// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/socks_client_socket.h" #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/trace_event.h" #include "net/base/io_buffer.h" #include "net/base/load_log.h" #include "net/base/net_util.h" #include "net/base/sys_addrinfo.h" namespace net { // Every SOCKS server requests a user-id from the client. It is optional // and we send an empty string. static const char kEmptyUserId[] = ""; // The SOCKS4a implementation suggests to use an invalid IP in case the DNS // resolution at client fails. static const uint8 kInvalidIp[] = { 0, 0, 0, 127 }; // For SOCKS4, the client sends 8 bytes plus the size of the user-id. // For SOCKS4A, this increases to accomodate the unresolved hostname. static const unsigned int kWriteHeaderSize = 8; // For SOCKS4 and SOCKS4a, the server sends 8 bytes for acknowledgement. static const unsigned int kReadHeaderSize = 8; // Server Response codes for SOCKS. static const uint8 kServerResponseOk = 0x5A; static const uint8 kServerResponseRejected = 0x5B; static const uint8 kServerResponseNotReachable = 0x5C; static const uint8 kServerResponseMismatchedUserId = 0x5D; static const uint8 kSOCKSVersion4 = 0x04; static const uint8 kSOCKSStreamRequest = 0x01; // A struct holding the essential details of the SOCKS4/4a Server Request. // The port in the header is stored in network byte order. struct SOCKS4ServerRequest { uint8 version; uint8 command; uint16 nw_port; uint8 ip[4]; }; COMPILE_ASSERT(sizeof(SOCKS4ServerRequest) == kWriteHeaderSize, socks4_server_request_struct_wrong_size); // A struct holding details of the SOCKS4/4a Server Response. struct SOCKS4ServerResponse { uint8 reserved_null; uint8 code; uint16 port; uint8 ip[4]; }; COMPILE_ASSERT(sizeof(SOCKS4ServerResponse) == kReadHeaderSize, socks4_server_response_struct_wrong_size); SOCKSClientSocket::SOCKSClientSocket(ClientSocket* transport_socket, const HostResolver::RequestInfo& req_info, HostResolver* host_resolver) : ALLOW_THIS_IN_INITIALIZER_LIST( io_callback_(this, &SOCKSClientSocket::OnIOComplete)), transport_(transport_socket), next_state_(STATE_NONE), socks_version_(kSOCKS4Unresolved), user_callback_(NULL), completed_handshake_(false), bytes_sent_(0), bytes_received_(0), host_resolver_(host_resolver), host_request_info_(req_info) { } SOCKSClientSocket::~SOCKSClientSocket() { Disconnect(); } int SOCKSClientSocket::Connect(CompletionCallback* callback, LoadLog* load_log) { DCHECK(transport_.get()); DCHECK(transport_->IsConnected()); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); // If already connected, then just return OK. if (completed_handshake_) return OK; next_state_ = STATE_RESOLVE_HOST; load_log_ = load_log; LoadLog::BeginEvent(load_log, LoadLog::TYPE_SOCKS_CONNECT); int rv = DoLoop(OK); if (rv == ERR_IO_PENDING) { user_callback_ = callback; } else { LoadLog::EndEvent(load_log, LoadLog::TYPE_SOCKS_CONNECT); load_log_ = NULL; } return rv; } void SOCKSClientSocket::Disconnect() { completed_handshake_ = false; host_resolver_.Cancel(); transport_->Disconnect(); // Reset other states to make sure they aren't mistakenly used later. // These are the states initialized by Connect(). next_state_ = STATE_NONE; user_callback_ = NULL; load_log_ = NULL; } bool SOCKSClientSocket::IsConnected() const { return completed_handshake_ && transport_->IsConnected(); } bool SOCKSClientSocket::IsConnectedAndIdle() const { return completed_handshake_ && transport_->IsConnectedAndIdle(); } // Read is called by the transport layer above to read. This can only be done // if the SOCKS handshake is complete. int SOCKSClientSocket::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(completed_handshake_); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); return transport_->Read(buf, buf_len, callback); } // Write is called by the transport layer. This can only be done if the // SOCKS handshake is complete. int SOCKSClientSocket::Write(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(completed_handshake_); DCHECK_EQ(STATE_NONE, next_state_); DCHECK(!user_callback_); return transport_->Write(buf, buf_len, callback); } bool SOCKSClientSocket::SetReceiveBufferSize(int32 size) { return transport_->SetReceiveBufferSize(size); } bool SOCKSClientSocket::SetSendBufferSize(int32 size) { return transport_->SetSendBufferSize(size); } void SOCKSClientSocket::DoCallback(int result) { DCHECK_NE(ERR_IO_PENDING, result); DCHECK(user_callback_); // Since Run() may result in Read being called, // clear user_callback_ up front. CompletionCallback* c = user_callback_; user_callback_ = NULL; DLOG(INFO) << "Finished setting up SOCKS handshake"; c->Run(result); } void SOCKSClientSocket::OnIOComplete(int result) { DCHECK_NE(STATE_NONE, next_state_); int rv = DoLoop(result); if (rv != ERR_IO_PENDING) { LoadLog::EndEvent(load_log_, LoadLog::TYPE_SOCKS_CONNECT); load_log_ = NULL; DoCallback(rv); } } int SOCKSClientSocket::DoLoop(int last_io_result) { DCHECK_NE(next_state_, STATE_NONE); int rv = last_io_result; do { State state = next_state_; next_state_ = STATE_NONE; switch (state) { case STATE_RESOLVE_HOST: DCHECK_EQ(OK, rv); rv = DoResolveHost(); break; case STATE_RESOLVE_HOST_COMPLETE: rv = DoResolveHostComplete(rv); break; case STATE_HANDSHAKE_WRITE: DCHECK_EQ(OK, rv); rv = DoHandshakeWrite(); break; case STATE_HANDSHAKE_WRITE_COMPLETE: rv = DoHandshakeWriteComplete(rv); break; case STATE_HANDSHAKE_READ: DCHECK_EQ(OK, rv); rv = DoHandshakeRead(); break; case STATE_HANDSHAKE_READ_COMPLETE: rv = DoHandshakeReadComplete(rv); break; default: NOTREACHED() << "bad state"; rv = ERR_UNEXPECTED; break; } } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE); return rv; } int SOCKSClientSocket::DoResolveHost() { DCHECK_EQ(kSOCKS4Unresolved, socks_version_); next_state_ = STATE_RESOLVE_HOST_COMPLETE; return host_resolver_.Resolve( host_request_info_, &addresses_, &io_callback_, load_log_); } int SOCKSClientSocket::DoResolveHostComplete(int result) { DCHECK_EQ(kSOCKS4Unresolved, socks_version_); bool ok = (result == OK); next_state_ = STATE_HANDSHAKE_WRITE; if (ok) { DCHECK(addresses_.head()); // If the host is resolved to an IPv6 address, we revert to SOCKS4a // since IPv6 is unsupported by SOCKS4/4a protocol. struct sockaddr *host_info = addresses_.head()->ai_addr; if (host_info->sa_family == AF_INET) { DLOG(INFO) << "Resolved host. Using SOCKS4 to communicate"; socks_version_ = kSOCKS4; } else { DLOG(INFO) << "Resolved host but to IPv6. Using SOCKS4a to communicate"; socks_version_ = kSOCKS4a; } } else { DLOG(INFO) << "Could not resolve host. Using SOCKS4a to communicate"; socks_version_ = kSOCKS4a; } // Even if DNS resolution fails, we send OK since the server // resolves the domain. return OK; } // Builds the buffer that is to be sent to the server. // We check whether the SOCKS proxy is 4 or 4A. // In case it is 4A, the record size increases by size of the hostname. const std::string SOCKSClientSocket::BuildHandshakeWriteBuffer() const { DCHECK_NE(kSOCKS4Unresolved, socks_version_); SOCKS4ServerRequest request; request.version = kSOCKSVersion4; request.command = kSOCKSStreamRequest; request.nw_port = htons(host_request_info_.port()); if (socks_version_ == kSOCKS4) { const struct addrinfo* ai = addresses_.head(); DCHECK(ai); // If the sockaddr is IPv6, we have already marked the version to socks4a // and so this step does not get hit. struct sockaddr_in* ipv4_host = reinterpret_cast(ai->ai_addr); memcpy(&request.ip, &(ipv4_host->sin_addr), sizeof(ipv4_host->sin_addr)); DLOG(INFO) << "Resolved Host is : " << NetAddressToString(ai); } else if (socks_version_ == kSOCKS4a) { // invalid IP of the form 0.0.0.127 memcpy(&request.ip, kInvalidIp, arraysize(kInvalidIp)); } else { NOTREACHED(); } std::string handshake_data(reinterpret_cast(&request), sizeof(request)); handshake_data.append(kEmptyUserId, arraysize(kEmptyUserId)); // In case we are passing the domain also, pass the hostname // terminated with a null character. if (socks_version_ == kSOCKS4a) { handshake_data.append(host_request_info_.hostname()); handshake_data.push_back('\0'); } return handshake_data; } // Writes the SOCKS handshake data to the underlying socket connection. int SOCKSClientSocket::DoHandshakeWrite() { next_state_ = STATE_HANDSHAKE_WRITE_COMPLETE; if (buffer_.empty()) { buffer_ = BuildHandshakeWriteBuffer(); bytes_sent_ = 0; } int handshake_buf_len = buffer_.size() - bytes_sent_; DCHECK_GT(handshake_buf_len, 0); handshake_buf_ = new IOBuffer(handshake_buf_len); memcpy(handshake_buf_->data(), &buffer_[bytes_sent_], handshake_buf_len); return transport_->Write(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKSClientSocket::DoHandshakeWriteComplete(int result) { DCHECK_NE(kSOCKS4Unresolved, socks_version_); if (result < 0) return result; // We ignore the case when result is 0, since the underlying Write // may return spurious writes while waiting on the socket. bytes_sent_ += result; if (bytes_sent_ == buffer_.size()) { next_state_ = STATE_HANDSHAKE_READ; buffer_.clear(); } else if (bytes_sent_ < buffer_.size()) { next_state_ = STATE_HANDSHAKE_WRITE; } else { return ERR_UNEXPECTED; } return OK; } int SOCKSClientSocket::DoHandshakeRead() { DCHECK_NE(kSOCKS4Unresolved, socks_version_); next_state_ = STATE_HANDSHAKE_READ_COMPLETE; if (buffer_.empty()) { bytes_received_ = 0; } int handshake_buf_len = kReadHeaderSize - bytes_received_; handshake_buf_ = new IOBuffer(handshake_buf_len); return transport_->Read(handshake_buf_, handshake_buf_len, &io_callback_); } int SOCKSClientSocket::DoHandshakeReadComplete(int result) { DCHECK_NE(kSOCKS4Unresolved, socks_version_); if (result < 0) return result; // The underlying socket closed unexpectedly. if (result == 0) return ERR_CONNECTION_CLOSED; if (bytes_received_ + result > kReadHeaderSize) return ERR_INVALID_RESPONSE; buffer_.append(handshake_buf_->data(), result); bytes_received_ += result; if (bytes_received_ < kReadHeaderSize) { next_state_ = STATE_HANDSHAKE_READ; return OK; } const SOCKS4ServerResponse* response = reinterpret_cast(buffer_.data()); if (response->reserved_null != 0x00) { LOG(ERROR) << "Unknown response from SOCKS server."; return ERR_INVALID_RESPONSE; } // TODO(arindam): Add SOCKS specific failure codes in net_error_list.h switch (response->code) { case kServerResponseOk: completed_handshake_ = true; return OK; case kServerResponseRejected: LOG(ERROR) << "SOCKS request rejected or failed"; return ERR_FAILED; case kServerResponseNotReachable: LOG(ERROR) << "SOCKS request failed because client is not running " << "identd (or not reachable from the server)"; return ERR_NAME_NOT_RESOLVED; case kServerResponseMismatchedUserId: LOG(ERROR) << "SOCKS request failed because client's identd could " << "not confirm the user ID string in the request"; return ERR_FAILED; default: LOG(ERROR) << "SOCKS server sent unknown response"; return ERR_INVALID_RESPONSE; } // Note: we ignore the last 6 bytes as specified by the SOCKS protocol } int SOCKSClientSocket::GetPeerName(struct sockaddr* name, socklen_t* namelen) { return transport_->GetPeerName(name, namelen); } } // namespace net