->Reset(); EXPECT_EQ(OK, req2.WaitForResult()); req2.handle()->Reset(); // We post all of our delayed tasks with a 2ms delay. I.e. they don't // actually become pending until 2ms after they have been created. In order // to flush all tasks, we need to wait so that we know there are no // soon-to-be-pending tasks waiting. PlatformThread::Sleep(10); MessageLoop::current()->RunAllPending(); ASSERT_EQ(2, pool_->IdleSocketCount()); // Invoke the idle socket cleanup check. Only one socket should be left, the // used socket. Request it to make sure that it's used. pool_->CleanupTimedOutIdleSockets(); CapturingBoundNetLog log(CapturingNetLog::kUnbounded); rv = req.handle()->Init("a", params_, LOWEST, &req, pool_, log.bound()); EXPECT_EQ(OK, rv); EXPECT_TRUE(req.handle()->is_reused()); EXPECT_TRUE(LogContainsEntryWithType( log.entries(), 1, NetLog::TYPE_SOCKET_POOL_REUSED_AN_EXISTING_SOCKET)); } // Make sure that we process all pending requests even when we're stalling // because of multiple releasing disconnected sockets. TEST_F(ClientSocketPoolBaseTest, MultipleReleasingDisconnectedSockets) { CreatePoolWithIdleTimeouts( kDefaultMaxSockets, kDefaultMaxSocketsPerGroup, base::TimeDelta(), // Time out unused sockets immediately. base::TimeDelta::FromDays(1)); // Don't time out used sockets. connect_job_factory_->set_job_type(TestConnectJob::kMockJob); // Startup 4 connect jobs. Two of them will be pending. TestSocketRequest req(&request_order_, &completion_count_); int rv = req.handle()->Init("a", params_, LOWEST, &req, pool_, BoundNetLog()); EXPECT_EQ(OK, rv); TestSocketRequest req2(&request_order_, &completion_count_); rv = req2.handle()->Init("a", params_, LOWEST, &req2, pool_, BoundNetLog()); EXPECT_EQ(OK, rv); TestSocketRequest req3(&request_order_, &completion_count_); rv = req3.handle()->Init("a", params_, LOWEST, &req3, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); TestSocketRequest req4(&request_order_, &completion_count_); rv = req4.handle()->Init("a", params_, LOWEST, &req4, pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); // Release two disconnected sockets. req.handle()->socket()->Disconnect(); req.handle()->Reset(); req2.handle()->socket()->Disconnect(); req2.handle()->Reset(); EXPECT_EQ(OK, req3.WaitForResult()); EXPECT_FALSE(req3.handle()->is_reused()); EXPECT_EQ(OK, req4.WaitForResult()); EXPECT_FALSE(req4.handle()->is_reused()); } // Regression test for http://crbug.com/42267. // When DoReleaseSocket() is processed for one socket, it is blocked because the // other stalled groups all have releasing sockets, so no progress can be made. TEST_F(ClientSocketPoolBaseTest, SocketLimitReleasingSockets) { CreatePoolWithIdleTimeouts( 4 /* socket limit */, 4 /* socket limit per group */, base::TimeDelta(), // Time out unused sockets immediately. base::TimeDelta::FromDays(1)); // Don't time out used sockets. connect_job_factory_->set_job_type(TestConnectJob::kMockJob); // Max out the socket limit with 2 per group. scoped_ptr req_a[4]; scoped_ptr req_b[4]; for (int i = 0; i < 2; ++i) { req_a[i].reset(new TestSocketRequest(&request_order_, &completion_count_)); req_b[i].reset(new TestSocketRequest(&request_order_, &completion_count_)); EXPECT_EQ(OK, req_a[i]->handle()->Init("a", params_, LOWEST, req_a[i].get(), pool_, BoundNetLog())); EXPECT_EQ(OK, req_b[i]->handle()->Init("b", params_, LOWEST, req_b[i].get(), pool_, BoundNetLog())); } // Make 4 pending requests, 2 per group. for (int i = 2; i < 4; ++i) { req_a[i].reset(new TestSocketRequest(&request_order_, &completion_count_)); req_b[i].reset(new TestSocketRequest(&request_order_, &completion_count_)); EXPECT_EQ(ERR_IO_PENDING, req_a[i]->handle()->Init("a", params_, LOWEST, req_a[i].get(), pool_, BoundNetLog())); EXPECT_EQ(ERR_IO_PENDING, req_b[i]->handle()->Init("b", params_, LOWEST, req_b[i].get(), pool_, BoundNetLog())); } // Release b's socket first. The order is important, because in // DoReleaseSocket(), we'll process b's released socket, and since both b and // a are stalled, but 'a' is lower lexicographically, we'll process group 'a' // first, which has a releasing socket, so it refuses to start up another // ConnectJob. So, we used to infinite loop on this. req_b[0]->handle()->socket()->Disconnect(); req_b[0]->handle()->Reset(); req_a[0]->handle()->socket()->Disconnect(); req_a[0]->handle()->Reset(); // Used to get stuck here. MessageLoop::current()->RunAllPending(); req_b[1]->handle()->socket()->Disconnect(); req_b[1]->handle()->Reset(); req_a[1]->handle()->socket()->Disconnect(); req_a[1]->handle()->Reset(); for (int i = 2; i < 4; ++i) { EXPECT_EQ(OK, req_b[i]->WaitForResult()); EXPECT_EQ(OK, req_a[i]->WaitForResult()); } } TEST_F(ClientSocketPoolBaseTest, ReleasingDisconnectedSocketsMaintainsPriorityOrder) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, requests_[0]->WaitForResult()); EXPECT_EQ(OK, requests_[1]->WaitForResult()); EXPECT_EQ(2u, completion_count_); // Releases one connection. EXPECT_TRUE(ReleaseOneConnection(NO_KEEP_ALIVE)); EXPECT_EQ(OK, requests_[2]->WaitForResult()); EXPECT_TRUE(ReleaseOneConnection(NO_KEEP_ALIVE)); EXPECT_EQ(OK, requests_[3]->WaitForResult()); EXPECT_EQ(4u, completion_count_); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); // Make sure we test order of all requests made. EXPECT_EQ(kIndexOutOfBounds, GetOrderOfRequest(5)); } class TestReleasingSocketRequest : public CallbackRunner< Tuple1 > { public: TestReleasingSocketRequest(TestClientSocketPool* pool, int expected_result, bool reset_releasing_handle) : pool_(pool), expected_result_(expected_result), reset_releasing_handle_(reset_releasing_handle) {} ClientSocketHandle* handle() { return &handle_; } int WaitForResult() { return callback_.WaitForResult(); } virtual void RunWithParams(const Tuple1& params) { callback_.RunWithParams(params); if (reset_releasing_handle_) handle_.Reset(); scoped_refptr con_params = new TestSocketParams(); EXPECT_EQ(expected_result_, handle2_.Init("a", con_params, kDefaultPriority, &callback2_, pool_, BoundNetLog())); } private: scoped_refptr pool_; int expected_result_; bool reset_releasing_handle_; ClientSocketHandle handle_; ClientSocketHandle handle2_; TestCompletionCallback callback_; TestCompletionCallback callback2_; }; TEST_F(ClientSocketPoolBaseTest, AdditionalErrorSocketsDontUseSlot) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("b", kDefaultPriority)); EXPECT_EQ(static_cast(requests_.size()), client_socket_factory_.allocation_count()); connect_job_factory_->set_job_type( TestConnectJob::kMockPendingAdditionalErrorStateJob); TestReleasingSocketRequest req(pool_.get(), OK, false); EXPECT_EQ(ERR_IO_PENDING, req.handle()->Init("a", params_, kDefaultPriority, &req, pool_, BoundNetLog())); // The next job should complete synchronously connect_job_factory_->set_job_type(TestConnectJob::kMockJob); EXPECT_EQ(ERR_CONNECTION_FAILED, req.WaitForResult()); EXPECT_FALSE(req.handle()->is_initialized()); EXPECT_FALSE(req.handle()->socket()); EXPECT_TRUE(req.handle()->is_ssl_error()); EXPECT_FALSE(req.handle()->ssl_error_response_info().headers.get() == NULL); } // http://crbug.com/44724 regression test. // We start releasing the pool when we flush on network change. When that // happens, the only active references are in the ClientSocketHandles. When a // ConnectJob completes and calls back into the last ClientSocketHandle, that // callback can release the last reference and delete the pool. After the // callback finishes, we go back to the stack frame within the now-deleted pool. // Executing any code that refers to members of the now-deleted pool can cause // crashes. TEST_F(ClientSocketPoolBaseTest, CallbackThatReleasesPool) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingFailingJob); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Simulate flushing the pool. pool_ = NULL; // We'll call back into this now. callback.WaitForResult(); } TEST_F(ClientSocketPoolBaseTest, DoNotReuseSocketAfterFlush) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_EQ(ClientSocketHandle::UNUSED, handle.reuse_type()); pool_->Flush(); handle.Reset(); MessageLoop::current()->RunAllPending(); EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_EQ(ClientSocketHandle::UNUSED, handle.reuse_type()); } class ConnectWithinCallback : public CallbackRunner< Tuple1 > { public: ConnectWithinCallback( const std::string& group_name, const scoped_refptr& params, const scoped_refptr& pool) : group_name_(group_name), params_(params), pool_(pool) {} ~ConnectWithinCallback() {} virtual void RunWithParams(const Tuple1& params) { callback_.RunWithParams(params); EXPECT_EQ(ERR_IO_PENDING, handle_.Init(group_name_, params_, kDefaultPriority, &nested_callback_, pool_, BoundNetLog())); } int WaitForResult() { return callback_.WaitForResult(); } int WaitForNestedResult() { return nested_callback_.WaitForResult(); } private: const std::string group_name_; const scoped_refptr params_; const scoped_refptr pool_; ClientSocketHandle handle_; TestCompletionCallback callback_; TestCompletionCallback nested_callback_; }; TEST_F(ClientSocketPoolBaseTest, AbortAllRequestsOnFlush) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); // First job will be waiting until it gets aborted. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle; ConnectWithinCallback callback("a", params_, pool_); EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Second job will be started during the first callback, and will // asynchronously complete with OK. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); pool_->Flush(); EXPECT_EQ(ERR_ABORTED, callback.WaitForResult()); EXPECT_EQ(OK, callback.WaitForNestedResult()); } // Cancel a pending socket request while we're at max sockets, // and verify that the backup socket firing doesn't cause a crash. TEST_F(ClientSocketPoolBaseTest, BackupSocketCancelAtMaxSockets) { // Max 4 sockets globally, max 4 sockets per group. CreatePool(kDefaultMaxSockets, kDefaultMaxSockets); pool_->EnableConnectBackupJobs(); // Create the first socket and set to ERR_IO_PENDING. This starts the backup // timer. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("bar", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // Start (MaxSockets - 1) connected sockets to reach max sockets. connect_job_factory_->set_job_type(TestConnectJob::kMockJob); ClientSocketHandle handles[kDefaultMaxSockets]; for (int i = 1; i < kDefaultMaxSockets; ++i) { TestCompletionCallback callback; EXPECT_EQ(OK, handles[i].Init("bar", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); } MessageLoop::current()->RunAllPending(); // Cancel the pending request. handle.Reset(); // Wait for the backup timer to fire (add some slop to ensure it fires) PlatformThread::Sleep(ClientSocketPool::kMaxConnectRetryIntervalMs / 2 * 3); MessageLoop::current()->RunAllPending(); EXPECT_EQ(kDefaultMaxSockets, client_socket_factory_.allocation_count()); } TEST_F(ClientSocketPoolBaseTest, CancelBackupSocketWhenThereAreNoRequests) { CreatePool(kDefaultMaxSockets, kDefaultMaxSockets); pool_->EnableConnectBackupJobs(); // Create the first socket and set to ERR_IO_PENDING. This starts the backup // timer. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("bar", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); ASSERT_TRUE(pool_->HasGroup("bar")); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("bar")); // Cancel the socket request. This should cancel the backup timer. Wait for // the backup time to see if it indeed got canceled. handle.Reset(); // Wait for the backup timer to fire (add some slop to ensure it fires) PlatformThread::Sleep(ClientSocketPool::kMaxConnectRetryIntervalMs / 2 * 3); MessageLoop::current()->RunAllPending(); ASSERT_TRUE(pool_->HasGroup("bar")); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("bar")); } // Test delayed socket binding for the case where we have two connects, // and while one is waiting on a connect, the other frees up. // The socket waiting on a connect should switch immediately to the freed // up socket. TEST_F(ClientSocketPoolBaseTest, DelayedSocketBindingWaitingForConnect) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle1; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle1.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(OK, callback.WaitForResult()); // No idle sockets, no pending jobs. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); // Create a second socket to the same host, but this one will wait. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle2; EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // No idle sockets, and one connecting job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Return the first handle to the pool. This will initiate the delayed // binding. handle1.Reset(); MessageLoop::current()->RunAllPending(); // Still no idle sockets, still one pending connect job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // The second socket connected, even though it was a Waiting Job. EXPECT_EQ(OK, callback.WaitForResult()); // And we can see there is still one job waiting. EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Finally, signal the waiting Connect. client_socket_factory_.SignalJobs(); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); MessageLoop::current()->RunAllPending(); } // Test delayed socket binding when a group is at capacity and one // of the group's sockets frees up. TEST_F(ClientSocketPoolBaseTest, DelayedSocketBindingAtGroupCapacity) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle1; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle1.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(OK, callback.WaitForResult()); // No idle sockets, no pending jobs. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); // Create a second socket to the same host, but this one will wait. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle2; EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // No idle sockets, and one connecting job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Return the first handle to the pool. This will initiate the delayed // binding. handle1.Reset(); MessageLoop::current()->RunAllPending(); // Still no idle sockets, still one pending connect job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // The second socket connected, even though it was a Waiting Job. EXPECT_EQ(OK, callback.WaitForResult()); // And we can see there is still one job waiting. EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Finally, signal the waiting Connect. client_socket_factory_.SignalJobs(); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); MessageLoop::current()->RunAllPending(); } // Test out the case where we have one socket connected, one // connecting, when the first socket finishes and goes idle. // Although the second connection is pending, the second request // should complete, by taking the first socket's idle socket. TEST_F(ClientSocketPoolBaseTest, DelayedSocketBindingAtStall) { CreatePool(kDefaultMaxSockets, kDefaultMaxSocketsPerGroup); connect_job_factory_->set_job_type(TestConnectJob::kMockPendingJob); ClientSocketHandle handle1; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle1.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); EXPECT_EQ(OK, callback.WaitForResult()); // No idle sockets, no pending jobs. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); // Create a second socket to the same host, but this one will wait. connect_job_factory_->set_job_type(TestConnectJob::kMockWaitingJob); ClientSocketHandle handle2; EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority, &callback, pool_, BoundNetLog())); // No idle sockets, and one connecting job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Return the first handle to the pool. This will initiate the delayed // binding. handle1.Reset(); MessageLoop::current()->RunAllPending(); // Still no idle sockets, still one pending connect job. EXPECT_EQ(0, pool_->IdleSocketCount()); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // The second socket connected, even though it was a Waiting Job. EXPECT_EQ(OK, callback.WaitForResult()); // And we can see there is still one job waiting. EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Finally, signal the waiting Connect. client_socket_factory_.SignalJobs(); EXPECT_EQ(0, pool_->NumConnectJobsInGroup("a")); MessageLoop::current()->RunAllPending(); } // Cover the case where on an available socket slot, we have one pending // request that completes synchronously, thereby making the Group empty. TEST_F(ClientSocketPoolBaseTest, SynchronouslyProcessOnePendingRequest) { const int kUnlimitedSockets = 100; const int kOneSocketPerGroup = 1; CreatePool(kUnlimitedSockets, kOneSocketPerGroup); // Make the first request asynchronous fail. // This will free up a socket slot later. connect_job_factory_->set_job_type(TestConnectJob::kMockPendingFailingJob); ClientSocketHandle handle1; TestCompletionCallback callback1; EXPECT_EQ(ERR_IO_PENDING, handle1.Init("a", params_, kDefaultPriority, &callback1, pool_, BoundNetLog())); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); // Make the second request synchronously fail. This should make the Group // empty. connect_job_factory_->set_job_type(TestConnectJob::kMockFailingJob); ClientSocketHandle handle2; TestCompletionCallback callback2; // It'll be ERR_IO_PENDING now, but the TestConnectJob will synchronously fail // when created. EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority, &callback2, pool_, BoundNetLog())); EXPECT_EQ(1, pool_->NumConnectJobsInGroup("a")); EXPECT_EQ(ERR_CONNECTION_FAILED, callback1.WaitForResult()); EXPECT_EQ(ERR_CONNECTION_FAILED, callback2.WaitForResult()); EXPECT_FALSE(pool_->HasGroup("a")); } } // namespace } // namespace net