// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file includes code SSLClientSocketNSS::DoVerifyCertComplete() derived // from AuthCertificateCallback() in // mozilla/security/manager/ssl/src/nsNSSCallbacks.cpp. /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape security libraries. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Ian McGreer * Javier Delgadillo * Kai Engert * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "net/socket/ssl_client_socket_nss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/compiler_specific.h" #include "base/logging.h" #include "base/memory/singleton.h" #include "base/metrics/histogram.h" #include "base/nss_util.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "base/stringprintf.h" #include "base/threading/thread_restrictions.h" #include "base/values.h" #include "net/base/address_list.h" #include "net/base/cert_status_flags.h" #include "net/base/cert_verifier.h" #include "net/base/connection_type_histograms.h" #include "net/base/dns_util.h" #include "net/base/dnsrr_resolver.h" #include "net/base/dnssec_chain_verifier.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/ssl_cert_request_info.h" #include "net/base/ssl_connection_status_flags.h" #include "net/base/ssl_info.h" #include "net/base/sys_addrinfo.h" #include "net/ocsp/nss_ocsp.h" #include "net/socket/client_socket_handle.h" #include "net/socket/dns_cert_provenance_checker.h" #include "net/socket/nss_ssl_util.h" #include "net/socket/ssl_error_params.h" #include "net/socket/ssl_host_info.h" #if defined(OS_WIN) #include #include #elif defined(OS_MACOSX) #include #include #include #elif defined(USE_NSS) #include #endif static const int kRecvBufferSize = 4096; // kCorkTimeoutMs is the number of milliseconds for which we'll wait for a // Write to an SSL socket which we're False Starting. Since corking stops the // Finished message from being sent, the server sees an incomplete handshake // and some will time out such sockets quite aggressively. static const int kCorkTimeoutMs = 200; #if defined(OS_WIN) // CERT_OCSP_RESPONSE_PROP_ID is only implemented on Vista+, but it can be // set on Windows XP without error. There is some overhead from the server // sending the OCSP response if it supports the extension, for the subset of // XP clients who will request it but be unable to use it, but this is an // acceptable trade-off for simplicity of implementation. static bool IsOCSPStaplingSupported() { return true; } #elif defined(USE_NSS) typedef SECStatus (*CacheOCSPResponseFromSideChannelFunction)( CERTCertDBHandle *handle, CERTCertificate *cert, PRTime time, SECItem *encodedResponse, void *pwArg); // On Linux, we dynamically link against the system version of libnss3.so. In // order to continue working on systems without up-to-date versions of NSS we // lookup CERT_CacheOCSPResponseFromSideChannel with dlsym. // RuntimeLibNSSFunctionPointers is a singleton which caches the results of any // runtime symbol resolution that we need. class RuntimeLibNSSFunctionPointers { public: CacheOCSPResponseFromSideChannelFunction GetCacheOCSPResponseFromSideChannelFunction() { return cache_ocsp_response_from_side_channel_; } static RuntimeLibNSSFunctionPointers* GetInstance() { return Singleton::get(); } private: friend struct DefaultSingletonTraits; RuntimeLibNSSFunctionPointers() { cache_ocsp_response_from_side_channel_ = (CacheOCSPResponseFromSideChannelFunction) dlsym(RTLD_DEFAULT, "CERT_CacheOCSPResponseFromSideChannel"); } CacheOCSPResponseFromSideChannelFunction cache_ocsp_response_from_side_channel_; }; static CacheOCSPResponseFromSideChannelFunction GetCacheOCSPResponseFromSideChannelFunction() { return RuntimeLibNSSFunctionPointers::GetInstance() ->GetCacheOCSPResponseFromSideChannelFunction(); } static bool IsOCSPStaplingSupported() { return GetCacheOCSPResponseFromSideChannelFunction() != NULL; } #else // TODO(agl): Figure out if we can plumb the OCSP response into Mac's system // certificate validation functions. static bool IsOCSPStaplingSupported() { return false; } #endif namespace net { // State machines are easier to debug if you log state transitions. // Enable these if you want to see what's going on. #if 1 #define EnterFunction(x) #define LeaveFunction(x) #define GotoState(s) next_handshake_state_ = s #define LogData(s, len) #else #define EnterFunction(x)\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " enter " << x\ << "; next_handshake_state " << next_handshake_state_ #define LeaveFunction(x)\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " leave " << x\ << "; next_handshake_state " << next_handshake_state_ #define GotoState(s)\ do {\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " jump to state " << s;\ next_handshake_state_ = s;\ } while (0) #define LogData(s, len)\ VLOG(1) << (void *)this << " " << __FUNCTION__\ << " data [" << std::string(s, len) << "]" #endif namespace { #if defined(OS_WIN) // This callback is intended to be used with CertFindChainInStore. In addition // to filtering by extended/enhanced key usage, we do not show expired // certificates and require digital signature usage in the key usage // extension. // // This matches our behavior on Mac OS X and that of NSS. It also matches the // default behavior of IE8. See http://support.microsoft.com/kb/890326 and // http://blogs.msdn.com/b/askie/archive/2009/06/09/my-expired-client-certificates-no-longer-display-when-connecting-to-my-web-server-using-ie8.aspx BOOL WINAPI ClientCertFindCallback(PCCERT_CONTEXT cert_context, void* find_arg) { VLOG(1) << "Calling ClientCertFindCallback from _nss"; // Verify the certificate's KU is good. BYTE key_usage; if (CertGetIntendedKeyUsage(X509_ASN_ENCODING, cert_context->pCertInfo, &key_usage, 1)) { if (!(key_usage & CERT_DIGITAL_SIGNATURE_KEY_USAGE)) return FALSE; } else { DWORD err = GetLastError(); // If |err| is non-zero, it's an actual error. Otherwise the extension // just isn't present, and we treat it as if everything was allowed. if (err) { DLOG(ERROR) << "CertGetIntendedKeyUsage failed: " << err; return FALSE; } } // Verify the current time is within the certificate's validity period. if (CertVerifyTimeValidity(NULL, cert_context->pCertInfo) != 0) return FALSE; // Verify private key metadata is associated with this certificate. DWORD size = 0; if (!CertGetCertificateContextProperty( cert_context, CERT_KEY_PROV_INFO_PROP_ID, NULL, &size)) { return FALSE; } return TRUE; } #endif // PeerCertificateChain is a helper object which extracts the certificate // chain, as given by the server, from an NSS socket and performs the needed // resource management. The first element of the chain is the leaf certificate // and the other elements are in the order given by the server. class PeerCertificateChain { public: explicit PeerCertificateChain(PRFileDesc* nss_fd) : num_certs_(0), certs_(NULL) { SECStatus rv = SSL_PeerCertificateChain(nss_fd, NULL, &num_certs_); DCHECK_EQ(rv, SECSuccess); certs_ = new CERTCertificate*[num_certs_]; const unsigned expected_num_certs = num_certs_; rv = SSL_PeerCertificateChain(nss_fd, certs_, &num_certs_); DCHECK_EQ(rv, SECSuccess); DCHECK_EQ(num_certs_, expected_num_certs); } ~PeerCertificateChain() { for (unsigned i = 0; i < num_certs_; i++) CERT_DestroyCertificate(certs_[i]); delete[] certs_; } unsigned size() const { return num_certs_; } CERTCertificate* operator[](unsigned i) { DCHECK_LT(i, num_certs_); return certs_[i]; } std::vector AsStringPieceVector() const { std::vector v(size()); for (unsigned i = 0; i < size(); i++) { v[i] = base::StringPiece( reinterpret_cast(certs_[i]->derCert.data), certs_[i]->derCert.len); } return v; } private: unsigned num_certs_; CERTCertificate** certs_; }; void DestroyCertificates(CERTCertificate** certs, unsigned len) { for (unsigned i = 0; i < len; i++) CERT_DestroyCertificate(certs[i]); } // DNSValidationResult enumerates the possible outcomes from processing a // set of DNS records. enum DNSValidationResult { DNSVR_SUCCESS, // the cert is immediately acceptable. DNSVR_FAILURE, // the cert is unconditionally rejected. DNSVR_CONTINUE, // perform CA validation as usual. }; // VerifyTXTRecords processes the RRDATA for a number of DNS TXT records and // checks them against the given certificate. // dnssec: if true then the TXT records are DNSSEC validated. In this case, // DNSVR_SUCCESS may be returned. // server_cert_nss: the certificate to validate // rrdatas: the TXT records for the current domain. DNSValidationResult VerifyTXTRecords( bool dnssec, CERTCertificate* server_cert_nss, const std::vector& rrdatas) { bool found_well_formed_record = false; bool matched_record = false; for (std::vector::const_iterator i = rrdatas.begin(); i != rrdatas.end(); ++i) { std::map m( DNSSECChainVerifier::ParseTLSTXTRecord(*i)); if (m.empty()) continue; std::map::const_iterator j; j = m.find("v"); if (j == m.end() || j->second != "tls1") continue; j = m.find("ha"); HASH_HashType hash_algorithm; unsigned hash_length; if (j == m.end() || j->second == "sha1") { hash_algorithm = HASH_AlgSHA1; hash_length = SHA1_LENGTH; } else if (j->second == "sha256") { hash_algorithm = HASH_AlgSHA256; hash_length = SHA256_LENGTH; } else { continue; } j = m.find("h"); if (j == m.end()) continue; std::vector given_hash; if (!base::HexStringToBytes(j->second, &given_hash)) continue; if (given_hash.size() != hash_length) continue; uint8 calculated_hash[SHA256_LENGTH]; // SHA256 is the largest. SECStatus rv; j = m.find("hr"); if (j == m.end() || j->second == "pubkey") { rv = HASH_HashBuf(hash_algorithm, calculated_hash, server_cert_nss->derPublicKey.data, server_cert_nss->derPublicKey.len); } else if (j->second == "cert") { rv = HASH_HashBuf(hash_algorithm, calculated_hash, server_cert_nss->derCert.data, server_cert_nss->derCert.len); } else { continue; } if (rv != SECSuccess) NOTREACHED(); found_well_formed_record = true; if (memcmp(calculated_hash, &given_hash[0], hash_length) == 0) { matched_record = true; if (dnssec) return DNSVR_SUCCESS; } } if (found_well_formed_record && !matched_record) return DNSVR_FAILURE; return DNSVR_CONTINUE; } // CheckDNSSECChain tries to validate a DNSSEC chain embedded in // |server_cert_nss_|. It returns true iff a chain is found that proves the // value of a TXT record that contains a valid public key fingerprint. DNSValidationResult CheckDNSSECChain( const std::string& hostname, CERTCertificate* server_cert_nss) { if (!server_cert_nss) return DNSVR_CONTINUE; // CERT_FindCertExtensionByOID isn't exported so we have to install an OID, // get a tag for it and find the extension by using that tag. static SECOidTag dnssec_chain_tag; static bool dnssec_chain_tag_valid; if (!dnssec_chain_tag_valid) { // It's harmless if multiple threads enter this block concurrently. static const uint8 kDNSSECChainOID[] = // 1.3.6.1.4.1.11129.2.1.4 // (iso.org.dod.internet.private.enterprises.google.googleSecurity. // certificateExtensions.dnssecEmbeddedChain) {0x2b, 0x06, 0x01, 0x04, 0x01, 0xd6, 0x79, 0x02, 0x01, 0x04}; SECOidData oid_data; memset(&oid_data, 0, sizeof(oid_data)); oid_data.oid.data = const_cast(kDNSSECChainOID); oid_data.oid.len = sizeof(kDNSSECChainOID); oid_data.desc = "DNSSEC chain"; oid_data.supportedExtension = SUPPORTED_CERT_EXTENSION; dnssec_chain_tag = SECOID_AddEntry(&oid_data); DCHECK_NE(SEC_OID_UNKNOWN, dnssec_chain_tag); dnssec_chain_tag_valid = true; } SECItem dnssec_embedded_chain; SECStatus rv = CERT_FindCertExtension(server_cert_nss, dnssec_chain_tag, &dnssec_embedded_chain); if (rv != SECSuccess) return DNSVR_CONTINUE; base::StringPiece chain( reinterpret_cast(dnssec_embedded_chain.data), dnssec_embedded_chain.len); std::string dns_hostname; if (!DNSDomainFromDot(hostname, &dns_hostname)) return DNSVR_CONTINUE; DNSSECChainVerifier verifier(dns_hostname, chain); DNSSECChainVerifier::Error err = verifier.Verify(); if (err != DNSSECChainVerifier::OK) { LOG(ERROR) << "DNSSEC chain verification failed: " << err; return DNSVR_CONTINUE; } if (verifier.rrtype() != kDNS_TXT) return DNSVR_CONTINUE; DNSValidationResult r = VerifyTXTRecords( true /* DNSSEC verified */, server_cert_nss, verifier.rrdatas()); SECITEM_FreeItem(&dnssec_embedded_chain, PR_FALSE); return r; } } // namespace SSLClientSocketNSS::SSLClientSocketNSS(ClientSocketHandle* transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config, SSLHostInfo* ssl_host_info, CertVerifier* cert_verifier, DnsCertProvenanceChecker* dns_ctx) : ALLOW_THIS_IN_INITIALIZER_LIST(buffer_send_callback_( this, &SSLClientSocketNSS::BufferSendComplete)), ALLOW_THIS_IN_INITIALIZER_LIST(buffer_recv_callback_( this, &SSLClientSocketNSS::BufferRecvComplete)), transport_send_busy_(false), transport_recv_busy_(false), corked_(false), ALLOW_THIS_IN_INITIALIZER_LIST(handshake_io_callback_( this, &SSLClientSocketNSS::OnHandshakeIOComplete)), transport_(transport_socket), host_and_port_(host_and_port), ssl_config_(ssl_config), user_connect_callback_(NULL), user_read_callback_(NULL), user_write_callback_(NULL), user_read_buf_len_(0), user_write_buf_len_(0), server_cert_nss_(NULL), server_cert_verify_result_(NULL), ssl_connection_status_(0), client_auth_cert_needed_(false), cert_verifier_(cert_verifier), handshake_callback_called_(false), completed_handshake_(false), pseudo_connected_(false), eset_mitm_detected_(false), predicted_cert_chain_correct_(false), peername_initialized_(false), dnssec_provider_(NULL), next_handshake_state_(STATE_NONE), nss_fd_(NULL), nss_bufs_(NULL), net_log_(transport_socket->socket()->NetLog()), predicted_npn_status_(kNextProtoUnsupported), predicted_npn_proto_used_(false), ssl_host_info_(ssl_host_info), dns_cert_checker_(dns_ctx), valid_thread_id_(base::kInvalidThreadId) { EnterFunction(""); } SSLClientSocketNSS::~SSLClientSocketNSS() { EnterFunction(""); Disconnect(); LeaveFunction(""); } // static void SSLClientSocketNSS::ClearSessionCache() { SSL_ClearSessionCache(); } void SSLClientSocketNSS::GetSSLInfo(SSLInfo* ssl_info) { EnterFunction(""); ssl_info->Reset(); if (!server_cert_) { LOG(DFATAL) << "!server_cert_"; return; } ssl_info->cert_status = server_cert_verify_result_->cert_status; DCHECK(server_cert_ != NULL); ssl_info->cert = server_cert_; ssl_info->connection_status = ssl_connection_status_; PRUint16 cipher_suite = SSLConnectionStatusToCipherSuite(ssl_connection_status_); SSLCipherSuiteInfo cipher_info; SECStatus ok = SSL_GetCipherSuiteInfo(cipher_suite, &cipher_info, sizeof(cipher_info)); if (ok == SECSuccess) { ssl_info->security_bits = cipher_info.effectiveKeyBits; } else { ssl_info->security_bits = -1; LOG(DFATAL) << "SSL_GetCipherSuiteInfo returned " << PR_GetError() << " for cipherSuite " << cipher_suite; } LeaveFunction(""); } void SSLClientSocketNSS::GetSSLCertRequestInfo( SSLCertRequestInfo* cert_request_info) { EnterFunction(""); // TODO(rch): switch SSLCertRequestInfo.host_and_port to a HostPortPair cert_request_info->host_and_port = host_and_port_.ToString(); cert_request_info->client_certs = client_certs_; LeaveFunction(cert_request_info->client_certs.size()); } SSLClientSocket::NextProtoStatus SSLClientSocketNSS::GetNextProto(std::string* proto) { #if defined(SSL_NEXT_PROTO_NEGOTIATED) if (!handshake_callback_called_) { DCHECK(pseudo_connected_); predicted_npn_proto_used_ = true; *proto = predicted_npn_proto_; return predicted_npn_status_; } unsigned char buf[255]; int state; unsigned len; SECStatus rv = SSL_GetNextProto(nss_fd_, &state, buf, &len, sizeof(buf)); if (rv != SECSuccess) { NOTREACHED() << "Error return from SSL_GetNextProto: " << rv; proto->clear(); return kNextProtoUnsupported; } // We don't check for truncation because sizeof(buf) is large enough to hold // the maximum protocol size. switch (state) { case SSL_NEXT_PROTO_NO_SUPPORT: proto->clear(); return kNextProtoUnsupported; case SSL_NEXT_PROTO_NEGOTIATED: *proto = std::string(reinterpret_cast(buf), len); return kNextProtoNegotiated; case SSL_NEXT_PROTO_NO_OVERLAP: *proto = std::string(reinterpret_cast(buf), len); return kNextProtoNoOverlap; default: NOTREACHED() << "Unknown status from SSL_GetNextProto: " << state; proto->clear(); return kNextProtoUnsupported; } #else // No NPN support in the libssl that we are building with. proto->clear(); return kNextProtoUnsupported; #endif } void SSLClientSocketNSS::UseDNSSEC(DNSSECProvider* provider) { dnssec_provider_ = provider; } int SSLClientSocketNSS::Connect(CompletionCallback* callback) { EnterFunction(""); DCHECK(transport_.get()); DCHECK(next_handshake_state_ == STATE_NONE); DCHECK(!user_read_callback_); DCHECK(!user_write_callback_); DCHECK(!user_connect_callback_); DCHECK(!user_read_buf_); DCHECK(!user_write_buf_); DCHECK(!pseudo_connected_); EnsureThreadIdAssigned(); net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT, NULL); int rv = Init(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } rv = InitializeSSLOptions(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } // Attempt to initialize the peer name. In the case of TCP FastOpen, // we don't have the peer yet. if (!UsingTCPFastOpen()) { rv = InitializeSSLPeerName(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } } if (ssl_config_.snap_start_enabled && ssl_host_info_.get()) { GotoState(STATE_SNAP_START_LOAD_INFO); } else { GotoState(STATE_HANDSHAKE); } rv = DoHandshakeLoop(OK); if (rv == ERR_IO_PENDING) { if (pseudo_connected_) { net_log_.EndEvent(NetLog::TYPE_SSL_CONNECT, NULL); rv = OK; } else { user_connect_callback_ = callback; } } else { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); } LeaveFunction(""); return rv > OK ? OK : rv; } void SSLClientSocketNSS::Disconnect() { EnterFunction(""); CHECK(CalledOnValidThread()); // Shut down anything that may call us back (through buffer_send_callback_, // buffer_recv_callback, or handshake_io_callback_). verifier_.reset(); transport_->socket()->Disconnect(); // TODO(wtc): Send SSL close_notify alert. if (nss_fd_ != NULL) { PR_Close(nss_fd_); nss_fd_ = NULL; } // Reset object state transport_send_busy_ = false; transport_recv_busy_ = false; user_connect_callback_ = NULL; user_read_callback_ = NULL; user_write_callback_ = NULL; user_read_buf_ = NULL; user_read_buf_len_ = 0; user_write_buf_ = NULL; user_write_buf_len_ = 0; server_cert_ = NULL; if (server_cert_nss_) { CERT_DestroyCertificate(server_cert_nss_); server_cert_nss_ = NULL; } local_server_cert_verify_result_.Reset(); server_cert_verify_result_ = NULL; ssl_connection_status_ = 0; completed_handshake_ = false; pseudo_connected_ = false; eset_mitm_detected_ = false; start_cert_verification_time_ = base::TimeTicks(); predicted_cert_chain_correct_ = false; peername_initialized_ = false; nss_bufs_ = NULL; client_certs_.clear(); client_auth_cert_needed_ = false; LeaveFunction(""); } bool SSLClientSocketNSS::IsConnected() const { // Ideally, we should also check if we have received the close_notify alert // message from the server, and return false in that case. We're not doing // that, so this function may return a false positive. Since the upper // layer (HttpNetworkTransaction) needs to handle a persistent connection // closed by the server when we send a request anyway, a false positive in // exchange for simpler code is a good trade-off. EnterFunction(""); bool ret = (pseudo_connected_ || completed_handshake_) && transport_->socket()->IsConnected(); LeaveFunction(""); return ret; } bool SSLClientSocketNSS::IsConnectedAndIdle() const { // Unlike IsConnected, this method doesn't return a false positive. // // Strictly speaking, we should check if we have received the close_notify // alert message from the server, and return false in that case. Although // the close_notify alert message means EOF in the SSL layer, it is just // bytes to the transport layer below, so // transport_->socket()->IsConnectedAndIdle() returns the desired false // when we receive close_notify. EnterFunction(""); bool ret = (pseudo_connected_ || completed_handshake_) && transport_->socket()->IsConnectedAndIdle(); LeaveFunction(""); return ret; } int SSLClientSocketNSS::GetPeerAddress(AddressList* address) const { return transport_->socket()->GetPeerAddress(address); } const BoundNetLog& SSLClientSocketNSS::NetLog() const { return net_log_; } void SSLClientSocketNSS::SetSubresourceSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetSubresourceSpeculation(); } else { NOTREACHED(); } } void SSLClientSocketNSS::SetOmniboxSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetOmniboxSpeculation(); } else { NOTREACHED(); } } bool SSLClientSocketNSS::WasEverUsed() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->WasEverUsed(); } NOTREACHED(); return false; } bool SSLClientSocketNSS::UsingTCPFastOpen() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->UsingTCPFastOpen(); } NOTREACHED(); return false; } int SSLClientSocketNSS::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { EnterFunction(buf_len); DCHECK(!user_read_callback_); DCHECK(!user_connect_callback_); DCHECK(!user_read_buf_); DCHECK(nss_bufs_); user_read_buf_ = buf; user_read_buf_len_ = buf_len; if (!completed_handshake_) { // In this case we have lied about being connected in order to merge the // first Write into a Snap Start handshake. We'll leave the read hanging // until the handshake has completed. DCHECK(pseudo_connected_); user_read_callback_ = callback; LeaveFunction(ERR_IO_PENDING); return ERR_IO_PENDING; } int rv = DoReadLoop(OK); if (rv == ERR_IO_PENDING) { user_read_callback_ = callback; } else { user_read_buf_ = NULL; user_read_buf_len_ = 0; } LeaveFunction(rv); return rv; } int SSLClientSocketNSS::Write(IOBuffer* buf, int buf_len, CompletionCallback* callback) { EnterFunction(buf_len); if (!pseudo_connected_) { DCHECK(completed_handshake_); DCHECK(next_handshake_state_ == STATE_NONE); DCHECK(!user_connect_callback_); } DCHECK(!user_write_callback_); DCHECK(!user_write_buf_); DCHECK(nss_bufs_); user_write_buf_ = buf; user_write_buf_len_ = buf_len; if (next_handshake_state_ == STATE_SNAP_START_WAIT_FOR_WRITE) { // We lied about being connected and we have been waiting for this write in // order to merge it into the Snap Start handshake. We'll leave the write // pending until the handshake completes. DCHECK(pseudo_connected_); int rv = DoHandshakeLoop(OK); if (rv == ERR_IO_PENDING) { user_write_callback_ = callback; } else { user_write_buf_ = NULL; user_write_buf_len_ = 0; } if (rv != OK) return rv; } if (corked_) { corked_ = false; uncork_timer_.Reset(); } int rv = DoWriteLoop(OK); if (rv == ERR_IO_PENDING) { user_write_callback_ = callback; } else { user_write_buf_ = NULL; user_write_buf_len_ = 0; } LeaveFunction(rv); return rv; } bool SSLClientSocketNSS::SetReceiveBufferSize(int32 size) { return transport_->socket()->SetReceiveBufferSize(size); } bool SSLClientSocketNSS::SetSendBufferSize(int32 size) { return transport_->socket()->SetSendBufferSize(size); } int SSLClientSocketNSS::Init() { EnterFunction(""); // Initialize the NSS SSL library in a threadsafe way. This also // initializes the NSS base library. EnsureNSSSSLInit(); if (!NSS_IsInitialized()) return ERR_UNEXPECTED; #if !defined(OS_MACOSX) && !defined(OS_WIN) // We must call EnsureOCSPInit() here, on the IO thread, to get the IO loop // by MessageLoopForIO::current(). // X509Certificate::Verify() runs on a worker thread of CertVerifier. EnsureOCSPInit(); #endif LeaveFunction(""); return OK; } int SSLClientSocketNSS::InitializeSSLOptions() { // Transport connected, now hook it up to nss // TODO(port): specify rx and tx buffer sizes separately nss_fd_ = memio_CreateIOLayer(kRecvBufferSize); if (nss_fd_ == NULL) { return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR error code. } // Grab pointer to buffers nss_bufs_ = memio_GetSecret(nss_fd_); /* Create SSL state machine */ /* Push SSL onto our fake I/O socket */ nss_fd_ = SSL_ImportFD(NULL, nss_fd_); if (nss_fd_ == NULL) { LogFailedNSSFunction(net_log_, "SSL_ImportFD", ""); return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR/NSS error code. } // TODO(port): set more ssl options! Check errors! int rv; rv = SSL_OptionSet(nss_fd_, SSL_SECURITY, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_SECURITY"); return ERR_UNEXPECTED; } rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL2, PR_FALSE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL2"); return ERR_UNEXPECTED; } // Don't do V2 compatible hellos because they don't support TLS extensions. rv = SSL_OptionSet(nss_fd_, SSL_V2_COMPATIBLE_HELLO, PR_FALSE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_V2_COMPATIBLE_HELLO"); return ERR_UNEXPECTED; } rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL3, ssl_config_.ssl3_enabled); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL3"); return ERR_UNEXPECTED; } rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_TLS, ssl_config_.tls1_enabled); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_TLS"); return ERR_UNEXPECTED; } for (std::vector::const_iterator it = ssl_config_.disabled_cipher_suites.begin(); it != ssl_config_.disabled_cipher_suites.end(); ++it) { // This will fail if the specified cipher is not implemented by NSS, but // the failure is harmless. SSL_CipherPrefSet(nss_fd_, *it, PR_FALSE); } #ifdef SSL_ENABLE_SESSION_TICKETS // Support RFC 5077 rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SESSION_TICKETS, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction( net_log_, "SSL_OptionSet", "SSL_ENABLE_SESSION_TICKETS"); } #else #error "You need to install NSS-3.12 or later to build chromium" #endif #ifdef SSL_ENABLE_DEFLATE // Some web servers have been found to break if TLS is used *or* if DEFLATE // is advertised. Thus, if TLS is disabled (probably because we are doing // SSLv3 fallback), we disable DEFLATE also. // See http://crbug.com/31628 rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_DEFLATE, ssl_config_.tls1_enabled); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_DEFLATE"); #endif #ifdef SSL_ENABLE_FALSE_START rv = SSL_OptionSet( nss_fd_, SSL_ENABLE_FALSE_START, ssl_config_.false_start_enabled && !SSLConfigService::IsKnownFalseStartIncompatibleServer( host_and_port_.host())); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_FALSE_START"); #endif #ifdef SSL_ENABLE_SNAP_START // TODO(agl): check that SSL_ENABLE_SNAP_START actually does something in the // current NSS code. rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SNAP_START, ssl_config_.snap_start_enabled); if (rv != SECSuccess) VLOG(1) << "SSL_ENABLE_SNAP_START failed. Old system nss?"; #endif #ifdef SSL_ENABLE_RENEGOTIATION // We allow servers to request renegotiation. Since we're a client, // prohibiting this is rather a waste of time. Only servers are in a // position to prevent renegotiation attacks. // http://extendedsubset.com/?p=8 rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_RENEGOTIATION, SSL_RENEGOTIATE_TRANSITIONAL); if (rv != SECSuccess) { LogFailedNSSFunction( net_log_, "SSL_OptionSet", "SSL_ENABLE_RENEGOTIATION"); } #endif // SSL_ENABLE_RENEGOTIATION #ifdef SSL_NEXT_PROTO_NEGOTIATED if (!ssl_config_.next_protos.empty()) { rv = SSL_SetNextProtoNego( nss_fd_, reinterpret_cast(ssl_config_.next_protos.data()), ssl_config_.next_protos.size()); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_SetNextProtoNego", ""); } #endif #ifdef SSL_ENABLE_OCSP_STAPLING if (IsOCSPStaplingSupported() && !ssl_config_.snap_start_enabled) { rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_OCSP_STAPLING, PR_TRUE); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet (OCSP stapling)", ""); } #endif rv = SSL_OptionSet(nss_fd_, SSL_HANDSHAKE_AS_CLIENT, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_HANDSHAKE_AS_CLIENT"); return ERR_UNEXPECTED; } rv = SSL_AuthCertificateHook(nss_fd_, OwnAuthCertHandler, this); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_AuthCertificateHook", ""); return ERR_UNEXPECTED; } #if defined(NSS_PLATFORM_CLIENT_AUTH) rv = SSL_GetPlatformClientAuthDataHook(nss_fd_, PlatformClientAuthHandler, this); #else rv = SSL_GetClientAuthDataHook(nss_fd_, ClientAuthHandler, this); #endif if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_GetClientAuthDataHook", ""); return ERR_UNEXPECTED; } rv = SSL_HandshakeCallback(nss_fd_, HandshakeCallback, this); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_HandshakeCallback", ""); return ERR_UNEXPECTED; } // Tell SSL the hostname we're trying to connect to. SSL_SetURL(nss_fd_, host_and_port_.host().c_str()); // Tell SSL we're a client; needed if not letting NSPR do socket I/O SSL_ResetHandshake(nss_fd_, 0); return OK; } int SSLClientSocketNSS::InitializeSSLPeerName() { // Tell NSS who we're connected to AddressList peer_address; int err = transport_->socket()->GetPeerAddress(&peer_address); if (err != OK) return err; const struct addrinfo* ai = peer_address.head(); PRNetAddr peername; memset(&peername, 0, sizeof(peername)); DCHECK_LE(ai->ai_addrlen, sizeof(peername)); size_t len = std::min(static_cast(ai->ai_addrlen), sizeof(peername)); memcpy(&peername, ai->ai_addr, len); // Adjust the address family field for BSD, whose sockaddr // structure has a one-byte length and one-byte address family // field at the beginning. PRNetAddr has a two-byte address // family field at the beginning. peername.raw.family = ai->ai_addr->sa_family; memio_SetPeerName(nss_fd_, &peername); // Set the peer ID for session reuse. This is necessary when we create an // SSL tunnel through a proxy -- GetPeerName returns the proxy's address // rather than the destination server's address in that case. std::string peer_id = host_and_port_.ToString(); SECStatus rv = SSL_SetSockPeerID(nss_fd_, const_cast(peer_id.c_str())); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_SetSockPeerID", peer_id.c_str()); peername_initialized_ = true; return OK; } // Sets server_cert_ and server_cert_nss_ if not yet set. // Returns server_cert_. X509Certificate *SSLClientSocketNSS::UpdateServerCert() { // We set the server_cert_ from HandshakeCallback(). if (server_cert_ == NULL) { server_cert_nss_ = SSL_PeerCertificate(nss_fd_); if (server_cert_nss_) { PeerCertificateChain certs(nss_fd_); server_cert_ = X509Certificate::CreateFromDERCertChain( certs.AsStringPieceVector()); } } return server_cert_; } // Sets ssl_connection_status_. void SSLClientSocketNSS::UpdateConnectionStatus() { SSLChannelInfo channel_info; SECStatus ok = SSL_GetChannelInfo(nss_fd_, &channel_info, sizeof(channel_info)); if (ok == SECSuccess && channel_info.length == sizeof(channel_info) && channel_info.cipherSuite) { ssl_connection_status_ |= (static_cast(channel_info.cipherSuite) & SSL_CONNECTION_CIPHERSUITE_MASK) << SSL_CONNECTION_CIPHERSUITE_SHIFT; ssl_connection_status_ |= (static_cast(channel_info.compressionMethod) & SSL_CONNECTION_COMPRESSION_MASK) << SSL_CONNECTION_COMPRESSION_SHIFT; // NSS 3.12.x doesn't have version macros for TLS 1.1 and 1.2 (because NSS // doesn't support them yet), so we use 0x0302 and 0x0303 directly. int version = SSL_CONNECTION_VERSION_UNKNOWN; if (channel_info.protocolVersion < SSL_LIBRARY_VERSION_3_0) { // All versions less than SSL_LIBRARY_VERSION_3_0 are treated as SSL // version 2. version = SSL_CONNECTION_VERSION_SSL2; } else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_0) { version = SSL_CONNECTION_VERSION_SSL3; } else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_1_TLS) { version = SSL_CONNECTION_VERSION_TLS1; } else if (channel_info.protocolVersion == 0x0302) { version = SSL_CONNECTION_VERSION_TLS1_1; } else if (channel_info.protocolVersion == 0x0303) { version = SSL_CONNECTION_VERSION_TLS1_2; } ssl_connection_status_ |= (version & SSL_CONNECTION_VERSION_MASK) << SSL_CONNECTION_VERSION_SHIFT; } // SSL_HandshakeNegotiatedExtension was added in NSS 3.12.6. // Since SSL_MAX_EXTENSIONS was added at the same time, we can test // SSL_MAX_EXTENSIONS for the presence of SSL_HandshakeNegotiatedExtension. #if defined(SSL_MAX_EXTENSIONS) PRBool peer_supports_renego_ext; ok = SSL_HandshakeNegotiatedExtension(nss_fd_, ssl_renegotiation_info_xtn, &peer_supports_renego_ext); if (ok == SECSuccess) { if (!peer_supports_renego_ext) { ssl_connection_status_ |= SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION; // Log an informational message if the server does not support secure // renegotiation (RFC 5746). VLOG(1) << "The server " << host_and_port_.ToString() << " does not support the TLS renegotiation_info extension."; } UMA_HISTOGRAM_ENUMERATION("Net.RenegotiationExtensionSupported", peer_supports_renego_ext, 2); } #endif if (ssl_config_.ssl3_fallback) ssl_connection_status_ |= SSL_CONNECTION_SSL3_FALLBACK; } void SSLClientSocketNSS::DoReadCallback(int rv) { EnterFunction(rv); DCHECK(rv != ERR_IO_PENDING); DCHECK(user_read_callback_); // Since Run may result in Read being called, clear |user_read_callback_| // up front. CompletionCallback* c = user_read_callback_; user_read_callback_ = NULL; user_read_buf_ = NULL; user_read_buf_len_ = 0; c->Run(rv); LeaveFunction(""); } void SSLClientSocketNSS::DoWriteCallback(int rv) { EnterFunction(rv); DCHECK(rv != ERR_IO_PENDING); DCHECK(user_write_callback_); // Since Run may result in Write being called, clear |user_write_callback_| // up front. CompletionCallback* c = user_write_callback_; user_write_callback_ = NULL; user_write_buf_ = NULL; user_write_buf_len_ = 0; c->Run(rv); LeaveFunction(""); } // As part of Connect(), the SSLClientSocketNSS object performs an SSL // handshake. This requires network IO, which in turn calls // BufferRecvComplete() with a non-zero byte count. This byte count eventually // winds its way through the state machine and ends up being passed to the // callback. For Read() and Write(), that's what we want. But for Connect(), // the caller expects OK (i.e. 0) for success. // void SSLClientSocketNSS::DoConnectCallback(int rv) { EnterFunction(rv); DCHECK_NE(rv, ERR_IO_PENDING); CompletionCallback* c = user_connect_callback_; user_connect_callback_ = NULL; c->Run(rv > OK ? OK : rv); LeaveFunction(""); } void SSLClientSocketNSS::OnHandshakeIOComplete(int result) { EnterFunction(result); int rv = DoHandshakeLoop(result); if (rv != ERR_IO_PENDING) { net_log_.EndEventWithNetErrorCode(net::NetLog::TYPE_SSL_CONNECT, rv); // If we pseudo connected for Snap Start, then we won't have a connect // callback. if (user_connect_callback_) DoConnectCallback(rv); } LeaveFunction(""); } void SSLClientSocketNSS::OnSendComplete(int result) { EnterFunction(result); if (next_handshake_state_ == STATE_HANDSHAKE) { // In handshake phase. OnHandshakeIOComplete(result); LeaveFunction(""); return; } // OnSendComplete may need to call DoPayloadRead while the renegotiation // handshake is in progress. int rv_read = ERR_IO_PENDING; int rv_write = ERR_IO_PENDING; bool network_moved; do { if (user_read_buf_) rv_read = DoPayloadRead(); if (user_write_buf_) rv_write = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv_read == ERR_IO_PENDING && rv_write == ERR_IO_PENDING && network_moved); if (user_read_buf_ && rv_read != ERR_IO_PENDING) DoReadCallback(rv_read); if (user_write_buf_ && rv_write != ERR_IO_PENDING) DoWriteCallback(rv_write); LeaveFunction(""); } void SSLClientSocketNSS::OnRecvComplete(int result) { EnterFunction(result); if (next_handshake_state_ == STATE_HANDSHAKE) { // In handshake phase. OnHandshakeIOComplete(result); LeaveFunction(""); return; } // Network layer received some data, check if client requested to read // decrypted data or if we're waiting for the first write for Snap Start. if (!user_read_buf_ || !completed_handshake_) { LeaveFunction(""); return; } int rv = DoReadLoop(result); if (rv != ERR_IO_PENDING) DoReadCallback(rv); LeaveFunction(""); } int SSLClientSocketNSS::DoHandshakeLoop(int last_io_result) { EnterFunction(last_io_result); bool network_moved; int rv = last_io_result; do { // Default to STATE_NONE for next state. // (This is a quirk carried over from the windows // implementation. It makes reading the logs a bit harder.) // State handlers can and often do call GotoState just // to stay in the current state. State state = next_handshake_state_; GotoState(STATE_NONE); switch (state) { case STATE_NONE: // we're just pumping data between the buffer and the network break; case STATE_SNAP_START_LOAD_INFO: rv = DoSnapStartLoadInfo(); break; case STATE_SNAP_START_WAIT_FOR_WRITE: rv = DoSnapStartWaitForWrite(); break; case STATE_HANDSHAKE: rv = DoHandshake(); break; case STATE_VERIFY_DNSSEC: rv = DoVerifyDNSSEC(rv); break; case STATE_VERIFY_DNSSEC_COMPLETE: rv = DoVerifyDNSSECComplete(rv); break; case STATE_VERIFY_CERT: DCHECK(rv == OK); rv = DoVerifyCert(rv); break; case STATE_VERIFY_CERT_COMPLETE: rv = DoVerifyCertComplete(rv); break; default: rv = ERR_UNEXPECTED; LOG(DFATAL) << "unexpected state " << state; break; } // Do the actual network I/O network_moved = DoTransportIO(); } while ((rv != ERR_IO_PENDING || network_moved) && next_handshake_state_ != STATE_NONE); LeaveFunction(""); return rv; } int SSLClientSocketNSS::DoReadLoop(int result) { EnterFunction(""); DCHECK(completed_handshake_); DCHECK(next_handshake_state_ == STATE_NONE); if (result < 0) return result; if (!nss_bufs_) { LOG(DFATAL) << "!nss_bufs_"; int rv = ERR_UNEXPECTED; net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR, make_scoped_refptr(new SSLErrorParams(rv, 0))); return rv; } bool network_moved; int rv; do { rv = DoPayloadRead(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); LeaveFunction(""); return rv; } int SSLClientSocketNSS::DoWriteLoop(int result) { EnterFunction(""); DCHECK(completed_handshake_); DCHECK(next_handshake_state_ == STATE_NONE); if (result < 0) return result; if (!nss_bufs_) { LOG(DFATAL) << "!nss_bufs_"; int rv = ERR_UNEXPECTED; net_log_.AddEvent(NetLog::TYPE_SSL_WRITE_ERROR, make_scoped_refptr(new SSLErrorParams(rv, 0))); return rv; } bool network_moved; int rv; do { rv = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); LeaveFunction(""); return rv; } int SSLClientSocketNSS::DoSnapStartLoadInfo() { EnterFunction(""); int rv = ssl_host_info_->WaitForDataReady(&handshake_io_callback_); GotoState(STATE_HANDSHAKE); if (rv == OK) { if (ssl_host_info_->WaitForCertVerification(NULL) == OK) { if (LoadSnapStartInfo()) { pseudo_connected_ = true; GotoState(STATE_SNAP_START_WAIT_FOR_WRITE); if (user_connect_callback_) DoConnectCallback(OK); } } else if (!ssl_host_info_->state().server_hello.empty()) { // A non-empty ServerHello suggests that we would have tried a Snap Start // connection. base::TimeTicks now = base::TimeTicks::Now(); const base::TimeDelta duration = now - ssl_host_info_->verification_start_time(); UMA_HISTOGRAM_TIMES("Net.SSLSnapStartNeededVerificationInMs", duration); VLOG(1) << "Cannot snap start because verification isn't ready. " << "Wanted verification after " << duration.InMilliseconds() << "ms"; } } else { DCHECK_EQ(ERR_IO_PENDING, rv); GotoState(STATE_SNAP_START_LOAD_INFO); } LeaveFunction(""); return rv; } int SSLClientSocketNSS::DoSnapStartWaitForWrite() { EnterFunction(""); // In this state, we're waiting for the first Write call so that we can merge // it into the Snap Start handshake. if (!user_write_buf_) { // We'll lie and say that we're connected in order that someone will call // Write. GotoState(STATE_SNAP_START_WAIT_FOR_WRITE); DCHECK(!user_connect_callback_); LeaveFunction(""); return ERR_IO_PENDING; } // This is the largest Snap Start application data payload that we'll try to // use. A TCP client can only send three frames of data without an ACK and, // at 2048 bytes, this leaves some space for the rest of the ClientHello // (including possible session ticket). static const int kMaxSnapStartPayloadSize = 2048; if (user_write_buf_len_ > kMaxSnapStartPayloadSize) { user_write_buf_len_ = kMaxSnapStartPayloadSize; // When we complete the handshake and call user_write_callback_ we'll say // that we only wrote |kMaxSnapStartPayloadSize| bytes. That way the rest // of the payload will be presented to |Write| again and transmitted as // normal application data. } SECStatus rv = SSL_SetSnapStartApplicationData( nss_fd_, reinterpret_cast(user_write_buf_->data()), user_write_buf_len_); DCHECK_EQ(SECSuccess, rv); GotoState(STATE_HANDSHAKE); LeaveFunction(""); return OK; } int SSLClientSocketNSS::DoHandshake() { EnterFunction(""); int net_error = net::OK; SECStatus rv = SSL_ForceHandshake(nss_fd_); if (client_auth_cert_needed_) { net_error = ERR_SSL_CLIENT_AUTH_CERT_NEEDED; net_log_.AddEvent(NetLog::TYPE_SSL_HANDSHAKE_ERROR, make_scoped_refptr(new SSLErrorParams(net_error, 0))); // If the handshake already succeeded (because the server requests but // doesn't require a client cert), we need to invalidate the SSL session // so that we won't try to resume the non-client-authenticated session in // the next handshake. This will cause the server to ask for a client // cert again. if (rv == SECSuccess && SSL_InvalidateSession(nss_fd_) != SECSuccess) { LOG(WARNING) << "Couldn't invalidate SSL session: " << PR_GetError(); } } else if (rv == SECSuccess) { if (handshake_callback_called_) { if (eset_mitm_detected_) { net_error = ERR_ESET_ANTI_VIRUS_SSL_INTERCEPTION; } else { // We need to see if the predicted certificate chain (in // |ssl_host_info_->state().certs) matches the actual certificate chain // before we call SaveSnapStartInfo, as that will update // |ssl_host_info_|. if (ssl_host_info_.get() && !ssl_host_info_->state().certs.empty()) { PeerCertificateChain certs(nss_fd_); const SSLHostInfo::State& state = ssl_host_info_->state(); predicted_cert_chain_correct_ = certs.size() == state.certs.size(); if (predicted_cert_chain_correct_) { for (unsigned i = 0; i < certs.size(); i++) { if (certs[i]->derCert.len != state.certs[i].size() || memcmp(certs[i]->derCert.data, state.certs[i].data(), certs[i]->derCert.len) != 0) { predicted_cert_chain_correct_ = false; break; } } } } #if defined(SSL_ENABLE_OCSP_STAPLING) // TODO(agl): figure out how to plumb an OCSP response into the Mac // system library and update IsOCSPStaplingSupported for Mac. if (!predicted_cert_chain_correct_ && IsOCSPStaplingSupported()) { unsigned int len = 0; SSL_GetStapledOCSPResponse(nss_fd_, NULL, &len); if (len) { const unsigned int orig_len = len; scoped_array ocsp_response(new uint8[orig_len]); SSL_GetStapledOCSPResponse(nss_fd_, ocsp_response.get(), &len); DCHECK_EQ(orig_len, len); #if defined(OS_WIN) CRYPT_DATA_BLOB ocsp_response_blob; ocsp_response_blob.cbData = len; ocsp_response_blob.pbData = ocsp_response.get(); BOOL ok = CertSetCertificateContextProperty( server_cert_->os_cert_handle(), CERT_OCSP_RESPONSE_PROP_ID, CERT_SET_PROPERTY_IGNORE_PERSIST_ERROR_FLAG, &ocsp_response_blob); if (!ok) { VLOG(1) << "Failed to set OCSP response property: " << GetLastError(); } #elif defined(USE_NSS) CacheOCSPResponseFromSideChannelFunction cache_ocsp_response = GetCacheOCSPResponseFromSideChannelFunction(); SECItem ocsp_response_item; ocsp_response_item.type = siBuffer; ocsp_response_item.data = ocsp_response.get(); ocsp_response_item.len = len; cache_ocsp_response( CERT_GetDefaultCertDB(), server_cert_nss_, PR_Now(), &ocsp_response_item, NULL); #endif } } #endif SaveSnapStartInfo(); // SSL handshake is completed. It's possible that we mispredicted the // NPN agreed protocol. In this case, we've just sent a request in the // wrong protocol! The higher levels of this network stack aren't // prepared for switching the protocol like that so we make up an error // and rely on the fact that the request will be retried. if (IsNPNProtocolMispredicted()) { LOG(WARNING) << "Mispredicted NPN protocol for " << host_and_port_.ToString(); net_error = ERR_SSL_SNAP_START_NPN_MISPREDICTION; } else { // Let's verify the certificate. GotoState(STATE_VERIFY_DNSSEC); } } // Done! } else { // Workaround for https://bugzilla.mozilla.org/show_bug.cgi?id=562434 - // SSL_ForceHandshake returned SECSuccess prematurely. rv = SECFailure; net_error = ERR_SSL_PROTOCOL_ERROR; net_log_.AddEvent(NetLog::TYPE_SSL_HANDSHAKE_ERROR, make_scoped_refptr(new SSLErrorParams(net_error, 0))); } } else { PRErrorCode prerr = PR_GetError(); net_error = HandleNSSError(prerr, true); // If not done, stay in this state if (net_error == ERR_IO_PENDING) { GotoState(STATE_HANDSHAKE); } else { LOG(ERROR) << "handshake failed; NSS error code " << prerr << ", net_error " << net_error; net_log_.AddEvent( NetLog::TYPE_SSL_HANDSHAKE_ERROR, make_scoped_refptr(new SSLErrorParams(net_error, prerr))); } } LeaveFunction(""); return net_error; } int SSLClientSocketNSS::DoVerifyDNSSEC(int result) { if (ssl_config_.dns_cert_provenance_checking_enabled && dns_cert_checker_) { PeerCertificateChain certs(nss_fd_); dns_cert_checker_->DoAsyncVerification( host_and_port_.host(), certs.AsStringPieceVector()); } if (ssl_config_.dnssec_enabled) { DNSValidationResult r = CheckDNSSECChain(host_and_port_.host(), server_cert_nss_); if (r == DNSVR_SUCCESS) { local_server_cert_verify_result_.cert_status |= CERT_STATUS_IS_DNSSEC; server_cert_verify_result_ = &local_server_cert_verify_result_; GotoState(STATE_VERIFY_CERT_COMPLETE); return OK; } } if (dnssec_provider_ == NULL) { GotoState(STATE_VERIFY_CERT); return OK; } GotoState(STATE_VERIFY_DNSSEC_COMPLETE); RRResponse* response; dnssec_wait_start_time_ = base::Time::Now(); return dnssec_provider_->GetDNSSECRecords(&response, &handshake_io_callback_); } int SSLClientSocketNSS::DoVerifyDNSSECComplete(int result) { RRResponse* response; int err = dnssec_provider_->GetDNSSECRecords(&response, NULL); DCHECK_EQ(err, OK); const base::TimeDelta elapsed = base::Time::Now() - dnssec_wait_start_time_; HISTOGRAM_TIMES("Net.DNSSECWaitTime", elapsed); GotoState(STATE_VERIFY_CERT); if (!response || response->rrdatas.empty()) return OK; std::vector records; records.resize(response->rrdatas.size()); for (unsigned i = 0; i < response->rrdatas.size(); i++) records[i] = base::StringPiece(response->rrdatas[i]); DNSValidationResult r = VerifyTXTRecords(response->dnssec, server_cert_nss_, records); if (!ssl_config_.dnssec_enabled) { // If DNSSEC is not enabled we don't take any action based on the result, // except to record the latency, above. return OK; } switch (r) { case DNSVR_FAILURE: GotoState(STATE_VERIFY_CERT_COMPLETE); local_server_cert_verify_result_.cert_status |= CERT_STATUS_NOT_IN_DNS; server_cert_verify_result_ = &local_server_cert_verify_result_; return ERR_CERT_NOT_IN_DNS; case DNSVR_CONTINUE: GotoState(STATE_VERIFY_CERT); break; case DNSVR_SUCCESS: local_server_cert_verify_result_.cert_status |= CERT_STATUS_IS_DNSSEC; server_cert_verify_result_ = &local_server_cert_verify_result_; GotoState(STATE_VERIFY_CERT_COMPLETE); break; default: NOTREACHED(); GotoState(STATE_VERIFY_CERT); } return OK; } int SSLClientSocketNSS::DoVerifyCert(int result) { DCHECK(server_cert_); GotoState(STATE_VERIFY_CERT_COMPLETE); start_cert_verification_time_ = base::TimeTicks::Now(); if (ssl_host_info_.get() && !ssl_host_info_->state().certs.empty() && predicted_cert_chain_correct_) { // If the SSLHostInfo had a prediction for the certificate chain of this // server then it will have optimistically started a verification of that // chain. So, if the prediction was correct, we should wait for that // verification to finish rather than start our own. net_log_.AddEvent(NetLog::TYPE_SSL_VERIFICATION_MERGED, NULL); UMA_HISTOGRAM_ENUMERATION("Net.SSLVerificationMerged", 1 /* true */, 2); base::TimeTicks end_time = ssl_host_info_->verification_end_time(); if (end_time.is_null()) end_time = base::TimeTicks::Now(); UMA_HISTOGRAM_TIMES("Net.SSLVerificationMergedMsSaved", end_time - ssl_host_info_->verification_start_time()); server_cert_verify_result_ = &ssl_host_info_->cert_verify_result(); return ssl_host_info_->WaitForCertVerification(&handshake_io_callback_); } else { UMA_HISTOGRAM_ENUMERATION("Net.SSLVerificationMerged", 0 /* false */, 2); } int flags = 0; if (ssl_config_.rev_checking_enabled) flags |= X509Certificate::VERIFY_REV_CHECKING_ENABLED; if (ssl_config_.verify_ev_cert) flags |= X509Certificate::VERIFY_EV_CERT; verifier_.reset(new SingleRequestCertVerifier(cert_verifier_)); server_cert_verify_result_ = &local_server_cert_verify_result_; return verifier_->Verify(server_cert_, host_and_port_.host(), flags, &local_server_cert_verify_result_, &handshake_io_callback_); } // Derived from AuthCertificateCallback() in // mozilla/source/security/manager/ssl/src/nsNSSCallbacks.cpp. int SSLClientSocketNSS::DoVerifyCertComplete(int result) { verifier_.reset(); if (!start_cert_verification_time_.is_null()) { base::TimeDelta verify_time = base::TimeTicks::Now() - start_cert_verification_time_; if (result == OK) UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time); else UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time); } // We used to remember the intermediate CA certs in the NSS database // persistently. However, NSS opens a connection to the SQLite database // during NSS initialization and doesn't close the connection until NSS // shuts down. If the file system where the database resides is gone, // the database connection goes bad. What's worse, the connection won't // recover when the file system comes back. Until this NSS or SQLite bug // is fixed, we need to avoid using the NSS database for non-essential // purposes. See https://bugzilla.mozilla.org/show_bug.cgi?id=508081 and // http://crbug.com/15630 for more info. // If we have been explicitly told to accept this certificate, override the // result of verifier_.Verify. // Eventually, we should cache the cert verification results so that we don't // need to call verifier_.Verify repeatedly. But for now we need to do this. // Alternatively, we could use the cert's status that we stored along with // the cert in the allowed_bad_certs vector. if (IsCertificateError(result) && ssl_config_.IsAllowedBadCert(server_cert_)) { VLOG(1) << "accepting bad SSL certificate, as user told us to"; result = OK; } if (result == OK) LogConnectionTypeMetrics(); completed_handshake_ = true; // If we merged a Write call into the handshake we need to make the // callback now. if (user_write_callback_) { corked_ = false; if (result != OK) { DoWriteCallback(result); } else { SSLSnapStartResult snap_start_type; SECStatus rv = SSL_GetSnapStartResult(nss_fd_, &snap_start_type); DCHECK_EQ(rv, SECSuccess); DCHECK_NE(snap_start_type, SSL_SNAP_START_NONE); if (snap_start_type == SSL_SNAP_START_RECOVERY || snap_start_type == SSL_SNAP_START_RESUME_RECOVERY) { // If we mispredicted the server's handshake then Snap Start will have // triggered a recovery mode. The misprediction could have been caused // by the server having a different certificate so the application data // wasn't resent. Now that we have verified the certificate, we need to // resend the application data. int bytes_written = DoPayloadWrite(); if (bytes_written != ERR_IO_PENDING) DoWriteCallback(bytes_written); } else { DoWriteCallback(user_write_buf_len_); } } } if (user_read_callback_) { int rv = DoReadLoop(OK); if (rv != ERR_IO_PENDING) DoReadCallback(rv); } // Exit DoHandshakeLoop and return the result to the caller to Connect. DCHECK(next_handshake_state_ == STATE_NONE); return result; } int SSLClientSocketNSS::DoPayloadRead() { EnterFunction(user_read_buf_len_); DCHECK(user_read_buf_); DCHECK_GT(user_read_buf_len_, 0); int rv = PR_Read(nss_fd_, user_read_buf_->data(), user_read_buf_len_); if (client_auth_cert_needed_) { // We don't need to invalidate the non-client-authenticated SSL session // because the server will renegotiate anyway. LeaveFunction(""); rv = ERR_SSL_CLIENT_AUTH_CERT_NEEDED; net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR, make_scoped_refptr(new SSLErrorParams(rv, 0))); return rv; } if (rv >= 0) { LogData(user_read_buf_->data(), rv); LeaveFunction(""); return rv; } PRErrorCode prerr = PR_GetError(); if (prerr == PR_WOULD_BLOCK_ERROR) { LeaveFunction(""); return ERR_IO_PENDING; } LeaveFunction(""); rv = HandleNSSError(prerr, false); net_log_.AddEvent(NetLog::TYPE_SSL_READ_ERROR, make_scoped_refptr(new SSLErrorParams(rv, prerr))); return rv; } int SSLClientSocketNSS::DoPayloadWrite() { EnterFunction(user_write_buf_len_); DCHECK(user_write_buf_); int rv = PR_Write(nss_fd_, user_write_buf_->data(), user_write_buf_len_); if (rv >= 0) { LogData(user_write_buf_->data(), rv); LeaveFunction(""); return rv; } PRErrorCode prerr = PR_GetError(); if (prerr == PR_WOULD_BLOCK_ERROR) { LeaveFunction(""); return ERR_IO_PENDING; } LeaveFunction(""); rv = HandleNSSError(prerr, false); net_log_.AddEvent(NetLog::TYPE_SSL_WRITE_ERROR, make_scoped_refptr(new SSLErrorParams(rv, prerr))); return rv; } void SSLClientSocketNSS::LogConnectionTypeMetrics() const { UpdateConnectionTypeHistograms(CONNECTION_SSL); if (server_cert_verify_result_->has_md5) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5); if (server_cert_verify_result_->has_md2) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2); if (server_cert_verify_result_->has_md4) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD4); if (server_cert_verify_result_->has_md5_ca) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5_CA); if (server_cert_verify_result_->has_md2_ca) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2_CA); int ssl_version = SSLConnectionStatusToVersion(ssl_connection_status_); switch (ssl_version) { case SSL_CONNECTION_VERSION_SSL2: UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL2); break; case SSL_CONNECTION_VERSION_SSL3: UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL3); break; case SSL_CONNECTION_VERSION_TLS1: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1); break; case SSL_CONNECTION_VERSION_TLS1_1: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_1); break; case SSL_CONNECTION_VERSION_TLS1_2: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_2); break; }; } // SaveSnapStartInfo extracts the information needed to perform a Snap Start // with this server in the future (if any) and tells |ssl_host_info_| to // preserve it. void SSLClientSocketNSS::SaveSnapStartInfo() { if (!ssl_host_info_.get()) return; // If the SSLHostInfo hasn't managed to load from disk yet then we can't save // anything. if (ssl_host_info_->WaitForDataReady(NULL) != OK) return; SECStatus rv; SSLSnapStartResult snap_start_type; rv = SSL_GetSnapStartResult(nss_fd_, &snap_start_type); if (rv != SECSuccess) { NOTREACHED(); return; } net_log_.AddEvent(NetLog::TYPE_SSL_SNAP_START, new NetLogIntegerParameter("type", snap_start_type)); if (snap_start_type == SSL_SNAP_START_FULL || snap_start_type == SSL_SNAP_START_RESUME) { // If we did a successful Snap Start then our information was correct and // there's no point saving it again. return; } const unsigned char* hello_data; unsigned hello_data_len; rv = SSL_GetPredictedServerHelloData(nss_fd_, &hello_data, &hello_data_len); if (rv != SECSuccess) { NOTREACHED(); return; } if (hello_data_len > std::numeric_limits::max()) return; SSLHostInfo::State* state = ssl_host_info_->mutable_state(); if (hello_data_len > 0) { state->server_hello = std::string(reinterpret_cast(hello_data), hello_data_len); state->npn_valid = true; state->npn_status = GetNextProto(&state->npn_protocol); } else { state->server_hello.clear(); state->npn_valid = false; } state->certs.clear(); PeerCertificateChain certs(nss_fd_); for (unsigned i = 0; i < certs.size(); i++) { if (certs[i]->derCert.len > std::numeric_limits::max()) return; state->certs.push_back(std::string( reinterpret_cast(certs[i]->derCert.data), certs[i]->derCert.len)); } ssl_host_info_->Persist(); } // LoadSnapStartInfo parses |info|, which contains data previously serialised // by |SaveSnapStartInfo|, and sets the predicted certificates and ServerHello // data on the NSS socket. Returns true on success. If this function returns // false, the caller should try a normal TLS handshake. bool SSLClientSocketNSS::LoadSnapStartInfo() { const SSLHostInfo::State& state(ssl_host_info_->state()); if (state.server_hello.empty() || state.certs.empty() || !state.npn_valid) { return false; } SECStatus rv; rv = SSL_SetPredictedServerHelloData( nss_fd_, reinterpret_cast(state.server_hello.data()), state.server_hello.size()); DCHECK_EQ(SECSuccess, rv); const std::vector& certs_in = state.certs; scoped_array certs(new CERTCertificate*[certs_in.size()]); for (size_t i = 0; i < certs_in.size(); i++) { SECItem derCert; derCert.data = const_cast(reinterpret_cast(certs_in[i].data())); derCert.len = certs_in[i].size(); certs[i] = CERT_NewTempCertificate( CERT_GetDefaultCertDB(), &derCert, NULL /* no nickname given */, PR_FALSE /* not permanent */, PR_TRUE /* copy DER data */); if (!certs[i]) { DestroyCertificates(&certs[0], i); NOTREACHED(); return false; } } rv = SSL_SetPredictedPeerCertificates(nss_fd_, certs.get(), certs_in.size()); DestroyCertificates(&certs[0], certs_in.size()); DCHECK_EQ(SECSuccess, rv); if (state.npn_valid) { predicted_npn_status_ = state.npn_status; predicted_npn_proto_ = state.npn_protocol; } return true; } bool SSLClientSocketNSS::IsNPNProtocolMispredicted() { DCHECK(handshake_callback_called_); if (!predicted_npn_proto_used_) return false; std::string npn_proto; GetNextProto(&npn_proto); return predicted_npn_proto_ != npn_proto; } void SSLClientSocketNSS::UncorkAfterTimeout() { corked_ = false; int nsent; do { nsent = BufferSend(); } while (nsent > 0); } // Do network I/O between the given buffer and the given socket. // Return true if some I/O performed, false otherwise (error or ERR_IO_PENDING) bool SSLClientSocketNSS::DoTransportIO() { EnterFunction(""); bool network_moved = false; if (nss_bufs_ != NULL) { int nsent = BufferSend(); int nreceived = BufferRecv(); network_moved = (nsent > 0 || nreceived >= 0); } LeaveFunction(network_moved); return network_moved; } // Return 0 for EOF, // > 0 for bytes transferred immediately, // < 0 for error (or the non-error ERR_IO_PENDING). int SSLClientSocketNSS::BufferSend(void) { if (transport_send_busy_) return ERR_IO_PENDING; EnterFunction(""); const char* buf1; const char* buf2; unsigned int len1, len2; memio_GetWriteParams(nss_bufs_, &buf1, &len1, &buf2, &len2); const unsigned int len = len1 + len2; if (corked_ && len < kRecvBufferSize / 2) return 0; int rv = 0; if (len) { scoped_refptr send_buffer(new IOBuffer(len)); memcpy(send_buffer->data(), buf1, len1); memcpy(send_buffer->data() + len1, buf2, len2); rv = transport_->socket()->Write(send_buffer, len, &buffer_send_callback_); if (rv == ERR_IO_PENDING) { transport_send_busy_ = true; } else { memio_PutWriteResult(nss_bufs_, MapErrorToNSS(rv)); } } LeaveFunction(rv); return rv; } void SSLClientSocketNSS::BufferSendComplete(int result) { EnterFunction(result); // In the case of TCP FastOpen, connect is now finished. if (!peername_initialized_ && UsingTCPFastOpen()) InitializeSSLPeerName(); memio_PutWriteResult(nss_bufs_, MapErrorToNSS(result)); transport_send_busy_ = false; OnSendComplete(result); LeaveFunction(""); } int SSLClientSocketNSS::BufferRecv(void) { if (transport_recv_busy_) return ERR_IO_PENDING; char *buf; int nb = memio_GetReadParams(nss_bufs_, &buf); EnterFunction(nb); int rv; if (!nb) { // buffer too full to read into, so no I/O possible at moment rv = ERR_IO_PENDING; } else { recv_buffer_ = new IOBuffer(nb); rv = transport_->socket()->Read(recv_buffer_, nb, &buffer_recv_callback_); if (rv == ERR_IO_PENDING) { transport_recv_busy_ = true; } else { if (rv > 0) memcpy(buf, recv_buffer_->data(), rv); memio_PutReadResult(nss_bufs_, MapErrorToNSS(rv)); recv_buffer_ = NULL; } } LeaveFunction(rv); return rv; } void SSLClientSocketNSS::BufferRecvComplete(int result) { EnterFunction(result); if (result > 0) { char *buf; memio_GetReadParams(nss_bufs_, &buf); memcpy(buf, recv_buffer_->data(), result); } recv_buffer_ = NULL; memio_PutReadResult(nss_bufs_, MapErrorToNSS(result)); transport_recv_busy_ = false; OnRecvComplete(result); LeaveFunction(""); } int SSLClientSocketNSS::HandleNSSError(PRErrorCode nss_error, bool handshake_error) { int net_error = handshake_error ? MapNSSHandshakeError(nss_error) : MapNSSError(nss_error); #if defined(OS_WIN) // On Windows, a handle to the HCRYPTPROV is cached in the X509Certificate // os_cert_handle() as an optimization. However, if the certificate // private key is stored on a smart card, and the smart card is removed, // the cached HCRYPTPROV will not be able to obtain the HCRYPTKEY again, // preventing client certificate authentication. Because the // X509Certificate may outlive the individual SSLClientSocketNSS, due to // caching in X509Certificate, this failure ends up preventing client // certificate authentication with the same certificate for all future // attempts, even after the smart card has been re-inserted. By setting // the CERT_KEY_PROV_HANDLE_PROP_ID to NULL, the cached HCRYPTPROV will // typically be freed. This allows a new HCRYPTPROV to be obtained from // the certificate on the next attempt, which should succeed if the smart // card has been re-inserted, or will typically prompt the user to // re-insert the smart card if not. if ((net_error == ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY || net_error == ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED) && ssl_config_.send_client_cert && ssl_config_.client_cert) { CertSetCertificateContextProperty( ssl_config_.client_cert->os_cert_handle(), CERT_KEY_PROV_HANDLE_PROP_ID, 0, NULL); } #endif return net_error; } // static // NSS calls this if an incoming certificate needs to be verified. // Do nothing but return SECSuccess. // This is called only in full handshake mode. // Peer certificate is retrieved in HandshakeCallback() later, which is called // in full handshake mode or in resumption handshake mode. SECStatus SSLClientSocketNSS::OwnAuthCertHandler(void* arg, PRFileDesc* socket, PRBool checksig, PRBool is_server) { #ifdef SSL_ENABLE_FALSE_START // In the event that we are False Starting this connection, we wish to send // out the Finished message and first application data record in the same // packet. This prevents non-determinism when talking to False Start // intolerant servers which, otherwise, might see the two messages in // different reads or not, depending on network conditions. PRBool false_start = 0; SECStatus rv = SSL_OptionGet(socket, SSL_ENABLE_FALSE_START, &false_start); DCHECK_EQ(SECSuccess, rv); if (false_start) { SSLClientSocketNSS* that = reinterpret_cast(arg); // ESET anti-virus is capable of intercepting HTTPS connections on Windows. // However, it is False Start intolerant and causes the connections to hang // forever. We detect ESET by the issuer of the leaf certificate and set a // flag to return a specific error, giving the user instructions for // reconfiguring ESET. CERTCertificate* cert = SSL_PeerCertificate(that->nss_fd_); if (cert) { char* common_name = CERT_GetCommonName(&cert->issuer); if (common_name) { if (strcmp(common_name, "ESET_RootSslCert") == 0) that->eset_mitm_detected_ = true; if (strcmp(common_name, "ContentWatch Root Certificate Authority") == 0) { // This is NetNanny. NetNanny are updating their product so we // silently disable False Start for now. rv = SSL_OptionSet(socket, SSL_ENABLE_FALSE_START, PR_FALSE); DCHECK_EQ(SECSuccess, rv); false_start = 0; } PORT_Free(common_name); } CERT_DestroyCertificate(cert); } if (false_start && !that->handshake_callback_called_) { that->corked_ = true; that->uncork_timer_.Start( base::TimeDelta::FromMilliseconds(kCorkTimeoutMs), that, &SSLClientSocketNSS::UncorkAfterTimeout); } } #endif // Tell NSS to not verify the certificate. return SECSuccess; } #if defined(NSS_PLATFORM_CLIENT_AUTH) // static // NSS calls this if a client certificate is needed. SECStatus SSLClientSocketNSS::PlatformClientAuthHandler( void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertList** result_certs, void** result_private_key) { SSLClientSocketNSS* that = reinterpret_cast(arg); that->client_auth_cert_needed_ = !that->ssl_config_.send_client_cert; #if defined(OS_WIN) if (that->ssl_config_.send_client_cert) { if (that->ssl_config_.client_cert) { PCCERT_CONTEXT cert_context = that->ssl_config_.client_cert->os_cert_handle(); PCERT_KEY_CONTEXT key_context = reinterpret_cast( PORT_ZAlloc(sizeof(CERT_KEY_CONTEXT))); if (!key_context) return SECFailure; key_context->cbSize = sizeof(*key_context); BOOL must_free = FALSE; BOOL acquired_key = CryptAcquireCertificatePrivateKey( cert_context, CRYPT_ACQUIRE_CACHE_FLAG, NULL, &key_context->hCryptProv, &key_context->dwKeySpec, &must_free); if (acquired_key && key_context->hCryptProv) { DCHECK_NE(key_context->dwKeySpec, CERT_NCRYPT_KEY_SPEC); // The certificate cache may have been updated/used, in which case, // duplicate the existing handle, since NSS will free it when no // longer in use. if (!must_free) CryptContextAddRef(key_context->hCryptProv, NULL, 0); SECItem der_cert; der_cert.type = siDERCertBuffer; der_cert.data = cert_context->pbCertEncoded; der_cert.len = cert_context->cbCertEncoded; // TODO(rsleevi): Error checking for NSS allocation errors. *result_certs = CERT_NewCertList(); CERTCertDBHandle* db_handle = CERT_GetDefaultCertDB(); CERTCertificate* user_cert = CERT_NewTempCertificate( db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE); CERT_AddCertToListTail(*result_certs, user_cert); // Add the intermediates. X509Certificate::OSCertHandles intermediates = that->ssl_config_.client_cert->GetIntermediateCertificates(); for (X509Certificate::OSCertHandles::const_iterator it = intermediates.begin(); it != intermediates.end(); ++it) { der_cert.data = (*it)->pbCertEncoded; der_cert.len = (*it)->cbCertEncoded; CERTCertificate* intermediate = CERT_NewTempCertificate( db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE); CERT_AddCertToListTail(*result_certs, intermediate); } *result_private_key = key_context; return SECSuccess; } PORT_Free(key_context); LOG(WARNING) << "Client cert found without private key"; } // Send no client certificate. return SECFailure; } that->client_certs_.clear(); std::vector issuer_list(ca_names->nnames); for (int i = 0; i < ca_names->nnames; ++i) { issuer_list[i].cbData = ca_names->names[i].len; issuer_list[i].pbData = ca_names->names[i].data; } // Client certificates of the user are in the "MY" system certificate store. HCERTSTORE my_cert_store = CertOpenSystemStore(NULL, L"MY"); if (!my_cert_store) { LOG(ERROR) << "Could not open the \"MY\" system certificate store: " << GetLastError(); return SECFailure; } // Enumerate the client certificates. CERT_CHAIN_FIND_BY_ISSUER_PARA find_by_issuer_para; memset(&find_by_issuer_para, 0, sizeof(find_by_issuer_para)); find_by_issuer_para.cbSize = sizeof(find_by_issuer_para); find_by_issuer_para.pszUsageIdentifier = szOID_PKIX_KP_CLIENT_AUTH; find_by_issuer_para.cIssuer = ca_names->nnames; find_by_issuer_para.rgIssuer = ca_names->nnames ? &issuer_list[0] : NULL; find_by_issuer_para.pfnFindCallback = ClientCertFindCallback; PCCERT_CHAIN_CONTEXT chain_context = NULL; for (;;) { // Find a certificate chain. chain_context = CertFindChainInStore(my_cert_store, X509_ASN_ENCODING, 0, CERT_CHAIN_FIND_BY_ISSUER, &find_by_issuer_para, chain_context); if (!chain_context) { DWORD err = GetLastError(); if (err != CRYPT_E_NOT_FOUND) DLOG(ERROR) << "CertFindChainInStore failed: " << err; break; } // Get the leaf certificate. PCCERT_CONTEXT cert_context = chain_context->rgpChain[0]->rgpElement[0]->pCertContext; // Copy it to our own certificate store, so that we can close the "MY" // certificate store before returning from this function. PCCERT_CONTEXT cert_context2; BOOL ok = CertAddCertificateContextToStore(X509Certificate::cert_store(), cert_context, CERT_STORE_ADD_USE_EXISTING, &cert_context2); if (!ok) { NOTREACHED(); continue; } // Copy the rest of the chain to our own store as well. Copying the chain // stops gracefully if an error is encountered, with the partial chain // being used as the intermediates, rather than failing to consider the // client certificate. net::X509Certificate::OSCertHandles intermediates; for (DWORD i = 1; i < chain_context->rgpChain[0]->cElement; i++) { PCCERT_CONTEXT intermediate_copy; ok = CertAddCertificateContextToStore(X509Certificate::cert_store(), chain_context->rgpChain[0]->rgpElement[i]->pCertContext, CERT_STORE_ADD_USE_EXISTING, &intermediate_copy); if (!ok) { NOTREACHED(); break; } intermediates.push_back(intermediate_copy); } scoped_refptr cert = X509Certificate::CreateFromHandle( cert_context2, X509Certificate::SOURCE_LONE_CERT_IMPORT, intermediates); that->client_certs_.push_back(cert); X509Certificate::FreeOSCertHandle(cert_context2); for (net::X509Certificate::OSCertHandles::iterator it = intermediates.begin(); it != intermediates.end(); ++it) { net::X509Certificate::FreeOSCertHandle(*it); } } BOOL ok = CertCloseStore(my_cert_store, CERT_CLOSE_STORE_CHECK_FLAG); DCHECK(ok); // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; #elif defined(OS_MACOSX) if (that->ssl_config_.send_client_cert) { if (that->ssl_config_.client_cert) { OSStatus os_error = noErr; SecIdentityRef identity = NULL; SecKeyRef private_key = NULL; CFArrayRef chain = that->ssl_config_.client_cert->CreateClientCertificateChain(); if (chain) { identity = reinterpret_cast( const_cast(CFArrayGetValueAtIndex(chain, 0))); } if (identity) os_error = SecIdentityCopyPrivateKey(identity, &private_key); if (chain && identity && os_error == noErr) { // TODO(rsleevi): Error checking for NSS allocation errors. *result_certs = CERT_NewCertList(); *result_private_key = private_key; for (CFIndex i = 0; i < CFArrayGetCount(chain); ++i) { CSSM_DATA cert_data; SecCertificateRef cert_ref; if (i == 0) { cert_ref = that->ssl_config_.client_cert->os_cert_handle(); } else { cert_ref = reinterpret_cast( const_cast(CFArrayGetValueAtIndex(chain, i))); } os_error = SecCertificateGetData(cert_ref, &cert_data); if (os_error != noErr) break; SECItem der_cert; der_cert.type = siDERCertBuffer; der_cert.data = cert_data.Data; der_cert.len = cert_data.Length; CERTCertificate* nss_cert = CERT_NewTempCertificate( CERT_GetDefaultCertDB(), &der_cert, NULL, PR_FALSE, PR_TRUE); CERT_AddCertToListTail(*result_certs, nss_cert); } } if (os_error == noErr) { CFRelease(chain); return SECSuccess; } LOG(WARNING) << "Client cert found, but could not be used: " << os_error; if (*result_certs) { CERT_DestroyCertList(*result_certs); *result_certs = NULL; } if (*result_private_key) *result_private_key = NULL; if (private_key) CFRelease(private_key); if (chain) CFRelease(chain); } // Send no client certificate. return SECFailure; } that->client_certs_.clear(); // First, get the cert issuer names allowed by the server. std::vector valid_issuers; int n = ca_names->nnames; for (int i = 0; i < n; i++) { // Parse each name into a CertPrincipal object. CertPrincipal p; if (p.ParseDistinguishedName(ca_names->names[i].data, ca_names->names[i].len)) { valid_issuers.push_back(p); } } // Now get the available client certs whose issuers are allowed by the server. X509Certificate::GetSSLClientCertificates(that->host_and_port_.host(), valid_issuers, &that->client_certs_); // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; #else return SECFailure; #endif } #else // NSS_PLATFORM_CLIENT_AUTH // static // NSS calls this if a client certificate is needed. // Based on Mozilla's NSS_GetClientAuthData. SECStatus SSLClientSocketNSS::ClientAuthHandler( void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertificate** result_certificate, SECKEYPrivateKey** result_private_key) { SSLClientSocketNSS* that = reinterpret_cast(arg); that->client_auth_cert_needed_ = !that->ssl_config_.send_client_cert; void* wincx = SSL_RevealPinArg(socket); // Second pass: a client certificate should have been selected. if (that->ssl_config_.send_client_cert) { if (that->ssl_config_.client_cert) { CERTCertificate* cert = CERT_DupCertificate( that->ssl_config_.client_cert->os_cert_handle()); SECKEYPrivateKey* privkey = PK11_FindKeyByAnyCert(cert, wincx); if (privkey) { // TODO(jsorianopastor): We should wait for server certificate // verification before sending our credentials. See // http://crbug.com/13934. *result_certificate = cert; *result_private_key = privkey; return SECSuccess; } LOG(WARNING) << "Client cert found without private key"; } // Send no client certificate. return SECFailure; } // Iterate over all client certificates. CERTCertList* client_certs = CERT_FindUserCertsByUsage( CERT_GetDefaultCertDB(), certUsageSSLClient, PR_FALSE, PR_FALSE, wincx); if (client_certs) { for (CERTCertListNode* node = CERT_LIST_HEAD(client_certs); !CERT_LIST_END(node, client_certs); node = CERT_LIST_NEXT(node)) { // Only offer unexpired certificates. if (CERT_CheckCertValidTimes(node->cert, PR_Now(), PR_TRUE) != secCertTimeValid) continue; // Filter by issuer. // // TODO(davidben): This does a binary comparison of the DER-encoded // issuers. We should match according to RFC 5280 sec. 7.1. We should find // an appropriate NSS function or add one if needbe. if (ca_names->nnames && NSS_CmpCertChainWCANames(node->cert, ca_names) != SECSuccess) continue; X509Certificate* x509_cert = X509Certificate::CreateFromHandle( node->cert, X509Certificate::SOURCE_LONE_CERT_IMPORT, net::X509Certificate::OSCertHandles()); that->client_certs_.push_back(x509_cert); } CERT_DestroyCertList(client_certs); } // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; } #endif // NSS_PLATFORM_CLIENT_AUTH // static // NSS calls this when handshake is completed. // After the SSL handshake is finished, use CertVerifier to verify // the saved server certificate. void SSLClientSocketNSS::HandshakeCallback(PRFileDesc* socket, void* arg) { SSLClientSocketNSS* that = reinterpret_cast(arg); that->handshake_callback_called_ = true; that->UpdateServerCert(); that->UpdateConnectionStatus(); } void SSLClientSocketNSS::EnsureThreadIdAssigned() const { base::AutoLock auto_lock(lock_); if (valid_thread_id_ != base::kInvalidThreadId) return; valid_thread_id_ = base::PlatformThread::CurrentId(); } bool SSLClientSocketNSS::CalledOnValidThread() const { EnsureThreadIdAssigned(); base::AutoLock auto_lock(lock_); return valid_thread_id_ == base::PlatformThread::CurrentId(); } } // namespace net