// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/socks5_client_socket.h" #include "base/basictypes.h" #include "build/build_config.h" #if defined(OS_WIN) #include #elif defined(OS_POSIX) #include #endif #include "base/compiler_specific.h" #include "base/trace_event.h" #include "net/base/io_buffer.h" #include "net/base/net_util.h" namespace net { const unsigned int SOCKS5ClientSocket::kGreetReadHeaderSize = 2; const unsigned int SOCKS5ClientSocket::kWriteHeaderSize = 10; const unsigned int SOCKS5ClientSocket::kReadHeaderSize = 5; const uint8 SOCKS5ClientSocket::kSOCKS5Version = 0x05; const uint8 SOCKS5ClientSocket::kTunnelCommand = 0x01; const uint8 SOCKS5ClientSocket::kNullByte = 0x00; COMPILE_ASSERT(sizeof(struct in_addr) == 4, incorrect_system_size_of_IPv4); COMPILE_ASSERT(sizeof(struct in6_addr) == 16, incorrect_system_size_of_IPv6); SOCKS5ClientSocket::SOCKS5ClientSocket(ClientSocket* transport_socket, const HostResolver::RequestInfo& req_info, HostResolver* host_resolver) : ALLOW_THIS_IN_INITIALIZER_LIST( io_callback_(this, &SOCKS5ClientSocket::OnIOComplete)), transport_(transport_socket), next_state_(STATE_NONE), address_type_(kEndPointUnresolved), user_callback_(NULL), completed_handshake_(false), bytes_sent_(0), bytes_received_(0), read_header_size(kReadHeaderSize), host_resolver_(host_resolver), host_request_info_(req_info) { } SOCKS5ClientSocket::~SOCKS5ClientSocket() { Disconnect(); } int SOCKS5ClientSocket::Connect(CompletionCallback* callback) { DCHECK(transport_.get()); DCHECK(transport_->IsConnected()); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); // If already connected, then just return OK. if (completed_handshake_) return OK; next_state_ = STATE_RESOLVE_HOST; int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) user_callback_ = callback; return rv; } void SOCKS5ClientSocket::Disconnect() { completed_handshake_ = false; transport_->Disconnect(); } bool SOCKS5ClientSocket::IsConnected() const { return completed_handshake_ && transport_->IsConnected(); } bool SOCKS5ClientSocket::IsConnectedAndIdle() const { return completed_handshake_ && transport_->IsConnectedAndIdle(); } // Read is called by the transport layer above to read. This can only be done // if the SOCKS handshake is complete. int SOCKS5ClientSocket::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(completed_handshake_); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); return transport_->Read(buf, buf_len, callback); } // Write is called by the transport layer. This can only be done if the // SOCKS handshake is complete. int SOCKS5ClientSocket::Write(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(completed_handshake_); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); return transport_->Write(buf, buf_len, callback); } bool SOCKS5ClientSocket::SetReceiveBufferSize(int32 size) { return transport_->SetReceiveBufferSize(size); } bool SOCKS5ClientSocket::SetSendBufferSize(int32 size) { return transport_->SetSendBufferSize(size); } void SOCKS5ClientSocket::DoCallback(int result) { DCHECK_NE(ERR_IO_PENDING, result); DCHECK(user_callback_); // Since Run() may result in Read being called, // clear user_callback_ up front. CompletionCallback* c = user_callback_; user_callback_ = NULL; DLOG(INFO) << "Finished setting up SOCKSv5 handshake"; c->Run(result); } void SOCKS5ClientSocket::OnIOComplete(int result) { DCHECK_NE(STATE_NONE, next_state_); int rv = DoLoop(result); if (rv != ERR_IO_PENDING) DoCallback(rv); } int SOCKS5ClientSocket::DoLoop(int last_io_result) { DCHECK_NE(next_state_, STATE_NONE); int rv = last_io_result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_RESOLVE_HOST: DCHECK_EQ(OK, rv); rv = DoResolveHost(); break; case STATE_RESOLVE_HOST_COMPLETE: rv = DoResolveHostComplete(rv); break; case STATE_GREET_WRITE: DCHECK_EQ(OK, rv); rv = DoGreetWrite(); break; case STATE_GREET_WRITE_COMPLETE: rv = DoGreetWriteComplete(rv); break; case STATE_GREET_READ: DCHECK_EQ(OK, rv); rv = DoGreetRead(); break; case STATE_GREET_READ_COMPLETE: rv = DoGreetReadComplete(rv); break; case STATE_HANDSHAKE_WRITE: DCHECK_EQ(OK, rv); rv = DoHandshakeWrite(); break; case STATE_HANDSHAKE_WRITE_COMPLETE: rv = DoHandshakeWriteComplete(rv); break; case STATE_HANDSHAKE_READ: DCHECK_EQ(OK, rv); rv = DoHandshakeRead(); break; case STATE_HANDSHAKE_READ_COMPLETE: rv = DoHandshakeReadComplete(rv); break; default: NOTREACHED() << "bad state"; rv = ERR_UNEXPECTED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); return rv; } int SOCKS5ClientSocket::DoResolveHost() { DCHECK_EQ(kEndPointUnresolved, address_type_); next_state_ = STATE_RESOLVE_HOST_COMPLETE; return host_resolver_.Resolve( host_request_info_, &addresses_, &io_callback_, NULL); } int SOCKS5ClientSocket::DoResolveHostComplete(int result) { DCHECK_EQ(kEndPointUnresolved, address_type_); bool ok = (result == OK); next_state_ = STATE_GREET_WRITE; if (ok) { DCHECK(addresses_.head()); struct sockaddr* host_info = addresses_.head()->ai_addr; if (host_info->sa_family == AF_INET) { address_type_ = kEndPointResolvedIPv4; } else if (host_info->sa_family == AF_INET6) { address_type_ = kEndPointResolvedIPv6; } } else { address_type_ = kEndPointFailedDomain; } buffer_.clear(); // Even if DNS resolution fails, we send OK since the server // resolves the domain. return OK; } const char kSOCKS5GreetWriteData[] = { 0x05, 0x01, 0x00 }; // no authentication const char kSOCKS5GreetReadData[] = { 0x05, 0x00 }; int SOCKS5ClientSocket::DoGreetWrite() { if (buffer_.empty()) { buffer_ = std::string(kSOCKS5GreetWriteData, arraysize(kSOCKS5GreetWriteData)); bytes_sent_ = 0; } next_state_ = STATE_GREET_WRITE_COMPLETE; size_t handshake_buf_len = buffer_.size() - bytes_sent_; handshake_buf_ = new IOBuffer(handshake_buf_len); memcpy(handshake_buf_->data(), &buffer_.data()[bytes_sent_], handshake_buf_len); return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKS5ClientSocket::DoGreetWriteComplete(int result) { if (result < 0) return result; bytes_sent_ += result; if (bytes_sent_ == buffer_.size()) { buffer_.clear(); bytes_received_ = 0; next_state_ = STATE_GREET_READ; } else { next_state_ = STATE_GREET_WRITE; } return OK; } int SOCKS5ClientSocket::DoGreetRead() { next_state_ = STATE_GREET_READ_COMPLETE; size_t handshake_buf_len = kGreetReadHeaderSize - bytes_received_; handshake_buf_ = new IOBuffer(handshake_buf_len); return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKS5ClientSocket::DoGreetReadComplete(int result) { if (result < 0) return result; if (result == 0) return ERR_CONNECTION_CLOSED; // Unexpected socket close bytes_received_ += result; buffer_.append(handshake_buf_->data(), result); if (bytes_received_ < kGreetReadHeaderSize) { next_state_ = STATE_GREET_READ; return OK; } // Got the greet data. if (buffer_[0] != kSOCKS5Version || buffer_[1] != 0x00) return ERR_INVALID_RESPONSE; // Unknown error buffer_.clear(); next_state_ = STATE_HANDSHAKE_WRITE; return OK; } int SOCKS5ClientSocket::BuildHandshakeWriteBuffer(std::string* handshake) const { DCHECK_NE(kEndPointUnresolved, address_type_); DCHECK(handshake->empty()); handshake->push_back(kSOCKS5Version); handshake->push_back(kTunnelCommand); // Connect command handshake->push_back(kNullByte); // Reserved null handshake->push_back(address_type_); // The type of connection if (address_type_ == kEndPointFailedDomain) { if(256 <= host_request_info_.hostname().size()) return ERR_ADDRESS_INVALID; // First add the size of the hostname, followed by the hostname. handshake->push_back(static_cast( host_request_info_.hostname().size())); handshake->append(host_request_info_.hostname()); } else if (address_type_ == kEndPointResolvedIPv4) { struct sockaddr_in* ipv4_host = reinterpret_cast(addresses_.head()->ai_addr); handshake->append(reinterpret_cast(&ipv4_host->sin_addr), sizeof(ipv4_host->sin_addr)); } else if (address_type_ == kEndPointResolvedIPv6) { struct sockaddr_in6* ipv6_host = reinterpret_cast(addresses_.head()->ai_addr); handshake->append(reinterpret_cast(&ipv6_host->sin6_addr), sizeof(ipv6_host->sin6_addr)); } else { NOTREACHED(); } uint16 nw_port = htons(host_request_info_.port()); handshake->append(reinterpret_cast(&nw_port), sizeof(nw_port)); return OK; } // Writes the SOCKS handshake data to the underlying socket connection. int SOCKS5ClientSocket::DoHandshakeWrite() { next_state_ = STATE_HANDSHAKE_WRITE_COMPLETE; if (buffer_.empty()) { int rv = BuildHandshakeWriteBuffer(&buffer_); if (rv != OK) return rv; bytes_sent_ = 0; } int handshake_buf_len = buffer_.size() - bytes_sent_; DCHECK_LT(0, handshake_buf_len); handshake_buf_ = new IOBuffer(handshake_buf_len); memcpy(handshake_buf_->data(), &buffer_[bytes_sent_], handshake_buf_len); return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKS5ClientSocket::DoHandshakeWriteComplete(int result) { DCHECK_NE(kEndPointUnresolved, address_type_); if (result < 0) return result; // We ignore the case when result is 0, since the underlying Write // may return spurious writes while waiting on the socket. bytes_sent_ += result; if (bytes_sent_ == buffer_.size()) { next_state_ = STATE_HANDSHAKE_READ; buffer_.clear(); } else if (bytes_sent_ < buffer_.size()) { next_state_ = STATE_HANDSHAKE_WRITE; } else { NOTREACHED(); } return OK; } int SOCKS5ClientSocket::DoHandshakeRead() { DCHECK_NE(kEndPointUnresolved, address_type_); next_state_ = STATE_HANDSHAKE_READ_COMPLETE; if (buffer_.empty()) { bytes_received_ = 0; read_header_size = kReadHeaderSize; } int handshake_buf_len = read_header_size - bytes_received_; handshake_buf_ = new IOBuffer(handshake_buf_len); return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKS5ClientSocket::DoHandshakeReadComplete(int result) { DCHECK_NE(kEndPointUnresolved, address_type_); if (result < 0) return result; // The underlying socket closed unexpectedly. if (result == 0) return ERR_CONNECTION_CLOSED; buffer_.append(handshake_buf_->data(), result); bytes_received_ += result; // When the first few bytes are read, check how many more are required // and accordingly increase them if (bytes_received_ == kReadHeaderSize) { // TODO(arindam): add error codes to net/error_list.h if (buffer_[0] != kSOCKS5Version || buffer_[2] != kNullByte) return ERR_INVALID_RESPONSE; if (buffer_[1] != 0x00) return ERR_FAILED; // We check the type of IP/Domain the server returns and accordingly // increase the size of the response. For domains, we need to read the // size of the domain, so the initial request size is upto the domain // size. Since for IPv4/IPv6 the size is fixed and hence no 'size' is // read, we substract 1 byte from the additional request size. SocksEndPointAddressType address_type = static_cast(buffer_[3]); if (address_type == kEndPointFailedDomain) read_header_size += static_cast(buffer_[4]); else if (address_type == kEndPointResolvedIPv4) read_header_size += sizeof(struct in_addr) - 1; else if (address_type == kEndPointResolvedIPv6) read_header_size += sizeof(struct in6_addr) - 1; else return ERR_INVALID_RESPONSE; read_header_size += 2; // for the port. next_state_ = STATE_HANDSHAKE_READ; return OK; } // When the final bytes are read, setup handshake. We ignore the rest // of the response since they represent the SOCKSv5 endpoint and have // no use when doing a tunnel connection. if (bytes_received_ == read_header_size) { completed_handshake_ = true; buffer_.clear(); next_state_ = STATE_NONE; return OK; } next_state_ = STATE_HANDSHAKE_READ; return OK; } #if defined(OS_LINUX) int SOCKS5ClientSocket::GetPeerName(struct sockaddr* name, socklen_t* namelen) { return transport_->GetPeerName(name, namelen); } #endif } // namespace net