// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/ssl_client_socket.h" #include "base/metrics/histogram.h" #include "base/metrics/sparse_histogram.h" #include "base/strings/string_util.h" #include "crypto/ec_private_key.h" #include "net/base/connection_type_histograms.h" #include "net/base/net_errors.h" #include "net/ssl/channel_id_service.h" #include "net/ssl/ssl_cipher_suite_names.h" #include "net/ssl/ssl_config_service.h" #include "net/ssl/ssl_connection_status_flags.h" namespace net { SSLClientSocket::SSLClientSocket() : signed_cert_timestamps_received_(false), stapled_ocsp_response_received_(false), negotiation_extension_(kExtensionUnknown) { } // static NextProto SSLClientSocket::NextProtoFromString( const std::string& proto_string) { if (proto_string == "http1.1" || proto_string == "http/1.1") { return kProtoHTTP11; } else if (proto_string == "spdy/2") { return kProtoDeprecatedSPDY2; } else if (proto_string == "spdy/3") { return kProtoSPDY3; } else if (proto_string == "spdy/3.1") { return kProtoSPDY31; } else if (proto_string == "h2-14") { // For internal consistency, HTTP/2 is named SPDY4 within Chromium. // This is the HTTP/2 draft-14 identifier. return kProtoSPDY4_14; } else if (proto_string == "h2") { return kProtoSPDY4; } else if (proto_string == "quic/1+spdy/3") { return kProtoQUIC1SPDY3; } else { return kProtoUnknown; } } // static const char* SSLClientSocket::NextProtoToString(NextProto next_proto) { switch (next_proto) { case kProtoHTTP11: return "http/1.1"; case kProtoDeprecatedSPDY2: return "spdy/2"; case kProtoSPDY3: return "spdy/3"; case kProtoSPDY31: return "spdy/3.1"; case kProtoSPDY4_14: // For internal consistency, HTTP/2 is named SPDY4 within Chromium. // This is the HTTP/2 draft-14 identifier. return "h2-14"; case kProtoSPDY4: return "h2"; case kProtoQUIC1SPDY3: return "quic/1+spdy/3"; case kProtoUnknown: break; } return "unknown"; } // static const char* SSLClientSocket::NextProtoStatusToString( const SSLClientSocket::NextProtoStatus status) { switch (status) { case kNextProtoUnsupported: return "unsupported"; case kNextProtoNegotiated: return "negotiated"; case kNextProtoNoOverlap: return "no-overlap"; } return NULL; } bool SSLClientSocket::WasNpnNegotiated() const { std::string unused_proto; return GetNextProto(&unused_proto) == kNextProtoNegotiated; } NextProto SSLClientSocket::GetNegotiatedProtocol() const { std::string proto; if (GetNextProto(&proto) != kNextProtoNegotiated) return kProtoUnknown; return NextProtoFromString(proto); } bool SSLClientSocket::IgnoreCertError(int error, int load_flags) { if (error == OK) return true; return (load_flags & LOAD_IGNORE_ALL_CERT_ERRORS) && IsCertificateError(error); } void SSLClientSocket::RecordNegotiationExtension() { if (negotiation_extension_ == kExtensionUnknown) return; std::string proto; SSLClientSocket::NextProtoStatus status = GetNextProto(&proto); if (status == kNextProtoUnsupported) return; // Convert protocol into numerical value for histogram. NextProto protocol_negotiated = SSLClientSocket::NextProtoFromString(proto); base::HistogramBase::Sample sample = static_cast(protocol_negotiated); // In addition to the protocol negotiated, we want to record which TLS // extension was used, and in case of NPN, whether there was overlap between // server and client list of supported protocols. if (negotiation_extension_ == kExtensionNPN) { if (status == kNextProtoNoOverlap) { sample += 1000; } else { sample += 500; } } else { DCHECK_EQ(kExtensionALPN, negotiation_extension_); } UMA_HISTOGRAM_SPARSE_SLOWLY("Net.SSLProtocolNegotiation", sample); } // static void SSLClientSocket::RecordChannelIDSupport( ChannelIDService* channel_id_service, bool negotiated_channel_id, bool channel_id_enabled, bool supports_ecc) { // Since this enum is used for a histogram, do not change or re-use values. enum { DISABLED = 0, CLIENT_ONLY = 1, CLIENT_AND_SERVER = 2, CLIENT_NO_ECC = 3, CLIENT_BAD_SYSTEM_TIME = 4, CLIENT_NO_CHANNEL_ID_SERVICE = 5, CHANNEL_ID_USAGE_MAX } supported = DISABLED; if (negotiated_channel_id) { supported = CLIENT_AND_SERVER; } else if (channel_id_enabled) { if (!channel_id_service) supported = CLIENT_NO_CHANNEL_ID_SERVICE; else if (!supports_ecc) supported = CLIENT_NO_ECC; else if (!channel_id_service->IsSystemTimeValid()) supported = CLIENT_BAD_SYSTEM_TIME; else supported = CLIENT_ONLY; } UMA_HISTOGRAM_ENUMERATION("DomainBoundCerts.Support", supported, CHANNEL_ID_USAGE_MAX); } // static bool SSLClientSocket::IsChannelIDEnabled( const SSLConfig& ssl_config, ChannelIDService* channel_id_service) { if (!ssl_config.channel_id_enabled) return false; if (!channel_id_service) { DVLOG(1) << "NULL channel_id_service_, not enabling channel ID."; return false; } if (!crypto::ECPrivateKey::IsSupported()) { DVLOG(1) << "Elliptic Curve not supported, not enabling channel ID."; return false; } if (!channel_id_service->IsSystemTimeValid()) { DVLOG(1) << "System time is not within the supported range for certificate " "generation, not enabling channel ID."; return false; } return true; } // static bool SSLClientSocket::HasCipherAdequateForHTTP2( const std::vector& cipher_suites) { for (uint16 cipher : cipher_suites) { if (IsSecureTLSCipherSuite(cipher)) return true; } return false; } // static bool SSLClientSocket::IsTLSVersionAdequateForHTTP2( const SSLConfig& ssl_config) { return ssl_config.version_max >= SSL_PROTOCOL_VERSION_TLS1_2; } // static std::vector SSLClientSocket::SerializeNextProtos( const NextProtoVector& next_protos, bool can_advertise_http2) { std::vector wire_protos; for (const NextProto next_proto : next_protos) { if (!can_advertise_http2 && kProtoSPDY4MinimumVersion <= next_proto && next_proto <= kProtoSPDY4MaximumVersion) { continue; } const std::string proto = NextProtoToString(next_proto); if (proto.size() > 255) { LOG(WARNING) << "Ignoring overlong NPN/ALPN protocol: " << proto; continue; } if (proto.size() == 0) { LOG(WARNING) << "Ignoring empty NPN/ALPN protocol"; continue; } wire_protos.push_back(proto.size()); for (const char ch : proto) { wire_protos.push_back(static_cast(ch)); } } return wire_protos; } } // namespace net