// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file includes code SSLClientSocketNSS::DoVerifyCertComplete() derived // from AuthCertificateCallback() in // mozilla/security/manager/ssl/src/nsNSSCallbacks.cpp. /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape security libraries. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Ian McGreer * Javier Delgadillo * Kai Engert * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "net/socket/ssl_client_socket_nss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/build_time.h" #include "base/callback_helpers.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/memory/singleton.h" #include "base/metrics/histogram.h" #include "base/single_thread_task_runner.h" #include "base/stl_util.h" #include "base/string_number_conversions.h" #include "base/string_util.h" #include "base/stringprintf.h" #include "base/thread_task_runner_handle.h" #include "base/threading/thread_restrictions.h" #include "base/values.h" #include "crypto/ec_private_key.h" #include "crypto/nss_util_internal.h" #include "crypto/rsa_private_key.h" #include "crypto/scoped_nss_types.h" #include "net/base/address_list.h" #include "net/base/asn1_util.h" #include "net/base/cert_status_flags.h" #include "net/base/cert_verifier.h" #include "net/base/connection_type_histograms.h" #include "net/base/dns_util.h" #include "net/base/dnssec_chain_verifier.h" #include "net/base/transport_security_state.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/single_request_cert_verifier.h" #include "net/base/ssl_cert_request_info.h" #include "net/base/ssl_connection_status_flags.h" #include "net/base/ssl_info.h" #include "net/base/x509_certificate_net_log_param.h" #include "net/ocsp/nss_ocsp.h" #include "net/socket/client_socket_handle.h" #include "net/socket/nss_ssl_util.h" #include "net/socket/ssl_error_params.h" #if defined(OS_WIN) #include #include #elif defined(OS_MACOSX) #include #include #include #include "base/mac/mac_logging.h" #elif defined(USE_NSS) #include #endif static const int kRecvBufferSize = 4096; #if defined(OS_WIN) // CERT_OCSP_RESPONSE_PROP_ID is only implemented on Vista+, but it can be // set on Windows XP without error. There is some overhead from the server // sending the OCSP response if it supports the extension, for the subset of // XP clients who will request it but be unable to use it, but this is an // acceptable trade-off for simplicity of implementation. static bool IsOCSPStaplingSupported() { return true; } #elif defined(USE_NSS) typedef SECStatus (*CacheOCSPResponseFromSideChannelFunction)( CERTCertDBHandle *handle, CERTCertificate *cert, PRTime time, SECItem *encodedResponse, void *pwArg); // On Linux, we dynamically link against the system version of libnss3.so. In // order to continue working on systems without up-to-date versions of NSS we // lookup CERT_CacheOCSPResponseFromSideChannel with dlsym. // RuntimeLibNSSFunctionPointers is a singleton which caches the results of any // runtime symbol resolution that we need. class RuntimeLibNSSFunctionPointers { public: CacheOCSPResponseFromSideChannelFunction GetCacheOCSPResponseFromSideChannelFunction() { return cache_ocsp_response_from_side_channel_; } static RuntimeLibNSSFunctionPointers* GetInstance() { return Singleton::get(); } private: friend struct DefaultSingletonTraits; RuntimeLibNSSFunctionPointers() { cache_ocsp_response_from_side_channel_ = (CacheOCSPResponseFromSideChannelFunction) dlsym(RTLD_DEFAULT, "CERT_CacheOCSPResponseFromSideChannel"); } CacheOCSPResponseFromSideChannelFunction cache_ocsp_response_from_side_channel_; }; static CacheOCSPResponseFromSideChannelFunction GetCacheOCSPResponseFromSideChannelFunction() { return RuntimeLibNSSFunctionPointers::GetInstance() ->GetCacheOCSPResponseFromSideChannelFunction(); } static bool IsOCSPStaplingSupported() { return GetCacheOCSPResponseFromSideChannelFunction() != NULL; } #else // TODO(agl): Figure out if we can plumb the OCSP response into Mac's system // certificate validation functions. static bool IsOCSPStaplingSupported() { return false; } #endif namespace net { // State machines are easier to debug if you log state transitions. // Enable these if you want to see what's going on. #if 1 #define EnterFunction(x) #define LeaveFunction(x) #define GotoState(s) next_handshake_state_ = s #else #define EnterFunction(x)\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " enter " << x\ << "; next_handshake_state " << next_handshake_state_ #define LeaveFunction(x)\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " leave " << x\ << "; next_handshake_state " << next_handshake_state_ #define GotoState(s)\ do {\ VLOG(1) << (void *)this << " " << __FUNCTION__ << " jump to state " << s;\ next_handshake_state_ = s;\ } while (0) #endif namespace { class FreeCERTCertificate { public: inline void operator()(CERTCertificate* x) const { CERT_DestroyCertificate(x); } }; typedef scoped_ptr_malloc ScopedCERTCertificate; #if defined(OS_WIN) // This callback is intended to be used with CertFindChainInStore. In addition // to filtering by extended/enhanced key usage, we do not show expired // certificates and require digital signature usage in the key usage // extension. // // This matches our behavior on Mac OS X and that of NSS. It also matches the // default behavior of IE8. See http://support.microsoft.com/kb/890326 and // http://blogs.msdn.com/b/askie/archive/2009/06/09/my-expired-client-certificates-no-longer-display-when-connecting-to-my-web-server-using-ie8.aspx BOOL WINAPI ClientCertFindCallback(PCCERT_CONTEXT cert_context, void* find_arg) { VLOG(1) << "Calling ClientCertFindCallback from _nss"; // Verify the certificate's KU is good. BYTE key_usage; if (CertGetIntendedKeyUsage(X509_ASN_ENCODING, cert_context->pCertInfo, &key_usage, 1)) { if (!(key_usage & CERT_DIGITAL_SIGNATURE_KEY_USAGE)) return FALSE; } else { DWORD err = GetLastError(); // If |err| is non-zero, it's an actual error. Otherwise the extension // just isn't present, and we treat it as if everything was allowed. if (err) { DLOG(ERROR) << "CertGetIntendedKeyUsage failed: " << err; return FALSE; } } // Verify the current time is within the certificate's validity period. if (CertVerifyTimeValidity(NULL, cert_context->pCertInfo) != 0) return FALSE; // Verify private key metadata is associated with this certificate. DWORD size = 0; if (!CertGetCertificateContextProperty( cert_context, CERT_KEY_PROV_INFO_PROP_ID, NULL, &size)) { return FALSE; } return TRUE; } #endif // DNSValidationResult enumerates the possible outcomes from processing a // set of DNS records. enum DNSValidationResult { DNSVR_SUCCESS, // the cert is immediately acceptable. DNSVR_FAILURE, // the cert is unconditionally rejected. DNSVR_CONTINUE, // perform CA validation as usual. }; // VerifyCAARecords processes DNSSEC validated RRDATA for a number of DNS CAA // records and checks them against the given chain. // server_cert_nss: the server's leaf certificate. // rrdatas: the CAA records for the current domain. // port: the TCP port number that we connected to. DNSValidationResult VerifyCAARecords( CERTCertificate* server_cert_nss, const std::vector& rrdatas, uint16 port) { DnsCAARecord::Policy policy; const DnsCAARecord::ParseResult r = DnsCAARecord::Parse(rrdatas, &policy); if (r == DnsCAARecord::SYNTAX_ERROR || r == DnsCAARecord::UNKNOWN_CRITICAL) return DNSVR_FAILURE; if (r == DnsCAARecord::DISCARD) return DNSVR_CONTINUE; DCHECK(r == DnsCAARecord::SUCCESS); for (std::vector::const_iterator hash = policy.authorized_hashes.begin(); hash != policy.authorized_hashes.end(); ++hash) { if (hash->target == DnsCAARecord::Policy::SUBJECT_PUBLIC_KEY_INFO && (hash->port == 0 || hash->port == port)) { CHECK_LE(hash->data.size(), static_cast(SHA512_LENGTH)); uint8 calculated_hash[SHA512_LENGTH]; // SHA512 is the largest. SECStatus rv = HASH_HashBuf( static_cast(hash->algorithm), calculated_hash, server_cert_nss->derPublicKey.data, server_cert_nss->derPublicKey.len); DCHECK(rv == SECSuccess); const std::string actual_digest(reinterpret_cast(calculated_hash), hash->data.size()); // Note that the parser ensures that hash->data.size() is correct for the // given algorithm. An attacker cannot give a zero length hash that // always matches. if (actual_digest == hash->data) { // A DNSSEC secure hash over the public key of the leaf-certificate // is sufficient. return DNSVR_SUCCESS; } } } // If a CAA record was found, but nothing matched, then we reject the // certificate. return DNSVR_FAILURE; } // CheckDNSSECChain tries to validate a DNSSEC chain embedded in // |server_cert_nss|. It returns true iff a chain is found that proves the // value of a CAA record that contains a valid public key fingerprint. // |port| contains the TCP port number that we connected to as CAA records can // be specific to a given port. DNSValidationResult CheckDNSSECChain( const std::string& hostname, CERTCertificate* server_cert_nss, uint16 port) { if (!server_cert_nss) return DNSVR_CONTINUE; // CERT_FindCertExtensionByOID isn't exported so we have to install an OID, // get a tag for it and find the extension by using that tag. static SECOidTag dnssec_chain_tag; static bool dnssec_chain_tag_valid; if (!dnssec_chain_tag_valid) { // It's harmless if multiple threads enter this block concurrently. static const uint8 kDNSSECChainOID[] = // 1.3.6.1.4.1.11129.2.1.4 // (iso.org.dod.internet.private.enterprises.google.googleSecurity. // certificateExtensions.dnssecEmbeddedChain) {0x2b, 0x06, 0x01, 0x04, 0x01, 0xd6, 0x79, 0x02, 0x01, 0x04}; SECOidData oid_data; memset(&oid_data, 0, sizeof(oid_data)); oid_data.oid.data = const_cast(kDNSSECChainOID); oid_data.oid.len = sizeof(kDNSSECChainOID); oid_data.desc = "DNSSEC chain"; oid_data.supportedExtension = SUPPORTED_CERT_EXTENSION; dnssec_chain_tag = SECOID_AddEntry(&oid_data); DCHECK_NE(SEC_OID_UNKNOWN, dnssec_chain_tag); dnssec_chain_tag_valid = true; } SECItem dnssec_embedded_chain; SECStatus rv = CERT_FindCertExtension(server_cert_nss, dnssec_chain_tag, &dnssec_embedded_chain); if (rv != SECSuccess) return DNSVR_CONTINUE; base::StringPiece chain( reinterpret_cast(dnssec_embedded_chain.data), dnssec_embedded_chain.len); std::string dns_hostname; if (!DNSDomainFromDot(hostname, &dns_hostname)) return DNSVR_CONTINUE; DNSSECChainVerifier verifier(dns_hostname, chain); DNSSECChainVerifier::Error err = verifier.Verify(); if (err != DNSSECChainVerifier::OK) { LOG(ERROR) << "DNSSEC chain verification failed: " << err; return DNSVR_CONTINUE; } if (verifier.rrtype() != kDNS_CAA) return DNSVR_CONTINUE; DNSValidationResult r = VerifyCAARecords( server_cert_nss, verifier.rrdatas(), port); SECITEM_FreeItem(&dnssec_embedded_chain, PR_FALSE); return r; } void DestroyCertificates(CERTCertificate** certs, size_t len) { for (size_t i = 0; i < len; i++) CERT_DestroyCertificate(certs[i]); } // Helper functions to make it possible to log events from within the // SSLClientSocketNSS::Core. void AddLogEvent(BoundNetLog* net_log, NetLog::EventType event_type) { if (!net_log) return; net_log->AddEvent(event_type); } // Helper function to make it possible to log events from within the // SSLClientSocketNSS::Core. void AddLogEventWithCallback(BoundNetLog* net_log, NetLog::EventType event_type, const NetLog::ParametersCallback& callback) { if (!net_log) return; net_log->AddEvent(event_type, callback); } // Helper function to make it easier to call BoundNetLog::AddByteTransferEvent // from within the SSLClientSocketNSS::Core. // AddByteTransferEvent expects to receive a const char*, which within the // Core is backed by an IOBuffer. If the "const char*" is bound via // base::Bind and posted to another thread, and the IOBuffer that backs that // pointer then goes out of scope on the origin thread, this would result in // an invalid read of a stale pointer. // Instead, provide a signature that accepts an IOBuffer*, so that a reference // to the owning IOBuffer can be bound to the Callback. This ensures that the // IOBuffer will stay alive long enough to cross threads if needed. void LogByteTransferEvent(BoundNetLog* net_log, NetLog::EventType event_type, int len, IOBuffer* buffer) { if (!net_log) return; net_log->AddByteTransferEvent(event_type, len, buffer->data()); } // PeerCertificateChain is a helper object which extracts the certificate // chain, as given by the server, from an NSS socket and performs the needed // resource management. The first element of the chain is the leaf certificate // and the other elements are in the order given by the server. class PeerCertificateChain { public: PeerCertificateChain() {} PeerCertificateChain(const PeerCertificateChain& other); ~PeerCertificateChain(); PeerCertificateChain& operator=(const PeerCertificateChain& other); // Resets the current chain, freeing any resources, and updates the current // chain to be a copy of the chain stored in |nss_fd|. // If |nss_fd| is NULL, then the current certificate chain will be freed. void Reset(PRFileDesc* nss_fd); // Returns the current certificate chain as a vector of DER-encoded // base::StringPieces. The returned vector remains valid until Reset is // called. std::vector AsStringPieceVector() const; bool empty() const { return certs_.empty(); } size_t size() const { return certs_.size(); } CERTCertificate* operator[](size_t index) const { DCHECK_LT(index, certs_.size()); return certs_[index]; } private: std::vector certs_; }; PeerCertificateChain::PeerCertificateChain( const PeerCertificateChain& other) { *this = other; } PeerCertificateChain::~PeerCertificateChain() { Reset(NULL); } PeerCertificateChain& PeerCertificateChain::operator=( const PeerCertificateChain& other) { if (this == &other) return *this; Reset(NULL); certs_.reserve(other.certs_.size()); for (size_t i = 0; i < other.certs_.size(); ++i) certs_.push_back(CERT_DupCertificate(other.certs_[i])); return *this; } void PeerCertificateChain::Reset(PRFileDesc* nss_fd) { for (size_t i = 0; i < certs_.size(); ++i) CERT_DestroyCertificate(certs_[i]); certs_.clear(); if (nss_fd == NULL) return; unsigned int num_certs = 0; SECStatus rv = SSL_PeerCertificateChain(nss_fd, NULL, &num_certs, 0); DCHECK_EQ(SECSuccess, rv); // The handshake on |nss_fd| may not have completed. if (num_certs == 0) return; certs_.resize(num_certs); const unsigned int expected_num_certs = num_certs; rv = SSL_PeerCertificateChain(nss_fd, vector_as_array(&certs_), &num_certs, expected_num_certs); DCHECK_EQ(SECSuccess, rv); DCHECK_EQ(expected_num_certs, num_certs); } std::vector PeerCertificateChain::AsStringPieceVector() const { std::vector v(certs_.size()); for (unsigned i = 0; i < certs_.size(); i++) { v[i] = base::StringPiece( reinterpret_cast(certs_[i]->derCert.data), certs_[i]->derCert.len); } return v; } // HandshakeState is a helper struct used to pass handshake state between // the NSS task runner and the network task runner. // // It contains members that may be read or written on the NSS task runner, // but which also need to be read from the network task runner. The NSS task // runner will notify the network task runner whenever this state changes, so // that the network task runner can safely make a copy, which avoids the need // for locking. struct HandshakeState { HandshakeState() { Reset(); } void Reset() { next_proto_status = SSLClientSocket::kNextProtoUnsupported; next_proto.clear(); server_protos.clear(); channel_id_sent = false; client_certs.clear(); server_cert_chain.Reset(NULL); server_cert = NULL; resumed_handshake = false; ssl_connection_status = 0; } // Set to kNextProtoNegotiated if NPN was successfully negotiated, with the // negotiated protocol stored in |next_proto|. SSLClientSocket::NextProtoStatus next_proto_status; std::string next_proto; // If the server supports NPN, the protocols supported by the server. std::string server_protos; // True if a channel ID was sent. bool channel_id_sent; // If the peer requests client certificate authentication, the set of // certificates that matched the peer's criteria. CertificateList client_certs; // Set when the handshake fully completes. // // The server certificate is first received from NSS as an NSS certificate // chain (|server_cert_chain|) and then converted into a platform-specific // X509Certificate object (|server_cert|). It's possible for some // certificates to be successfully parsed by NSS, and not by the platform // libraries (i.e.: when running within a sandbox, different parsing // algorithms, etc), so it's not safe to assume that |server_cert| will // always be non-NULL. PeerCertificateChain server_cert_chain; scoped_refptr server_cert; // True if the current handshake was the result of TLS session resumption. bool resumed_handshake; // The negotiated security parameters (TLS version, cipher, extensions) of // the SSL connection. int ssl_connection_status; }; // Client-side error mapping functions. // Map NSS error code to network error code. int MapNSSClientError(PRErrorCode err) { switch (err) { case SSL_ERROR_BAD_CERT_ALERT: case SSL_ERROR_UNSUPPORTED_CERT_ALERT: case SSL_ERROR_REVOKED_CERT_ALERT: case SSL_ERROR_EXPIRED_CERT_ALERT: case SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT: case SSL_ERROR_UNKNOWN_CA_ALERT: case SSL_ERROR_ACCESS_DENIED_ALERT: return ERR_BAD_SSL_CLIENT_AUTH_CERT; default: return MapNSSError(err); } } // Map NSS error code from the first SSL handshake to network error code. int MapNSSClientHandshakeError(PRErrorCode err) { switch (err) { // If the server closed on us, it is a protocol error. // Some TLS-intolerant servers do this when we request TLS. case PR_END_OF_FILE_ERROR: return ERR_SSL_PROTOCOL_ERROR; default: return MapNSSClientError(err); } } } // namespace // SSLClientSocketNSS::Core provides a thread-safe, ref-counted core that is // able to marshal data between NSS functions and an underlying transport // socket. // // All public functions are meant to be called from the network task runner, // and any callbacks supplied will be invoked there as well, provided that // Detach() has not been called yet. // ///////////////////////////////////////////////////////////////////////////// // // Threading within SSLClientSocketNSS and SSLClientSocketNSS::Core: // // Because NSS may block on either hardware or user input during operations // such as signing, creating certificates, or locating private keys, the Core // handles all of the interactions with the underlying NSS SSL socket, so // that these blocking calls can be executed on a dedicated task runner. // // Note that the network task runner and the NSS task runner may be executing // on the same thread. If that happens, then it's more performant to try to // complete as much work as possible synchronously, even if it might block, // rather than continually PostTask-ing to the same thread. // // Because NSS functions should only be called on the NSS task runner, while // I/O resources should only be accessed on the network task runner, most // public functions are implemented via three methods, each with different // task runner affinities. // // In the single-threaded mode (where the network and NSS task runners run on // the same thread), these are all attempted synchronously, while in the // multi-threaded mode, message passing is used. // // 1) NSS Task Runner: Execute NSS function (DoPayloadRead, DoPayloadWrite, // DoHandshake) // 2) NSS Task Runner: Prepare data to go from NSS to an IO function: // (BufferRecv, BufferSend) // 3) Network Task Runner: Perform IO on that data (DoBufferRecv, // DoBufferSend, DoGetDomainBoundCert, OnGetDomainBoundCertComplete) // 4) Both Task Runners: Callback for asynchronous completion or to marshal // data from the network task runner back to NSS (BufferRecvComplete, // BufferSendComplete, OnHandshakeIOComplete) // ///////////////////////////////////////////////////////////////////////////// // Single-threaded example // // |--------------------------Network Task Runner--------------------------| // SSLClientSocketNSS Core (Transport Socket) // Read() // |-------------------------V // Read() // | // DoPayloadRead() // | // BufferRecv() // | // DoBufferRecv() // |-------------------------V // Read() // V-------------------------| // BufferRecvComplete() // | // PostOrRunCallback() // V-------------------------| // (Read Callback) // ///////////////////////////////////////////////////////////////////////////// // Multi-threaded example: // // |--------------------Network Task Runner-------------|--NSS Task Runner--| // SSLClientSocketNSS Core Socket Core // Read() // |---------------------V // Read() // |-------------------------------V // Read() // | // DoPayloadRead() // | // BufferRecv // V-------------------------------| // DoBufferRecv // |----------------V // Read() // V----------------| // BufferRecvComplete() // |-------------------------------V // BufferRecvComplete() // | // PostOrRunCallback() // V-------------------------------| // PostOrRunCallback() // V---------------------| // (Read Callback) // ///////////////////////////////////////////////////////////////////////////// class SSLClientSocketNSS::Core : public base::RefCountedThreadSafe { public: // Creates a new Core. // // Any calls to NSS are executed on the |nss_task_runner|, while any calls // that need to operate on the underlying transport, net log, or server // bound certificate fetching will happen on the |network_task_runner|, so // that their lifetimes match that of the owning SSLClientSocketNSS. // // The caller retains ownership of |transport|, |net_log|, and // |server_bound_cert_service|, and they will not be accessed once Detach() // has been called. Core(base::SequencedTaskRunner* network_task_runner, base::SequencedTaskRunner* nss_task_runner, ClientSocketHandle* transport, const HostPortPair& host_and_port, const SSLConfig& ssl_config, BoundNetLog* net_log, ServerBoundCertService* server_bound_cert_service); // Called on the network task runner. // Transfers ownership of |socket|, an NSS SSL socket, and |buffers|, the // underlying memio implementation, to the Core. Returns true if the Core // was successfully registered with the socket. bool Init(PRFileDesc* socket, memio_Private* buffers); // Called on the network task runner. // Sets the predicted certificate chain that the peer will send, for use // with the TLS CachedInfo extension. If called, it must not be called // before Init() or after Connect(). void SetPredictedCertificates( const std::vector& predicted_certificates); // Called on the network task runner. // // Attempts to perform an SSL handshake. If the handshake cannot be // completed synchronously, returns ERR_IO_PENDING, invoking |callback| on // the network task runner once the handshake has completed. Otherwise, // returns OK on success or a network error code on failure. int Connect(const CompletionCallback& callback); // Called on the network task runner. // Signals that the resources owned by the network task runner are going // away. No further callbacks will be invoked on the network task runner. // May be called at any time. void Detach(); // Called on the network task runner. // Returns the current state of the underlying SSL socket. May be called at // any time. const HandshakeState& state() const { return network_handshake_state_; } // Called on the network task runner. // Read() and Write() mirror the net::Socket functions of the same name. // If ERR_IO_PENDING is returned, |callback| will be invoked on the network // task runner at a later point, unless the caller calls Detach(). int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback); int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback); private: friend class base::RefCountedThreadSafe; ~Core(); enum State { STATE_NONE, STATE_HANDSHAKE, STATE_GET_DOMAIN_BOUND_CERT_COMPLETE, }; bool OnNSSTaskRunner() const; bool OnNetworkTaskRunner() const; //////////////////////////////////////////////////////////////////////////// // Methods that are ONLY called on the NSS task runner: //////////////////////////////////////////////////////////////////////////// // Called by NSS during full handshakes to allow the application to // verify the certificate. Instead of verifying the certificate in the midst // of the handshake, SECSuccess is always returned and the peer's certificate // is verified afterwards. // This behaviour is an artifact of the original SSLClientSocketWin // implementation, which could not verify the peer's certificate until after // the handshake had completed, as well as bugs in NSS that prevent // SSL_RestartHandshakeAfterCertReq from working. static SECStatus OwnAuthCertHandler(void* arg, PRFileDesc* socket, PRBool checksig, PRBool is_server); // Callbacks called by NSS when the peer requests client certificate // authentication. // See the documentation in third_party/nss/ssl/ssl.h for the meanings of // the arguments. #if defined(NSS_PLATFORM_CLIENT_AUTH) // When NSS has been integrated with awareness of the underlying system // cryptographic libraries, this callback allows the caller to supply a // native platform certificate and key for use by NSS. At most, one of // either (result_certs, result_private_key) or (result_nss_certificate, // result_nss_private_key) should be set. // |arg| contains a pointer to the current SSLClientSocketNSS::Core. static SECStatus PlatformClientAuthHandler( void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertList** result_certs, void** result_private_key, CERTCertificate** result_nss_certificate, SECKEYPrivateKey** result_nss_private_key); #else static SECStatus ClientAuthHandler(void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertificate** result_certificate, SECKEYPrivateKey** result_private_key); #endif // Called by NSS once the handshake has completed. // |arg| contains a pointer to the current SSLClientSocketNSS::Core. static void HandshakeCallback(PRFileDesc* socket, void* arg); // Called by NSS if the peer supports the NPN handshake extension, to allow // the application to select the protocol to use. // See the documentation for SSLNextProtocolCallback in // third_party/nss/ssl/ssl.h for the meanings of the arguments. // |arg| contains a pointer to the current SSLClientSocketNSS::Core. static SECStatus NextProtoCallback(void* arg, PRFileDesc* fd, const unsigned char* protos, unsigned int protos_len, unsigned char* proto_out, unsigned int* proto_out_len, unsigned int proto_max_len); // Handles an NSS error generated while handshaking or performing IO. // Returns a network error code mapped from the original NSS error. int HandleNSSError(PRErrorCode error, bool handshake_error); int DoHandshakeLoop(int last_io_result); int DoReadLoop(int result); int DoWriteLoop(int result); int DoHandshake(); int DoGetDBCertComplete(int result); int DoPayloadRead(); int DoPayloadWrite(); bool DoTransportIO(); int BufferRecv(); int BufferSend(); void OnRecvComplete(int result); void OnSendComplete(int result); void DoConnectCallback(int result); void DoReadCallback(int result); void DoWriteCallback(int result); // Client channel ID handler. static SECStatus ClientChannelIDHandler( void* arg, PRFileDesc* socket, SECKEYPublicKey **out_public_key, SECKEYPrivateKey **out_private_key); // ImportChannelIDKeys is a helper function for turning a DER-encoded cert and // key into a SECKEYPublicKey and SECKEYPrivateKey. Returns OK upon success // and an error code otherwise. // Requires |domain_bound_private_key_| and |domain_bound_cert_| to have been // set by a call to ServerBoundCertService->GetDomainBoundCert. The caller // takes ownership of the |*cert| and |*key|. int ImportChannelIDKeys(SECKEYPublicKey** public_key, SECKEYPrivateKey** key); // Updates the NSS and platform specific certificates. void UpdateServerCert(); // Updates the nss_handshake_state_ with the negotiated security parameters. void UpdateConnectionStatus(); // Record histograms for channel id support during full handshakes - resumed // handshakes are ignored. void RecordChannelIDSupport() const; //////////////////////////////////////////////////////////////////////////// // Methods that are ONLY called on the network task runner: //////////////////////////////////////////////////////////////////////////// int DoBufferRecv(IOBuffer* buffer, int len); int DoBufferSend(IOBuffer* buffer, int len); int DoGetDomainBoundCert(const std::string& origin, const std::vector& requested_cert_types); void OnGetDomainBoundCertComplete(int result); void OnHandshakeStateUpdated(const HandshakeState& state); //////////////////////////////////////////////////////////////////////////// // Methods that are called on both the network task runner and the NSS // task runner. //////////////////////////////////////////////////////////////////////////// void OnHandshakeIOComplete(int result); void BufferRecvComplete(IOBuffer* buffer, int result); void BufferSendComplete(int result); // PostOrRunCallback is a helper function to ensure that |callback| is // invoked on the network task runner, but only if Detach() has not yet // been called. void PostOrRunCallback(const tracked_objects::Location& location, const base::Closure& callback); // Uses PostOrRunCallback and |weak_net_log_| to try and log a // SSL_CLIENT_CERT_PROVIDED event, with the indicated count. void AddCertProvidedEvent(int cert_count); // Sets the handshake state |channel_id_sent| flag and logs the // SSL_CHANNEL_ID_PROVIDED event. void SetChannelIDProvided(); //////////////////////////////////////////////////////////////////////////// // Members that are ONLY accessed on the network task runner: //////////////////////////////////////////////////////////////////////////// // True if the owning SSLClientSocketNSS has called Detach(). No further // callbacks will be invoked nor access to members owned by the network // task runner. bool detached_; // The underlying transport to use for network IO. ClientSocketHandle* transport_; base::WeakPtrFactory weak_net_log_factory_; // The current handshake state. Mirrors |nss_handshake_state_|. HandshakeState network_handshake_state_; ServerBoundCertService* server_bound_cert_service_; ServerBoundCertService::RequestHandle domain_bound_cert_request_handle_; //////////////////////////////////////////////////////////////////////////// // Members that are ONLY accessed on the NSS task runner: //////////////////////////////////////////////////////////////////////////// HostPortPair host_and_port_; SSLConfig ssl_config_; // NSS SSL socket. PRFileDesc* nss_fd_; // Buffers for the network end of the SSL state machine memio_Private* nss_bufs_; // The certificate chain, in DER form, that is expected to be received from // the server. std::vector predicted_certs_; State next_handshake_state_; // True if channel ID extension was negotiated. bool channel_id_xtn_negotiated_; // True if the handshake state machine was interrupted for channel ID. bool channel_id_needed_; // True if the handshake state machine was interrupted for client auth. bool client_auth_cert_needed_; // True if NSS has called HandshakeCallback. bool handshake_callback_called_; HandshakeState nss_handshake_state_; bool transport_recv_busy_; bool transport_recv_eof_; bool transport_send_busy_; // Used by Read function. scoped_refptr user_read_buf_; int user_read_buf_len_; // Used by Write function. scoped_refptr user_write_buf_; int user_write_buf_len_; CompletionCallback user_connect_callback_; CompletionCallback user_read_callback_; CompletionCallback user_write_callback_; //////////////////////////////////////////////////////////////////////////// // Members that are accessed on both the network task runner and the NSS // task runner. //////////////////////////////////////////////////////////////////////////// scoped_refptr network_task_runner_; scoped_refptr nss_task_runner_; // Dereferenced only on the network task runner, but bound to tasks destined // for the network task runner from the NSS task runner. base::WeakPtr weak_net_log_; // Written on the network task runner by the |server_bound_cert_service_|, // prior to invoking OnHandshakeIOComplete. // Read on the NSS task runner when once OnHandshakeIOComplete is invoked // on the NSS task runner. SSLClientCertType domain_bound_cert_type_; std::string domain_bound_private_key_; std::string domain_bound_cert_; DISALLOW_COPY_AND_ASSIGN(Core); }; SSLClientSocketNSS::Core::Core( base::SequencedTaskRunner* network_task_runner, base::SequencedTaskRunner* nss_task_runner, ClientSocketHandle* transport, const HostPortPair& host_and_port, const SSLConfig& ssl_config, BoundNetLog* net_log, ServerBoundCertService* server_bound_cert_service) : detached_(false), transport_(transport), weak_net_log_factory_(net_log), server_bound_cert_service_(server_bound_cert_service), domain_bound_cert_request_handle_(NULL), host_and_port_(host_and_port), ssl_config_(ssl_config), nss_fd_(NULL), nss_bufs_(NULL), next_handshake_state_(STATE_NONE), channel_id_xtn_negotiated_(false), channel_id_needed_(false), client_auth_cert_needed_(false), handshake_callback_called_(false), transport_recv_busy_(false), transport_recv_eof_(false), transport_send_busy_(false), user_read_buf_len_(0), user_write_buf_len_(0), network_task_runner_(network_task_runner), nss_task_runner_(nss_task_runner), weak_net_log_(weak_net_log_factory_.GetWeakPtr()), domain_bound_cert_type_(CLIENT_CERT_INVALID_TYPE) { } SSLClientSocketNSS::Core::~Core() { // TODO(wtc): Send SSL close_notify alert. if (nss_fd_ != NULL) { PR_Close(nss_fd_); nss_fd_ = NULL; } } bool SSLClientSocketNSS::Core::Init(PRFileDesc* socket, memio_Private* buffers) { DCHECK(OnNetworkTaskRunner()); DCHECK(!nss_fd_); DCHECK(!nss_bufs_); nss_fd_ = socket; nss_bufs_ = buffers; SECStatus rv = SECSuccess; if (!ssl_config_.next_protos.empty()) { rv = SSL_SetNextProtoCallback( nss_fd_, SSLClientSocketNSS::Core::NextProtoCallback, this); if (rv != SECSuccess) LogFailedNSSFunction(*weak_net_log_, "SSL_SetNextProtoCallback", ""); } rv = SSL_AuthCertificateHook( nss_fd_, SSLClientSocketNSS::Core::OwnAuthCertHandler, this); if (rv != SECSuccess) { LogFailedNSSFunction(*weak_net_log_, "SSL_AuthCertificateHook", ""); return false; } #if defined(NSS_PLATFORM_CLIENT_AUTH) rv = SSL_GetPlatformClientAuthDataHook( nss_fd_, SSLClientSocketNSS::Core::PlatformClientAuthHandler, this); #else rv = SSL_GetClientAuthDataHook( nss_fd_, SSLClientSocketNSS::Core::ClientAuthHandler, this); #endif if (rv != SECSuccess) { LogFailedNSSFunction(*weak_net_log_, "SSL_GetClientAuthDataHook", ""); return false; } if (ssl_config_.channel_id_enabled) { if (crypto::ECPrivateKey::IsSupported()) { rv = SSL_SetClientChannelIDCallback( nss_fd_, SSLClientSocketNSS::Core::ClientChannelIDHandler, this); if (rv != SECSuccess) LogFailedNSSFunction(*weak_net_log_, "SSL_SetClientChannelIDCallback", ""); } else { DVLOG(1) << "Elliptic Curve not supported, not enabling channel ID."; } } rv = SSL_HandshakeCallback( nss_fd_, SSLClientSocketNSS::Core::HandshakeCallback, this); if (rv != SECSuccess) { LogFailedNSSFunction(*weak_net_log_, "SSL_HandshakeCallback", ""); return false; } return true; } void SSLClientSocketNSS::Core::SetPredictedCertificates( const std::vector& predicted_certs) { if (predicted_certs.empty()) return; if (!OnNSSTaskRunner()) { DCHECK(!detached_); nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::SetPredictedCertificates, this, predicted_certs)); return; } DCHECK(nss_fd_); predicted_certs_ = predicted_certs; scoped_array certs( new CERTCertificate*[predicted_certs.size()]); for (size_t i = 0; i < predicted_certs.size(); i++) { SECItem derCert; derCert.data = const_cast(reinterpret_cast( predicted_certs[i].data())); derCert.len = predicted_certs[i].size(); certs[i] = CERT_NewTempCertificate( CERT_GetDefaultCertDB(), &derCert, NULL /* no nickname given */, PR_FALSE /* not permanent */, PR_TRUE /* copy DER data */); if (!certs[i]) { DestroyCertificates(&certs[0], i); NOTREACHED(); return; } } SECStatus rv; #ifdef SSL_ENABLE_CACHED_INFO rv = SSL_SetPredictedPeerCertificates(nss_fd_, certs.get(), predicted_certs.size()); DCHECK_EQ(SECSuccess, rv); #else rv = SECFailure; // Not implemented. #endif DestroyCertificates(&certs[0], predicted_certs.size()); if (rv != SECSuccess) { LOG(WARNING) << "SetPredictedCertificates failed: " << host_and_port_.ToString(); } } int SSLClientSocketNSS::Core::Connect(const CompletionCallback& callback) { if (!OnNSSTaskRunner()) { DCHECK(!detached_); bool posted = nss_task_runner_->PostTask( FROM_HERE, base::Bind(IgnoreResult(&Core::Connect), this, callback)); return posted ? ERR_IO_PENDING : ERR_ABORTED; } DCHECK(OnNSSTaskRunner()); DCHECK_EQ(STATE_NONE, next_handshake_state_); DCHECK(user_read_callback_.is_null()); DCHECK(user_write_callback_.is_null()); DCHECK(user_connect_callback_.is_null()); DCHECK(!user_read_buf_); DCHECK(!user_write_buf_); next_handshake_state_ = STATE_HANDSHAKE; int rv = DoHandshakeLoop(OK); if (rv == ERR_IO_PENDING) { user_connect_callback_ = callback; } else if (rv > OK) { rv = OK; } if (rv != ERR_IO_PENDING && !OnNetworkTaskRunner()) { PostOrRunCallback(FROM_HERE, base::Bind(callback, rv)); return ERR_IO_PENDING; } return rv; } void SSLClientSocketNSS::Core::Detach() { DCHECK(OnNetworkTaskRunner()); detached_ = true; transport_ = NULL; weak_net_log_factory_.InvalidateWeakPtrs(); network_handshake_state_.Reset(); if (domain_bound_cert_request_handle_ != NULL) { server_bound_cert_service_->CancelRequest( domain_bound_cert_request_handle_); domain_bound_cert_request_handle_ = NULL; } } int SSLClientSocketNSS::Core::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (!OnNSSTaskRunner()) { DCHECK(OnNetworkTaskRunner()); DCHECK(!detached_); DCHECK(transport_); bool posted = nss_task_runner_->PostTask( FROM_HERE, base::Bind(IgnoreResult(&Core::Read), this, make_scoped_refptr(buf), buf_len, callback)); return posted ? ERR_IO_PENDING : ERR_ABORTED; } DCHECK(OnNSSTaskRunner()); DCHECK(handshake_callback_called_); DCHECK_EQ(STATE_NONE, next_handshake_state_); DCHECK(user_read_callback_.is_null()); DCHECK(user_connect_callback_.is_null()); DCHECK(!user_read_buf_); DCHECK(nss_bufs_); user_read_buf_ = buf; user_read_buf_len_ = buf_len; int rv = DoReadLoop(OK); if (rv == ERR_IO_PENDING) { user_read_callback_ = callback; } else { user_read_buf_ = NULL; user_read_buf_len_ = 0; if (!OnNetworkTaskRunner()) { PostOrRunCallback(FROM_HERE, base::Bind(callback, rv)); return ERR_IO_PENDING; } } return rv; } int SSLClientSocketNSS::Core::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (!OnNSSTaskRunner()) { DCHECK(OnNetworkTaskRunner()); DCHECK(!detached_); DCHECK(transport_); bool posted = nss_task_runner_->PostTask( FROM_HERE, base::Bind(IgnoreResult(&Core::Write), this, make_scoped_refptr(buf), buf_len, callback)); int rv = posted ? ERR_IO_PENDING : ERR_ABORTED; return rv; } DCHECK(OnNSSTaskRunner()); DCHECK(handshake_callback_called_); DCHECK_EQ(STATE_NONE, next_handshake_state_); DCHECK(user_write_callback_.is_null()); DCHECK(user_connect_callback_.is_null()); DCHECK(!user_write_buf_); DCHECK(nss_bufs_); user_write_buf_ = buf; user_write_buf_len_ = buf_len; int rv = DoWriteLoop(OK); if (rv == ERR_IO_PENDING) { user_write_callback_ = callback; } else { user_write_buf_ = NULL; user_write_buf_len_ = 0; if (!OnNetworkTaskRunner()) { PostOrRunCallback(FROM_HERE, base::Bind(callback, rv)); return ERR_IO_PENDING; } } return rv; } bool SSLClientSocketNSS::Core::OnNSSTaskRunner() const { return nss_task_runner_->RunsTasksOnCurrentThread(); } bool SSLClientSocketNSS::Core::OnNetworkTaskRunner() const { return network_task_runner_->RunsTasksOnCurrentThread(); } // static SECStatus SSLClientSocketNSS::Core::OwnAuthCertHandler( void* arg, PRFileDesc* socket, PRBool checksig, PRBool is_server) { #ifdef SSL_ENABLE_FALSE_START Core* core = reinterpret_cast(arg); if (!core->handshake_callback_called_) { // Only need to turn off False Start in the initial handshake. Also, it is // unsafe to call SSL_OptionSet in a renegotiation because the "first // handshake" lock isn't already held, which will result in an assertion // failure in the ssl_Get1stHandshakeLock call in SSL_OptionSet. PRBool npn; SECStatus rv = SSL_HandshakeNegotiatedExtension(socket, ssl_next_proto_nego_xtn, &npn); if (rv != SECSuccess || !npn) { // If the server doesn't support NPN, then we don't do False Start with // it. SSL_OptionSet(socket, SSL_ENABLE_FALSE_START, PR_FALSE); } } #endif // Tell NSS to not verify the certificate. return SECSuccess; } #if defined(NSS_PLATFORM_CLIENT_AUTH) // static SECStatus SSLClientSocketNSS::Core::PlatformClientAuthHandler( void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertList** result_certs, void** result_private_key, CERTCertificate** result_nss_certificate, SECKEYPrivateKey** result_nss_private_key) { Core* core = reinterpret_cast(arg); DCHECK(core->OnNSSTaskRunner()); core->PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEvent, core->weak_net_log_, NetLog::TYPE_SSL_CLIENT_CERT_REQUESTED)); core->client_auth_cert_needed_ = !core->ssl_config_.send_client_cert; #if defined(OS_WIN) if (core->ssl_config_.send_client_cert) { if (core->ssl_config_.client_cert) { PCCERT_CONTEXT cert_context = core->ssl_config_.client_cert->os_cert_handle(); HCRYPTPROV_OR_NCRYPT_KEY_HANDLE crypt_prov = 0; DWORD key_spec = 0; BOOL must_free = FALSE; BOOL acquired_key = CryptAcquireCertificatePrivateKey( cert_context, CRYPT_ACQUIRE_CACHE_FLAG, NULL, &crypt_prov, &key_spec, &must_free); if (acquired_key) { // Since we passed CRYPT_ACQUIRE_CACHE_FLAG, |must_free| must be false // according to the MSDN documentation. CHECK_EQ(must_free, FALSE); DCHECK_NE(key_spec, CERT_NCRYPT_KEY_SPEC); SECItem der_cert; der_cert.type = siDERCertBuffer; der_cert.data = cert_context->pbCertEncoded; der_cert.len = cert_context->cbCertEncoded; // TODO(rsleevi): Error checking for NSS allocation errors. CERTCertDBHandle* db_handle = CERT_GetDefaultCertDB(); CERTCertificate* user_cert = CERT_NewTempCertificate( db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE); if (!user_cert) { // Importing the certificate can fail for reasons including a serial // number collision. See crbug.com/97355. core->AddCertProvidedEvent(0); return SECFailure; } CERTCertList* cert_chain = CERT_NewCertList(); CERT_AddCertToListTail(cert_chain, user_cert); // Add the intermediates. X509Certificate::OSCertHandles intermediates = core->ssl_config_.client_cert->GetIntermediateCertificates(); for (X509Certificate::OSCertHandles::const_iterator it = intermediates.begin(); it != intermediates.end(); ++it) { der_cert.data = (*it)->pbCertEncoded; der_cert.len = (*it)->cbCertEncoded; CERTCertificate* intermediate = CERT_NewTempCertificate( db_handle, &der_cert, NULL, PR_FALSE, PR_TRUE); if (!intermediate) { CERT_DestroyCertList(cert_chain); core->AddCertProvidedEvent(0); return SECFailure; } CERT_AddCertToListTail(cert_chain, intermediate); } PCERT_KEY_CONTEXT key_context = reinterpret_cast( PORT_ZAlloc(sizeof(CERT_KEY_CONTEXT))); key_context->cbSize = sizeof(*key_context); // NSS will free this context when no longer in use, but the // |must_free| result from CryptAcquireCertificatePrivateKey was false // so we increment the refcount to negate NSS's future decrement. CryptContextAddRef(crypt_prov, NULL, 0); key_context->hCryptProv = crypt_prov; key_context->dwKeySpec = key_spec; *result_private_key = key_context; *result_certs = cert_chain; int cert_count = 1 + intermediates.size(); core->AddCertProvidedEvent(cert_count); return SECSuccess; } LOG(WARNING) << "Client cert found without private key"; } // Send no client certificate. core->AddCertProvidedEvent(0); return SECFailure; } core->nss_handshake_state_.client_certs.clear(); std::vector issuer_list(ca_names->nnames); for (int i = 0; i < ca_names->nnames; ++i) { issuer_list[i].cbData = ca_names->names[i].len; issuer_list[i].pbData = ca_names->names[i].data; } // Client certificates of the user are in the "MY" system certificate store. HCERTSTORE my_cert_store = CertOpenSystemStore(NULL, L"MY"); if (!my_cert_store) { PLOG(ERROR) << "Could not open the \"MY\" system certificate store"; core->AddCertProvidedEvent(0); return SECFailure; } // Enumerate the client certificates. CERT_CHAIN_FIND_BY_ISSUER_PARA find_by_issuer_para; memset(&find_by_issuer_para, 0, sizeof(find_by_issuer_para)); find_by_issuer_para.cbSize = sizeof(find_by_issuer_para); find_by_issuer_para.pszUsageIdentifier = szOID_PKIX_KP_CLIENT_AUTH; find_by_issuer_para.cIssuer = ca_names->nnames; find_by_issuer_para.rgIssuer = ca_names->nnames ? &issuer_list[0] : NULL; find_by_issuer_para.pfnFindCallback = ClientCertFindCallback; PCCERT_CHAIN_CONTEXT chain_context = NULL; DWORD find_flags = CERT_CHAIN_FIND_BY_ISSUER_CACHE_ONLY_FLAG | CERT_CHAIN_FIND_BY_ISSUER_CACHE_ONLY_URL_FLAG; for (;;) { // Find a certificate chain. chain_context = CertFindChainInStore(my_cert_store, X509_ASN_ENCODING, find_flags, CERT_CHAIN_FIND_BY_ISSUER, &find_by_issuer_para, chain_context); if (!chain_context) { DWORD err = GetLastError(); if (err != CRYPT_E_NOT_FOUND) DLOG(ERROR) << "CertFindChainInStore failed: " << err; break; } // Get the leaf certificate. PCCERT_CONTEXT cert_context = chain_context->rgpChain[0]->rgpElement[0]->pCertContext; // Create a copy the handle, so that we can close the "MY" certificate store // before returning from this function. PCCERT_CONTEXT cert_context2; BOOL ok = CertAddCertificateContextToStore(NULL, cert_context, CERT_STORE_ADD_USE_EXISTING, &cert_context2); if (!ok) { NOTREACHED(); continue; } // Copy the rest of the chain. Copying the chain stops gracefully if an // error is encountered, with the partial chain being used as the // intermediates, as opposed to failing to consider the client certificate // at all. net::X509Certificate::OSCertHandles intermediates; for (DWORD i = 1; i < chain_context->rgpChain[0]->cElement; i++) { PCCERT_CONTEXT intermediate_copy; ok = CertAddCertificateContextToStore( NULL, chain_context->rgpChain[0]->rgpElement[i]->pCertContext, CERT_STORE_ADD_USE_EXISTING, &intermediate_copy); if (!ok) { NOTREACHED(); break; } intermediates.push_back(intermediate_copy); } scoped_refptr cert = X509Certificate::CreateFromHandle( cert_context2, intermediates); core->nss_handshake_state_.client_certs.push_back(cert); X509Certificate::FreeOSCertHandle(cert_context2); for (net::X509Certificate::OSCertHandles::iterator it = intermediates.begin(); it != intermediates.end(); ++it) { net::X509Certificate::FreeOSCertHandle(*it); } } BOOL ok = CertCloseStore(my_cert_store, CERT_CLOSE_STORE_CHECK_FLAG); DCHECK(ok); // Update the network task runner's view of the handshake state now that // client certs have been detected. core->PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core, core->nss_handshake_state_)); // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; #elif defined(OS_MACOSX) if (core->ssl_config_.send_client_cert) { if (core->ssl_config_.client_cert) { OSStatus os_error = noErr; SecIdentityRef identity = NULL; SecKeyRef private_key = NULL; CFArrayRef chain = core->ssl_config_.client_cert->CreateClientCertificateChain(); if (chain) { identity = reinterpret_cast( const_cast(CFArrayGetValueAtIndex(chain, 0))); } if (identity) os_error = SecIdentityCopyPrivateKey(identity, &private_key); if (chain && identity && os_error == noErr) { // TODO(rsleevi): Error checking for NSS allocation errors. *result_certs = CERT_NewCertList(); *result_private_key = private_key; for (CFIndex i = 0; i < CFArrayGetCount(chain); ++i) { CSSM_DATA cert_data; SecCertificateRef cert_ref; if (i == 0) { cert_ref = core->ssl_config_.client_cert->os_cert_handle(); } else { cert_ref = reinterpret_cast( const_cast(CFArrayGetValueAtIndex(chain, i))); } os_error = SecCertificateGetData(cert_ref, &cert_data); if (os_error != noErr) break; SECItem der_cert; der_cert.type = siDERCertBuffer; der_cert.data = cert_data.Data; der_cert.len = cert_data.Length; CERTCertificate* nss_cert = CERT_NewTempCertificate( CERT_GetDefaultCertDB(), &der_cert, NULL, PR_FALSE, PR_TRUE); if (!nss_cert) { // In the event of an NSS error we make up an OS error and reuse // the error handling, below. os_error = errSecCreateChainFailed; break; } CERT_AddCertToListTail(*result_certs, nss_cert); } } if (os_error == noErr) { int cert_count = 0; if (chain) { cert_count = CFArrayGetCount(chain); CFRelease(chain); } core->AddCertProvidedEvent(cert_count); return SECSuccess; } OSSTATUS_LOG(WARNING, os_error) << "Client cert found, but could not be used"; if (*result_certs) { CERT_DestroyCertList(*result_certs); *result_certs = NULL; } if (*result_private_key) *result_private_key = NULL; if (private_key) CFRelease(private_key); if (chain) CFRelease(chain); } // Send no client certificate. core->AddCertProvidedEvent(0); return SECFailure; } core->nss_handshake_state_.client_certs.clear(); // First, get the cert issuer names allowed by the server. std::vector valid_issuers; int n = ca_names->nnames; for (int i = 0; i < n; i++) { // Parse each name into a CertPrincipal object. CertPrincipal p; if (p.ParseDistinguishedName(ca_names->names[i].data, ca_names->names[i].len)) { valid_issuers.push_back(p); } } // Now get the available client certs whose issuers are allowed by the server. X509Certificate::GetSSLClientCertificates( core->host_and_port_.host(), valid_issuers, &core->nss_handshake_state_.client_certs); // Update the network task runner's view of the handshake state now that // client certs have been detected. core->PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core, core->nss_handshake_state_)); // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; #else return SECFailure; #endif } #else // NSS_PLATFORM_CLIENT_AUTH // static // Based on Mozilla's NSS_GetClientAuthData. SECStatus SSLClientSocketNSS::Core::ClientAuthHandler( void* arg, PRFileDesc* socket, CERTDistNames* ca_names, CERTCertificate** result_certificate, SECKEYPrivateKey** result_private_key) { Core* core = reinterpret_cast(arg); DCHECK(core->OnNSSTaskRunner()); core->PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEvent, core->weak_net_log_, NetLog::TYPE_SSL_CLIENT_CERT_REQUESTED)); // Regular client certificate requested. core->client_auth_cert_needed_ = !core->ssl_config_.send_client_cert; void* wincx = SSL_RevealPinArg(socket); // Second pass: a client certificate should have been selected. if (core->ssl_config_.send_client_cert) { if (core->ssl_config_.client_cert) { CERTCertificate* cert = CERT_DupCertificate( core->ssl_config_.client_cert->os_cert_handle()); SECKEYPrivateKey* privkey = PK11_FindKeyByAnyCert(cert, wincx); if (privkey) { // TODO(jsorianopastor): We should wait for server certificate // verification before sending our credentials. See // http://crbug.com/13934. *result_certificate = cert; *result_private_key = privkey; // A cert_count of -1 means the number of certificates is unknown. // NSS will construct the certificate chain. core->AddCertProvidedEvent(-1); return SECSuccess; } LOG(WARNING) << "Client cert found without private key"; } // Send no client certificate. core->AddCertProvidedEvent(0); return SECFailure; } core->nss_handshake_state_.client_certs.clear(); // Iterate over all client certificates. CERTCertList* client_certs = CERT_FindUserCertsByUsage( CERT_GetDefaultCertDB(), certUsageSSLClient, PR_FALSE, PR_FALSE, wincx); if (client_certs) { for (CERTCertListNode* node = CERT_LIST_HEAD(client_certs); !CERT_LIST_END(node, client_certs); node = CERT_LIST_NEXT(node)) { // Only offer unexpired certificates. if (CERT_CheckCertValidTimes(node->cert, PR_Now(), PR_TRUE) != secCertTimeValid) { continue; } // Filter by issuer. // // TODO(davidben): This does a binary comparison of the DER-encoded // issuers. We should match according to RFC 5280 sec. 7.1. We should find // an appropriate NSS function or add one if needbe. if (ca_names->nnames && NSS_CmpCertChainWCANames(node->cert, ca_names) != SECSuccess) { continue; } X509Certificate* x509_cert = X509Certificate::CreateFromHandle( node->cert, net::X509Certificate::OSCertHandles()); core->nss_handshake_state_.client_certs.push_back(x509_cert); } CERT_DestroyCertList(client_certs); } // Update the network task runner's view of the handshake state now that // client certs have been detected. core->PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core, core->nss_handshake_state_)); // Tell NSS to suspend the client authentication. We will then abort the // handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED. return SECWouldBlock; } #endif // NSS_PLATFORM_CLIENT_AUTH // static void SSLClientSocketNSS::Core::HandshakeCallback( PRFileDesc* socket, void* arg) { Core* core = reinterpret_cast(arg); DCHECK(core->OnNSSTaskRunner()); core->handshake_callback_called_ = true; HandshakeState* nss_state = &core->nss_handshake_state_; PRBool last_handshake_resumed; SECStatus rv = SSL_HandshakeResumedSession(socket, &last_handshake_resumed); if (rv == SECSuccess && last_handshake_resumed) { nss_state->resumed_handshake = true; } else { nss_state->resumed_handshake = false; } core->RecordChannelIDSupport(); core->UpdateServerCert(); core->UpdateConnectionStatus(); // Update the network task runners view of the handshake state whenever // a handshake has completed. core->PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core, *nss_state)); } // static SECStatus SSLClientSocketNSS::Core::NextProtoCallback( void* arg, PRFileDesc* nss_fd, const unsigned char* protos, unsigned int protos_len, unsigned char* proto_out, unsigned int* proto_out_len, unsigned int proto_max_len) { Core* core = reinterpret_cast(arg); DCHECK(core->OnNSSTaskRunner()); HandshakeState* nss_state = &core->nss_handshake_state_; // For each protocol in server preference, see if we support it. for (unsigned int i = 0; i < protos_len; ) { const size_t len = protos[i]; for (std::vector::const_iterator j = core->ssl_config_.next_protos.begin(); j != core->ssl_config_.next_protos.end(); j++) { // Having very long elements in the |next_protos| vector isn't a disaster // because they'll never be selected, but it does indicate an error // somewhere. DCHECK_LT(j->size(), 256u); if (j->size() == len && memcmp(&protos[i + 1], j->data(), len) == 0) { nss_state->next_proto_status = kNextProtoNegotiated; nss_state->next_proto = *j; break; } } if (nss_state->next_proto_status == kNextProtoNegotiated) break; // NSS ensures that the data in |protos| is well formed, so this will not // cause a jump past the end of the buffer. i += len + 1; } nss_state->server_protos.assign( reinterpret_cast(protos), protos_len); // If we didn't find a protocol, we select the first one from our list. if (nss_state->next_proto_status != kNextProtoNegotiated) { nss_state->next_proto_status = kNextProtoNoOverlap; nss_state->next_proto = core->ssl_config_.next_protos[0]; } if (nss_state->next_proto.size() > proto_max_len) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } memcpy(proto_out, nss_state->next_proto.data(), nss_state->next_proto.size()); *proto_out_len = nss_state->next_proto.size(); // Update the network task runner's view of the handshake state now that // NPN negotiation has occurred. core->PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core, *nss_state)); return SECSuccess; } int SSLClientSocketNSS::Core::HandleNSSError(PRErrorCode nss_error, bool handshake_error) { DCHECK(OnNSSTaskRunner()); int net_error = handshake_error ? MapNSSClientHandshakeError(nss_error) : MapNSSClientError(nss_error); #if defined(OS_WIN) // On Windows, a handle to the HCRYPTPROV is cached in the X509Certificate // os_cert_handle() as an optimization. However, if the certificate // private key is stored on a smart card, and the smart card is removed, // the cached HCRYPTPROV will not be able to obtain the HCRYPTKEY again, // preventing client certificate authentication. Because the // X509Certificate may outlive the individual SSLClientSocketNSS, due to // caching in X509Certificate, this failure ends up preventing client // certificate authentication with the same certificate for all future // attempts, even after the smart card has been re-inserted. By setting // the CERT_KEY_PROV_HANDLE_PROP_ID to NULL, the cached HCRYPTPROV will // typically be freed. This allows a new HCRYPTPROV to be obtained from // the certificate on the next attempt, which should succeed if the smart // card has been re-inserted, or will typically prompt the user to // re-insert the smart card if not. if ((net_error == ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY || net_error == ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED) && ssl_config_.send_client_cert && ssl_config_.client_cert) { CertSetCertificateContextProperty( ssl_config_.client_cert->os_cert_handle(), CERT_KEY_PROV_HANDLE_PROP_ID, 0, NULL); } #endif return net_error; } int SSLClientSocketNSS::Core::DoHandshakeLoop(int last_io_result) { DCHECK(OnNSSTaskRunner()); int rv = last_io_result; do { // Default to STATE_NONE for next state. State state = next_handshake_state_; GotoState(STATE_NONE); switch (state) { case STATE_HANDSHAKE: rv = DoHandshake(); break; case STATE_GET_DOMAIN_BOUND_CERT_COMPLETE: rv = DoGetDBCertComplete(rv); break; case STATE_NONE: default: rv = ERR_UNEXPECTED; LOG(DFATAL) << "unexpected state " << state; break; } // Do the actual network I/O bool network_moved = DoTransportIO(); if (network_moved && next_handshake_state_ == STATE_HANDSHAKE) { // In general we exit the loop if rv is ERR_IO_PENDING. In this // special case we keep looping even if rv is ERR_IO_PENDING because // the transport IO may allow DoHandshake to make progress. DCHECK(rv == OK || rv == ERR_IO_PENDING); rv = OK; // This causes us to stay in the loop. } } while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE); return rv; } int SSLClientSocketNSS::Core::DoReadLoop(int result) { DCHECK(OnNSSTaskRunner()); DCHECK(handshake_callback_called_); DCHECK_EQ(STATE_NONE, next_handshake_state_); if (result < 0) return result; if (!nss_bufs_) { LOG(DFATAL) << "!nss_bufs_"; int rv = ERR_UNEXPECTED; PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_READ_ERROR, CreateNetLogSSLErrorCallback(rv, 0))); return rv; } bool network_moved; int rv; do { rv = DoPayloadRead(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); return rv; } int SSLClientSocketNSS::Core::DoWriteLoop(int result) { DCHECK(OnNSSTaskRunner()); DCHECK(handshake_callback_called_); DCHECK_EQ(STATE_NONE, next_handshake_state_); if (result < 0) return result; if (!nss_bufs_) { LOG(DFATAL) << "!nss_bufs_"; int rv = ERR_UNEXPECTED; PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_READ_ERROR, CreateNetLogSSLErrorCallback(rv, 0))); return rv; } bool network_moved; int rv; do { rv = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); LeaveFunction(rv); return rv; } int SSLClientSocketNSS::Core::DoHandshake() { DCHECK(OnNSSTaskRunner()); int net_error = net::OK; SECStatus rv = SSL_ForceHandshake(nss_fd_); // Note: this function may be called multiple times during the handshake, so // even though channel id and client auth are separate else cases, they can // both be used during a single SSL handshake. if (channel_id_needed_) { GotoState(STATE_GET_DOMAIN_BOUND_CERT_COMPLETE); net_error = ERR_IO_PENDING; } else if (client_auth_cert_needed_) { net_error = ERR_SSL_CLIENT_AUTH_CERT_NEEDED; PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_HANDSHAKE_ERROR, CreateNetLogSSLErrorCallback(net_error, 0))); // If the handshake already succeeded (because the server requests but // doesn't require a client cert), we need to invalidate the SSL session // so that we won't try to resume the non-client-authenticated session in // the next handshake. This will cause the server to ask for a client // cert again. if (rv == SECSuccess && SSL_InvalidateSession(nss_fd_) != SECSuccess) LOG(WARNING) << "Couldn't invalidate SSL session: " << PR_GetError(); } else if (rv == SECSuccess) { if (!handshake_callback_called_) { // Workaround for https://bugzilla.mozilla.org/show_bug.cgi?id=562434 - // SSL_ForceHandshake returned SECSuccess prematurely. rv = SECFailure; net_error = ERR_SSL_PROTOCOL_ERROR; PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_HANDSHAKE_ERROR, CreateNetLogSSLErrorCallback(net_error, 0))); } else { #if defined(SSL_ENABLE_OCSP_STAPLING) // TODO(agl): figure out how to plumb an OCSP response into the Mac // system library and update IsOCSPStaplingSupported for Mac. if (IsOCSPStaplingSupported()) { unsigned int len = 0; SSL_GetStapledOCSPResponse(nss_fd_, NULL, &len); if (len) { const unsigned int orig_len = len; scoped_array ocsp_response(new uint8[orig_len]); SSL_GetStapledOCSPResponse(nss_fd_, ocsp_response.get(), &len); DCHECK_EQ(orig_len, len); #if defined(OS_WIN) if (nss_handshake_state_.server_cert) { CRYPT_DATA_BLOB ocsp_response_blob; ocsp_response_blob.cbData = len; ocsp_response_blob.pbData = ocsp_response.get(); BOOL ok = CertSetCertificateContextProperty( nss_handshake_state_.server_cert->os_cert_handle(), CERT_OCSP_RESPONSE_PROP_ID, CERT_SET_PROPERTY_IGNORE_PERSIST_ERROR_FLAG, &ocsp_response_blob); if (!ok) { VLOG(1) << "Failed to set OCSP response property: " << GetLastError(); } } #elif defined(USE_NSS) CacheOCSPResponseFromSideChannelFunction cache_ocsp_response = GetCacheOCSPResponseFromSideChannelFunction(); SECItem ocsp_response_item; ocsp_response_item.type = siBuffer; ocsp_response_item.data = ocsp_response.get(); ocsp_response_item.len = len; cache_ocsp_response( CERT_GetDefaultCertDB(), nss_handshake_state_.server_cert_chain[0], PR_Now(), &ocsp_response_item, NULL); #endif } } #endif } // Done! } else { PRErrorCode prerr = PR_GetError(); net_error = HandleNSSError(prerr, true); // If not done, stay in this state if (net_error == ERR_IO_PENDING) { GotoState(STATE_HANDSHAKE); } else { PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_HANDSHAKE_ERROR, CreateNetLogSSLErrorCallback(net_error, prerr))); } } return net_error; } int SSLClientSocketNSS::Core::DoGetDBCertComplete(int result) { SECStatus rv; PostOrRunCallback( FROM_HERE, base::Bind(&BoundNetLog::EndEventWithNetErrorCode, weak_net_log_, NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT, result)); channel_id_needed_ = false; if (result != OK) return result; SECKEYPublicKey* public_key; SECKEYPrivateKey* private_key; int error = ImportChannelIDKeys(&public_key, &private_key); if (error != OK) return error; rv = SSL_RestartHandshakeAfterChannelIDReq(nss_fd_, public_key, private_key); if (rv != SECSuccess) return MapNSSError(PORT_GetError()); SetChannelIDProvided(); GotoState(STATE_HANDSHAKE); return OK; } int SSLClientSocketNSS::Core::DoPayloadRead() { DCHECK(OnNSSTaskRunner()); DCHECK(user_read_buf_); DCHECK_GT(user_read_buf_len_, 0); int rv = PR_Read(nss_fd_, user_read_buf_->data(), user_read_buf_len_); if (client_auth_cert_needed_) { // We don't need to invalidate the non-client-authenticated SSL session // because the server will renegotiate anyway. rv = ERR_SSL_CLIENT_AUTH_CERT_NEEDED; PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_READ_ERROR, CreateNetLogSSLErrorCallback(rv, 0))); return rv; } if (rv >= 0) { PostOrRunCallback( FROM_HERE, base::Bind(&LogByteTransferEvent, weak_net_log_, NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv, scoped_refptr(user_read_buf_))); return rv; } PRErrorCode prerr = PR_GetError(); if (prerr == PR_WOULD_BLOCK_ERROR) return ERR_IO_PENDING; rv = HandleNSSError(prerr, false); PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_READ_ERROR, CreateNetLogSSLErrorCallback(rv, prerr))); return rv; } int SSLClientSocketNSS::Core::DoPayloadWrite() { DCHECK(OnNSSTaskRunner()); DCHECK(user_write_buf_); int rv = PR_Write(nss_fd_, user_write_buf_->data(), user_write_buf_len_); if (rv >= 0) { PostOrRunCallback( FROM_HERE, base::Bind(&LogByteTransferEvent, weak_net_log_, NetLog::TYPE_SSL_SOCKET_BYTES_SENT, rv, scoped_refptr(user_write_buf_))); return rv; } PRErrorCode prerr = PR_GetError(); if (prerr == PR_WOULD_BLOCK_ERROR) return ERR_IO_PENDING; rv = HandleNSSError(prerr, false); PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_WRITE_ERROR, CreateNetLogSSLErrorCallback(rv, prerr))); return rv; } // Do as much network I/O as possible between the buffer and the // transport socket. Return true if some I/O performed, false // otherwise (error or ERR_IO_PENDING). bool SSLClientSocketNSS::Core::DoTransportIO() { DCHECK(OnNSSTaskRunner()); bool network_moved = false; if (nss_bufs_ != NULL) { int rv; // Read and write as much data as we can. The loop is neccessary // because Write() may return synchronously. do { rv = BufferSend(); if (rv > 0) network_moved = true; } while (rv > 0); if (!transport_recv_eof_ && BufferRecv() >= 0) network_moved = true; } return network_moved; } int SSLClientSocketNSS::Core::BufferRecv() { DCHECK(OnNSSTaskRunner()); if (transport_recv_busy_) return ERR_IO_PENDING; char* buf; int nb = memio_GetReadParams(nss_bufs_, &buf); int rv; if (!nb) { // buffer too full to read into, so no I/O possible at moment rv = ERR_IO_PENDING; } else { scoped_refptr read_buffer(new IOBuffer(nb)); if (OnNetworkTaskRunner()) { rv = DoBufferRecv(read_buffer, nb); } else { bool posted = network_task_runner_->PostTask( FROM_HERE, base::Bind(IgnoreResult(&Core::DoBufferRecv), this, read_buffer, nb)); rv = posted ? ERR_IO_PENDING : ERR_ABORTED; } if (rv == ERR_IO_PENDING) { transport_recv_busy_ = true; } else { if (rv > 0) { memcpy(buf, read_buffer->data(), rv); } else if (rv == 0) { transport_recv_eof_ = true; } memio_PutReadResult(nss_bufs_, MapErrorToNSS(rv)); } } return rv; } // Return 0 for EOF, // > 0 for bytes transferred immediately, // < 0 for error (or the non-error ERR_IO_PENDING). int SSLClientSocketNSS::Core::BufferSend() { DCHECK(OnNSSTaskRunner()); if (transport_send_busy_) return ERR_IO_PENDING; const char* buf1; const char* buf2; unsigned int len1, len2; memio_GetWriteParams(nss_bufs_, &buf1, &len1, &buf2, &len2); const unsigned int len = len1 + len2; int rv = 0; if (len) { scoped_refptr send_buffer(new IOBuffer(len)); memcpy(send_buffer->data(), buf1, len1); memcpy(send_buffer->data() + len1, buf2, len2); if (OnNetworkTaskRunner()) { rv = DoBufferSend(send_buffer, len); } else { bool posted = network_task_runner_->PostTask( FROM_HERE, base::Bind(IgnoreResult(&Core::DoBufferSend), this, send_buffer, len)); rv = posted ? ERR_IO_PENDING : ERR_ABORTED; } if (rv == ERR_IO_PENDING) { transport_send_busy_ = true; } else { memio_PutWriteResult(nss_bufs_, MapErrorToNSS(rv)); } } return rv; } void SSLClientSocketNSS::Core::OnRecvComplete(int result) { DCHECK(OnNSSTaskRunner()); if (next_handshake_state_ == STATE_HANDSHAKE) { OnHandshakeIOComplete(result); return; } // Network layer received some data, check if client requested to read // decrypted data. if (!user_read_buf_) return; int rv = DoReadLoop(result); if (rv != ERR_IO_PENDING) DoReadCallback(rv); } void SSLClientSocketNSS::Core::OnSendComplete(int result) { DCHECK(OnNSSTaskRunner()); if (next_handshake_state_ == STATE_HANDSHAKE) { OnHandshakeIOComplete(result); return; } // OnSendComplete may need to call DoPayloadRead while the renegotiation // handshake is in progress. int rv_read = ERR_IO_PENDING; int rv_write = ERR_IO_PENDING; bool network_moved; do { if (user_read_buf_) rv_read = DoPayloadRead(); if (user_write_buf_) rv_write = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv_read == ERR_IO_PENDING && rv_write == ERR_IO_PENDING && (user_read_buf_ || user_write_buf_) && network_moved); if (user_read_buf_ && rv_read != ERR_IO_PENDING) DoReadCallback(rv_read); if (user_write_buf_ && rv_write != ERR_IO_PENDING) DoWriteCallback(rv_write); } // As part of Connect(), the SSLClientSocketNSS object performs an SSL // handshake. This requires network IO, which in turn calls // BufferRecvComplete() with a non-zero byte count. This byte count eventually // winds its way through the state machine and ends up being passed to the // callback. For Read() and Write(), that's what we want. But for Connect(), // the caller expects OK (i.e. 0) for success. void SSLClientSocketNSS::Core::DoConnectCallback(int rv) { DCHECK(OnNSSTaskRunner()); DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(!user_connect_callback_.is_null()); base::Closure c = base::Bind( base::ResetAndReturn(&user_connect_callback_), rv > OK ? OK : rv); PostOrRunCallback(FROM_HERE, c); } void SSLClientSocketNSS::Core::DoReadCallback(int rv) { DCHECK(OnNSSTaskRunner()); DCHECK_NE(ERR_IO_PENDING, rv); DCHECK(!user_read_callback_.is_null()); user_read_buf_ = NULL; user_read_buf_len_ = 0; base::Closure c = base::Bind( base::ResetAndReturn(&user_read_callback_), rv); PostOrRunCallback(FROM_HERE, c); } void SSLClientSocketNSS::Core::DoWriteCallback(int rv) { DCHECK(OnNSSTaskRunner()); DCHECK_NE(ERR_IO_PENDING, rv); DCHECK(!user_write_callback_.is_null()); // Since Run may result in Write being called, clear |user_write_callback_| // up front. user_write_buf_ = NULL; user_write_buf_len_ = 0; base::Closure c = base::Bind( base::ResetAndReturn(&user_write_callback_), rv); PostOrRunCallback(FROM_HERE, c); } SECStatus SSLClientSocketNSS::Core::ClientChannelIDHandler( void* arg, PRFileDesc* socket, SECKEYPublicKey **out_public_key, SECKEYPrivateKey **out_private_key) { Core* core = reinterpret_cast(arg); DCHECK(core->OnNSSTaskRunner()); core->PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEvent, core->weak_net_log_, NetLog::TYPE_SSL_CHANNEL_ID_REQUESTED)); // We have negotiated the TLS channel ID extension. core->channel_id_xtn_negotiated_ = true; std::string origin = "https://" + core->host_and_port_.ToString(); std::vector requested_cert_types; requested_cert_types.push_back(CLIENT_CERT_ECDSA_SIGN); int error = ERR_UNEXPECTED; if (core->OnNetworkTaskRunner()) { error = core->DoGetDomainBoundCert(origin, requested_cert_types); } else { bool posted = core->network_task_runner_->PostTask( FROM_HERE, base::Bind( IgnoreResult(&Core::DoGetDomainBoundCert), core, origin, requested_cert_types)); error = posted ? ERR_IO_PENDING : ERR_ABORTED; } if (error == ERR_IO_PENDING) { // Asynchronous case. core->channel_id_needed_ = true; return SECWouldBlock; } core->PostOrRunCallback( FROM_HERE, base::Bind(&BoundNetLog::EndEventWithNetErrorCode, core->weak_net_log_, NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT, error)); SECStatus rv = SECSuccess; if (error == OK) { // Synchronous success. int result = core->ImportChannelIDKeys(out_public_key, out_private_key); if (result == OK) core->SetChannelIDProvided(); else rv = SECFailure; } else { rv = SECFailure; } return rv; } int SSLClientSocketNSS::Core::ImportChannelIDKeys(SECKEYPublicKey** public_key, SECKEYPrivateKey** key) { // Set the certificate. SECItem cert_item; cert_item.data = (unsigned char*) domain_bound_cert_.data(); cert_item.len = domain_bound_cert_.size(); ScopedCERTCertificate cert(CERT_NewTempCertificate(CERT_GetDefaultCertDB(), &cert_item, NULL, PR_FALSE, PR_TRUE)); if (cert == NULL) return MapNSSError(PORT_GetError()); // Set the private key. switch (domain_bound_cert_type_) { case CLIENT_CERT_ECDSA_SIGN: { if (!crypto::ECPrivateKey::ImportFromEncryptedPrivateKeyInfo( ServerBoundCertService::kEPKIPassword, reinterpret_cast( domain_bound_private_key_.data()), domain_bound_private_key_.size(), &cert->subjectPublicKeyInfo, false, false, key, public_key)) { int error = MapNSSError(PORT_GetError()); return error; } break; } default: NOTREACHED(); return ERR_INVALID_ARGUMENT; } return OK; } void SSLClientSocketNSS::Core::UpdateServerCert() { nss_handshake_state_.server_cert_chain.Reset(nss_fd_); nss_handshake_state_.server_cert = X509Certificate::CreateFromDERCertChain( nss_handshake_state_.server_cert_chain.AsStringPieceVector()); if (nss_handshake_state_.server_cert) { // Since this will be called asynchronously on another thread, it needs to // own a reference to the certificate. NetLog::ParametersCallback net_log_callback = base::Bind(&NetLogX509CertificateCallback, nss_handshake_state_.server_cert); PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_CERTIFICATES_RECEIVED, net_log_callback)); } } void SSLClientSocketNSS::Core::UpdateConnectionStatus() { SSLChannelInfo channel_info; SECStatus ok = SSL_GetChannelInfo(nss_fd_, &channel_info, sizeof(channel_info)); if (ok == SECSuccess && channel_info.length == sizeof(channel_info) && channel_info.cipherSuite) { nss_handshake_state_.ssl_connection_status |= (static_cast(channel_info.cipherSuite) & SSL_CONNECTION_CIPHERSUITE_MASK) << SSL_CONNECTION_CIPHERSUITE_SHIFT; nss_handshake_state_.ssl_connection_status |= (static_cast(channel_info.compressionMethod) & SSL_CONNECTION_COMPRESSION_MASK) << SSL_CONNECTION_COMPRESSION_SHIFT; // NSS 3.12.x doesn't have version macros for TLS 1.1 and 1.2 (because NSS // doesn't support them yet), so we use 0x0302 and 0x0303 directly. int version = SSL_CONNECTION_VERSION_UNKNOWN; if (channel_info.protocolVersion < SSL_LIBRARY_VERSION_3_0) { // All versions less than SSL_LIBRARY_VERSION_3_0 are treated as SSL // version 2. version = SSL_CONNECTION_VERSION_SSL2; } else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_0) { version = SSL_CONNECTION_VERSION_SSL3; } else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_3_1_TLS) { version = SSL_CONNECTION_VERSION_TLS1; } else if (channel_info.protocolVersion == 0x0302) { version = SSL_CONNECTION_VERSION_TLS1_1; } else if (channel_info.protocolVersion == 0x0303) { version = SSL_CONNECTION_VERSION_TLS1_2; } nss_handshake_state_.ssl_connection_status |= (version & SSL_CONNECTION_VERSION_MASK) << SSL_CONNECTION_VERSION_SHIFT; } // SSL_HandshakeNegotiatedExtension was added in NSS 3.12.6. // Since SSL_MAX_EXTENSIONS was added at the same time, we can test // SSL_MAX_EXTENSIONS for the presence of SSL_HandshakeNegotiatedExtension. #if defined(SSL_MAX_EXTENSIONS) PRBool peer_supports_renego_ext; ok = SSL_HandshakeNegotiatedExtension(nss_fd_, ssl_renegotiation_info_xtn, &peer_supports_renego_ext); if (ok == SECSuccess) { if (!peer_supports_renego_ext) { nss_handshake_state_.ssl_connection_status |= SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION; // Log an informational message if the server does not support secure // renegotiation (RFC 5746). VLOG(1) << "The server " << host_and_port_.ToString() << " does not support the TLS renegotiation_info extension."; } UMA_HISTOGRAM_ENUMERATION("Net.RenegotiationExtensionSupported", peer_supports_renego_ext, 2); } #endif if (ssl_config_.version_fallback) { nss_handshake_state_.ssl_connection_status |= SSL_CONNECTION_VERSION_FALLBACK; } } void SSLClientSocketNSS::Core::RecordChannelIDSupport() const { if (nss_handshake_state_.resumed_handshake) return; // Since this enum is used for a histogram, do not change or re-use values. enum { DISABLED = 0, CLIENT_ONLY = 1, CLIENT_AND_SERVER = 2, DOMAIN_BOUND_CERT_USAGE_MAX } supported = DISABLED; if (channel_id_xtn_negotiated_) supported = CLIENT_AND_SERVER; else if (ssl_config_.channel_id_enabled && crypto::ECPrivateKey::IsSupported()) supported = CLIENT_ONLY; UMA_HISTOGRAM_ENUMERATION("DomainBoundCerts.Support", supported, DOMAIN_BOUND_CERT_USAGE_MAX); } int SSLClientSocketNSS::Core::DoBufferRecv(IOBuffer* read_buffer, int len) { DCHECK(OnNetworkTaskRunner()); DCHECK_GT(len, 0); if (detached_) return ERR_ABORTED; int rv = transport_->socket()->Read( read_buffer, len, base::Bind(&Core::BufferRecvComplete, base::Unretained(this), scoped_refptr(read_buffer))); if (!OnNSSTaskRunner() && rv != ERR_IO_PENDING) { nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::BufferRecvComplete, this, scoped_refptr(read_buffer), rv)); return rv; } return rv; } int SSLClientSocketNSS::Core::DoBufferSend(IOBuffer* send_buffer, int len) { DCHECK(OnNetworkTaskRunner()); DCHECK_GT(len, 0); if (detached_) return ERR_ABORTED; int rv = transport_->socket()->Write( send_buffer, len, base::Bind(&Core::BufferSendComplete, base::Unretained(this))); if (!OnNSSTaskRunner() && rv != ERR_IO_PENDING) { nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::BufferSendComplete, this, rv)); return rv; } return rv; } int SSLClientSocketNSS::Core::DoGetDomainBoundCert( const std::string& origin, const std::vector& requested_cert_types) { DCHECK(OnNetworkTaskRunner()); if (detached_) return ERR_FAILED; weak_net_log_->BeginEvent(NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT); int rv = server_bound_cert_service_->GetDomainBoundCert( origin, requested_cert_types, &domain_bound_cert_type_, &domain_bound_private_key_, &domain_bound_cert_, base::Bind(&Core::OnGetDomainBoundCertComplete, base::Unretained(this)), &domain_bound_cert_request_handle_); if (rv != ERR_IO_PENDING && !OnNSSTaskRunner()) { nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::OnHandshakeIOComplete, this, rv)); return ERR_IO_PENDING; } return rv; } void SSLClientSocketNSS::Core::OnHandshakeStateUpdated( const HandshakeState& state) { network_handshake_state_ = state; } void SSLClientSocketNSS::Core::BufferSendComplete(int result) { if (!OnNSSTaskRunner()) { if (detached_) return; nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::BufferSendComplete, this, result)); return; } DCHECK(OnNSSTaskRunner()); memio_PutWriteResult(nss_bufs_, MapErrorToNSS(result)); transport_send_busy_ = false; OnSendComplete(result); } void SSLClientSocketNSS::Core::OnHandshakeIOComplete(int result) { if (!OnNSSTaskRunner()) { if (detached_) return; nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::OnHandshakeIOComplete, this, result)); return; } DCHECK(OnNSSTaskRunner()); int rv = DoHandshakeLoop(result); if (rv != ERR_IO_PENDING) DoConnectCallback(rv); } void SSLClientSocketNSS::Core::OnGetDomainBoundCertComplete(int result) { DVLOG(1) << __FUNCTION__ << " " << result; DCHECK(OnNetworkTaskRunner()); domain_bound_cert_request_handle_ = NULL; OnHandshakeIOComplete(result); } void SSLClientSocketNSS::Core::BufferRecvComplete( IOBuffer* read_buffer, int result) { DCHECK(read_buffer); if (!OnNSSTaskRunner()) { if (detached_) return; nss_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::BufferRecvComplete, this, scoped_refptr(read_buffer), result)); return; } DCHECK(OnNSSTaskRunner()); if (result > 0) { char* buf; int nb = memio_GetReadParams(nss_bufs_, &buf); CHECK_GE(nb, result); memcpy(buf, read_buffer->data(), result); } else if (result == 0) { transport_recv_eof_ = true; } memio_PutReadResult(nss_bufs_, MapErrorToNSS(result)); transport_recv_busy_ = false; OnRecvComplete(result); } void SSLClientSocketNSS::Core::PostOrRunCallback( const tracked_objects::Location& location, const base::Closure& task) { if (!OnNetworkTaskRunner()) { network_task_runner_->PostTask( FROM_HERE, base::Bind(&Core::PostOrRunCallback, this, location, task)); return; } if (detached_ || task.is_null()) return; task.Run(); } void SSLClientSocketNSS::Core::AddCertProvidedEvent(int cert_count) { PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEventWithCallback, weak_net_log_, NetLog::TYPE_SSL_CLIENT_CERT_PROVIDED, NetLog::IntegerCallback("cert_count", cert_count))); } void SSLClientSocketNSS::Core::SetChannelIDProvided() { PostOrRunCallback( FROM_HERE, base::Bind(&AddLogEvent, weak_net_log_, NetLog::TYPE_SSL_CHANNEL_ID_PROVIDED)); nss_handshake_state_.channel_id_sent = true; // Update the network task runner's view of the handshake state now that // channel id has been sent. PostOrRunCallback( FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, this, nss_handshake_state_)); } SSLClientSocketNSS::SSLClientSocketNSS( base::SequencedTaskRunner* nss_task_runner, ClientSocketHandle* transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config, const SSLClientSocketContext& context) : nss_task_runner_(nss_task_runner), transport_(transport_socket), host_and_port_(host_and_port), ssl_config_(ssl_config), cert_verifier_(context.cert_verifier), server_bound_cert_service_(context.server_bound_cert_service), ssl_session_cache_shard_(context.ssl_session_cache_shard), completed_handshake_(false), next_handshake_state_(STATE_NONE), nss_fd_(NULL), net_log_(transport_socket->socket()->NetLog()), transport_security_state_(context.transport_security_state), valid_thread_id_(base::kInvalidThreadId) { EnterFunction(""); InitCore(); LeaveFunction(""); } SSLClientSocketNSS::~SSLClientSocketNSS() { EnterFunction(""); Disconnect(); LeaveFunction(""); } // static void SSLClientSocket::ClearSessionCache() { // SSL_ClearSessionCache can't be called before NSS is initialized. Don't // bother initializing NSS just to clear an empty SSL session cache. if (!NSS_IsInitialized()) return; SSL_ClearSessionCache(); } bool SSLClientSocketNSS::GetSSLInfo(SSLInfo* ssl_info) { EnterFunction(""); ssl_info->Reset(); if (core_->state().server_cert_chain.empty() || !core_->state().server_cert_chain[0]) { return false; } ssl_info->cert_status = server_cert_verify_result_.cert_status; ssl_info->cert = server_cert_verify_result_.verified_cert; ssl_info->connection_status = core_->state().ssl_connection_status; ssl_info->public_key_hashes = server_cert_verify_result_.public_key_hashes; for (std::vector::const_iterator i = side_pinned_public_keys_.begin(); i != side_pinned_public_keys_.end(); i++) { ssl_info->public_key_hashes.push_back(*i); } ssl_info->is_issued_by_known_root = server_cert_verify_result_.is_issued_by_known_root; ssl_info->client_cert_sent = ssl_config_.send_client_cert && ssl_config_.client_cert; ssl_info->channel_id_sent = WasChannelIDSent(); PRUint16 cipher_suite = SSLConnectionStatusToCipherSuite( core_->state().ssl_connection_status); SSLCipherSuiteInfo cipher_info; SECStatus ok = SSL_GetCipherSuiteInfo(cipher_suite, &cipher_info, sizeof(cipher_info)); if (ok == SECSuccess) { ssl_info->security_bits = cipher_info.effectiveKeyBits; } else { ssl_info->security_bits = -1; LOG(DFATAL) << "SSL_GetCipherSuiteInfo returned " << PR_GetError() << " for cipherSuite " << cipher_suite; } ssl_info->handshake_type = core_->state().resumed_handshake ? SSLInfo::HANDSHAKE_RESUME : SSLInfo::HANDSHAKE_FULL; LeaveFunction(""); return true; } void SSLClientSocketNSS::GetSSLCertRequestInfo( SSLCertRequestInfo* cert_request_info) { EnterFunction(""); // TODO(rch): switch SSLCertRequestInfo.host_and_port to a HostPortPair cert_request_info->host_and_port = host_and_port_.ToString(); cert_request_info->client_certs = core_->state().client_certs; LeaveFunction(cert_request_info->client_certs.size()); } int SSLClientSocketNSS::ExportKeyingMaterial(const base::StringPiece& label, bool has_context, const base::StringPiece& context, unsigned char* out, unsigned int outlen) { if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; // SSL_ExportKeyingMaterial may block the current thread if |core_| is in // the midst of a handshake. SECStatus result = SSL_ExportKeyingMaterial( nss_fd_, label.data(), label.size(), has_context, reinterpret_cast(context.data()), context.length(), out, outlen); if (result != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_ExportKeyingMaterial", ""); return MapNSSError(PORT_GetError()); } return OK; } int SSLClientSocketNSS::GetTLSUniqueChannelBinding(std::string* out) { if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; unsigned char buf[64]; unsigned int len; SECStatus result = SSL_GetChannelBinding(nss_fd_, SSL_CHANNEL_BINDING_TLS_UNIQUE, buf, &len, arraysize(buf)); if (result != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_GetChannelBinding", ""); return MapNSSError(PORT_GetError()); } out->assign(reinterpret_cast(buf), len); return OK; } SSLClientSocket::NextProtoStatus SSLClientSocketNSS::GetNextProto(std::string* proto, std::string* server_protos) { *proto = core_->state().next_proto; *server_protos = core_->state().server_protos; return core_->state().next_proto_status; } int SSLClientSocketNSS::Connect(const CompletionCallback& callback) { EnterFunction(""); DCHECK(transport_.get()); DCHECK_EQ(STATE_NONE, next_handshake_state_); DCHECK(user_connect_callback_.is_null()); DCHECK(!callback.is_null()); EnsureThreadIdAssigned(); net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT); int rv = Init(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } rv = InitializeSSLOptions(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } rv = InitializeSSLPeerName(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } GotoState(STATE_HANDSHAKE); rv = DoHandshakeLoop(OK); if (rv == ERR_IO_PENDING) { user_connect_callback_ = callback; } else { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); } LeaveFunction(""); return rv > OK ? OK : rv; } void SSLClientSocketNSS::Disconnect() { EnterFunction(""); CHECK(CalledOnValidThread()); // Shut down anything that may call us back. core_->Detach(); verifier_.reset(); transport_->socket()->Disconnect(); // Reset object state. user_connect_callback_.Reset(); server_cert_verify_result_.Reset(); completed_handshake_ = false; start_cert_verification_time_ = base::TimeTicks(); InitCore(); LeaveFunction(""); } bool SSLClientSocketNSS::IsConnected() const { // Ideally, we should also check if we have received the close_notify alert // message from the server, and return false in that case. We're not doing // that, so this function may return a false positive. Since the upper // layer (HttpNetworkTransaction) needs to handle a persistent connection // closed by the server when we send a request anyway, a false positive in // exchange for simpler code is a good trade-off. EnterFunction(""); bool ret = completed_handshake_ && transport_->socket()->IsConnected(); LeaveFunction(""); return ret; } bool SSLClientSocketNSS::IsConnectedAndIdle() const { // Unlike IsConnected, this method doesn't return a false positive. // // Strictly speaking, we should check if we have received the close_notify // alert message from the server, and return false in that case. Although // the close_notify alert message means EOF in the SSL layer, it is just // bytes to the transport layer below, so // transport_->socket()->IsConnectedAndIdle() returns the desired false // when we receive close_notify. EnterFunction(""); bool ret = completed_handshake_ && transport_->socket()->IsConnectedAndIdle(); LeaveFunction(""); return ret; } int SSLClientSocketNSS::GetPeerAddress(IPEndPoint* address) const { return transport_->socket()->GetPeerAddress(address); } int SSLClientSocketNSS::GetLocalAddress(IPEndPoint* address) const { return transport_->socket()->GetLocalAddress(address); } const BoundNetLog& SSLClientSocketNSS::NetLog() const { return net_log_; } void SSLClientSocketNSS::SetSubresourceSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetSubresourceSpeculation(); } else { NOTREACHED(); } } void SSLClientSocketNSS::SetOmniboxSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetOmniboxSpeculation(); } else { NOTREACHED(); } } bool SSLClientSocketNSS::WasEverUsed() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->WasEverUsed(); } NOTREACHED(); return false; } bool SSLClientSocketNSS::UsingTCPFastOpen() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->UsingTCPFastOpen(); } NOTREACHED(); return false; } int64 SSLClientSocketNSS::NumBytesRead() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->NumBytesRead(); } NOTREACHED(); return -1; } base::TimeDelta SSLClientSocketNSS::GetConnectTimeMicros() const { if (transport_.get() && transport_->socket()) { return transport_->socket()->GetConnectTimeMicros(); } NOTREACHED(); return base::TimeDelta::FromMicroseconds(-1); } int SSLClientSocketNSS::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(core_); DCHECK(!callback.is_null()); EnterFunction(buf_len); int rv = core_->Read(buf, buf_len, callback); LeaveFunction(rv); return rv; } int SSLClientSocketNSS::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(core_); DCHECK(!callback.is_null()); EnterFunction(buf_len); int rv = core_->Write(buf, buf_len, callback); LeaveFunction(rv); return rv; } bool SSLClientSocketNSS::SetReceiveBufferSize(int32 size) { return transport_->socket()->SetReceiveBufferSize(size); } bool SSLClientSocketNSS::SetSendBufferSize(int32 size) { return transport_->socket()->SetSendBufferSize(size); } int SSLClientSocketNSS::Init() { EnterFunction(""); // Initialize the NSS SSL library in a threadsafe way. This also // initializes the NSS base library. EnsureNSSSSLInit(); if (!NSS_IsInitialized()) return ERR_UNEXPECTED; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (ssl_config_.cert_io_enabled) { // We must call EnsureNSSHttpIOInit() here, on the IO thread, to get the IO // loop by MessageLoopForIO::current(). // X509Certificate::Verify() runs on a worker thread of CertVerifier. EnsureNSSHttpIOInit(); } #endif LeaveFunction(""); return OK; } void SSLClientSocketNSS::InitCore() { core_ = new Core(base::ThreadTaskRunnerHandle::Get(), nss_task_runner_, transport_.get(), host_and_port_, ssl_config_, &net_log_, server_bound_cert_service_); } int SSLClientSocketNSS::InitializeSSLOptions() { // Transport connected, now hook it up to nss // TODO(port): specify rx and tx buffer sizes separately nss_fd_ = memio_CreateIOLayer(kRecvBufferSize); if (nss_fd_ == NULL) { return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR error code. } // Grab pointer to buffers memio_Private* nss_bufs = memio_GetSecret(nss_fd_); /* Create SSL state machine */ /* Push SSL onto our fake I/O socket */ nss_fd_ = SSL_ImportFD(NULL, nss_fd_); if (nss_fd_ == NULL) { LogFailedNSSFunction(net_log_, "SSL_ImportFD", ""); return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR/NSS error code. } // TODO(port): set more ssl options! Check errors! int rv; rv = SSL_OptionSet(nss_fd_, SSL_SECURITY, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_SECURITY"); return ERR_UNEXPECTED; } rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL2, PR_FALSE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL2"); return ERR_UNEXPECTED; } // Don't do V2 compatible hellos because they don't support TLS extensions. rv = SSL_OptionSet(nss_fd_, SSL_V2_COMPATIBLE_HELLO, PR_FALSE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_V2_COMPATIBLE_HELLO"); return ERR_UNEXPECTED; } SSLVersionRange version_range; version_range.min = ssl_config_.version_min; version_range.max = ssl_config_.version_max; rv = SSL_VersionRangeSet(nss_fd_, &version_range); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_VersionRangeSet", ""); return ERR_NO_SSL_VERSIONS_ENABLED; } for (std::vector::const_iterator it = ssl_config_.disabled_cipher_suites.begin(); it != ssl_config_.disabled_cipher_suites.end(); ++it) { // This will fail if the specified cipher is not implemented by NSS, but // the failure is harmless. SSL_CipherPrefSet(nss_fd_, *it, PR_FALSE); } #ifdef SSL_ENABLE_SESSION_TICKETS // Support RFC 5077 rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SESSION_TICKETS, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction( net_log_, "SSL_OptionSet", "SSL_ENABLE_SESSION_TICKETS"); } #else #error "You need to install NSS-3.12 or later to build chromium" #endif #ifdef SSL_ENABLE_FALSE_START rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_FALSE_START, ssl_config_.false_start_enabled); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_FALSE_START"); #endif #ifdef SSL_ENABLE_RENEGOTIATION // We allow servers to request renegotiation. Since we're a client, // prohibiting this is rather a waste of time. Only servers are in a // position to prevent renegotiation attacks. // http://extendedsubset.com/?p=8 rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_RENEGOTIATION, SSL_RENEGOTIATE_TRANSITIONAL); if (rv != SECSuccess) { LogFailedNSSFunction( net_log_, "SSL_OptionSet", "SSL_ENABLE_RENEGOTIATION"); } #endif // SSL_ENABLE_RENEGOTIATION #ifdef SSL_CBC_RANDOM_IV rv = SSL_OptionSet(nss_fd_, SSL_CBC_RANDOM_IV, ssl_config_.false_start_enabled); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_CBC_RANDOM_IV"); #endif #ifdef SSL_ENABLE_OCSP_STAPLING if (IsOCSPStaplingSupported()) { rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_OCSP_STAPLING, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_OCSP_STAPLING"); } } #endif #ifdef SSL_ENABLE_CACHED_INFO rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_CACHED_INFO, ssl_config_.cached_info_enabled); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_CACHED_INFO"); #endif rv = SSL_OptionSet(nss_fd_, SSL_HANDSHAKE_AS_CLIENT, PR_TRUE); if (rv != SECSuccess) { LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_HANDSHAKE_AS_CLIENT"); return ERR_UNEXPECTED; } if (!core_->Init(nss_fd_, nss_bufs)) return ERR_UNEXPECTED; // Tell SSL the hostname we're trying to connect to. SSL_SetURL(nss_fd_, host_and_port_.host().c_str()); // Tell SSL we're a client; needed if not letting NSPR do socket I/O SSL_ResetHandshake(nss_fd_, PR_FALSE); return OK; } int SSLClientSocketNSS::InitializeSSLPeerName() { // Tell NSS who we're connected to IPEndPoint peer_address; int err = transport_->socket()->GetPeerAddress(&peer_address); if (err != OK) return err; SockaddrStorage storage; if (!peer_address.ToSockAddr(storage.addr, &storage.addr_len)) return ERR_UNEXPECTED; PRNetAddr peername; memset(&peername, 0, sizeof(peername)); DCHECK_LE(static_cast(storage.addr_len), sizeof(peername)); size_t len = std::min(static_cast(storage.addr_len), sizeof(peername)); memcpy(&peername, storage.addr, len); // Adjust the address family field for BSD, whose sockaddr // structure has a one-byte length and one-byte address family // field at the beginning. PRNetAddr has a two-byte address // family field at the beginning. peername.raw.family = storage.addr->sa_family; memio_SetPeerName(nss_fd_, &peername); // Set the peer ID for session reuse. This is necessary when we create an // SSL tunnel through a proxy -- GetPeerName returns the proxy's address // rather than the destination server's address in that case. std::string peer_id = host_and_port_.ToString(); // If the ssl_session_cache_shard_ is non-empty, we append it to the peer id. // This will cause session cache misses between sockets with different values // of ssl_session_cache_shard_ and this is used to partition the session cache // for incognito mode. if (!ssl_session_cache_shard_.empty()) { peer_id += "/" + ssl_session_cache_shard_; } SECStatus rv = SSL_SetSockPeerID(nss_fd_, const_cast(peer_id.c_str())); if (rv != SECSuccess) LogFailedNSSFunction(net_log_, "SSL_SetSockPeerID", peer_id.c_str()); return OK; } void SSLClientSocketNSS::DoConnectCallback(int rv) { EnterFunction(rv); DCHECK_NE(ERR_IO_PENDING, rv); DCHECK(!user_connect_callback_.is_null()); base::ResetAndReturn(&user_connect_callback_).Run(rv > OK ? OK : rv); LeaveFunction(""); } void SSLClientSocketNSS::OnHandshakeIOComplete(int result) { EnterFunction(result); int rv = DoHandshakeLoop(result); if (rv != ERR_IO_PENDING) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); DoConnectCallback(rv); } LeaveFunction(""); } int SSLClientSocketNSS::DoHandshakeLoop(int last_io_result) { EnterFunction(last_io_result); int rv = last_io_result; do { // Default to STATE_NONE for next state. // (This is a quirk carried over from the windows // implementation. It makes reading the logs a bit harder.) // State handlers can and often do call GotoState just // to stay in the current state. State state = next_handshake_state_; GotoState(STATE_NONE); switch (state) { case STATE_HANDSHAKE: rv = DoHandshake(); break; case STATE_HANDSHAKE_COMPLETE: rv = DoHandshakeComplete(rv); break; case STATE_VERIFY_DNSSEC: rv = DoVerifyDNSSEC(rv); break; case STATE_VERIFY_CERT: DCHECK(rv == OK); rv = DoVerifyCert(rv); break; case STATE_VERIFY_CERT_COMPLETE: rv = DoVerifyCertComplete(rv); break; case STATE_NONE: default: rv = ERR_UNEXPECTED; LOG(DFATAL) << "unexpected state " << state; break; } } while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE); LeaveFunction(""); return rv; } int SSLClientSocketNSS::DoHandshake() { EnterFunction(""); int rv = core_->Connect( base::Bind(&SSLClientSocketNSS::OnHandshakeIOComplete, base::Unretained(this))); GotoState(STATE_HANDSHAKE_COMPLETE); LeaveFunction(rv); return rv; } int SSLClientSocketNSS::DoHandshakeComplete(int result) { EnterFunction(result); if (result == OK) { // SSL handshake is completed. Let's verify the certificate. GotoState(STATE_VERIFY_DNSSEC); // Done! } set_channel_id_sent(core_->state().channel_id_sent); LeaveFunction(result); return result; } int SSLClientSocketNSS::DoVerifyDNSSEC(int result) { DCHECK(!core_->state().server_cert_chain.empty()); DCHECK(core_->state().server_cert_chain[0]); DNSValidationResult r = CheckDNSSECChain( host_and_port_.host(), core_->state().server_cert_chain[0], host_and_port_.port()); if (r == DNSVR_SUCCESS) { server_cert_verify_result_.cert_status |= CERT_STATUS_IS_DNSSEC; server_cert_verify_result_.verified_cert = core_->state().server_cert; GotoState(STATE_VERIFY_CERT_COMPLETE); return OK; } GotoState(STATE_VERIFY_CERT); return OK; } int SSLClientSocketNSS::DoVerifyCert(int result) { DCHECK(!core_->state().server_cert_chain.empty()); DCHECK(core_->state().server_cert_chain[0]); GotoState(STATE_VERIFY_CERT_COMPLETE); // If the certificate is expected to be bad we can use the expectation as // the cert status. base::StringPiece der_cert( reinterpret_cast( core_->state().server_cert_chain[0]->derCert.data), core_->state().server_cert_chain[0]->derCert.len); CertStatus cert_status; if (ssl_config_.IsAllowedBadCert(der_cert, &cert_status)) { DCHECK(start_cert_verification_time_.is_null()); VLOG(1) << "Received an expected bad cert with status: " << cert_status; server_cert_verify_result_.Reset(); server_cert_verify_result_.cert_status = cert_status; server_cert_verify_result_.verified_cert = core_->state().server_cert; return OK; } // We may have failed to create X509Certificate object if we are // running inside sandbox. if (!core_->state().server_cert) { server_cert_verify_result_.Reset(); server_cert_verify_result_.cert_status = CERT_STATUS_INVALID; return ERR_CERT_INVALID; } start_cert_verification_time_ = base::TimeTicks::Now(); int flags = 0; if (ssl_config_.rev_checking_enabled) flags |= CertVerifier::VERIFY_REV_CHECKING_ENABLED; if (ssl_config_.verify_ev_cert) flags |= CertVerifier::VERIFY_EV_CERT; if (ssl_config_.cert_io_enabled) flags |= CertVerifier::VERIFY_CERT_IO_ENABLED; verifier_.reset(new SingleRequestCertVerifier(cert_verifier_)); return verifier_->Verify( core_->state().server_cert, host_and_port_.host(), flags, SSLConfigService::GetCRLSet(), &server_cert_verify_result_, base::Bind(&SSLClientSocketNSS::OnHandshakeIOComplete, base::Unretained(this)), net_log_); } // Derived from AuthCertificateCallback() in // mozilla/source/security/manager/ssl/src/nsNSSCallbacks.cpp. int SSLClientSocketNSS::DoVerifyCertComplete(int result) { verifier_.reset(); if (!start_cert_verification_time_.is_null()) { base::TimeDelta verify_time = base::TimeTicks::Now() - start_cert_verification_time_; if (result == OK) UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time); else UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time); } // We used to remember the intermediate CA certs in the NSS database // persistently. However, NSS opens a connection to the SQLite database // during NSS initialization and doesn't close the connection until NSS // shuts down. If the file system where the database resides is gone, // the database connection goes bad. What's worse, the connection won't // recover when the file system comes back. Until this NSS or SQLite bug // is fixed, we need to avoid using the NSS database for non-essential // purposes. See https://bugzilla.mozilla.org/show_bug.cgi?id=508081 and // http://crbug.com/15630 for more info. // TODO(hclam): Skip logging if server cert was expected to be bad because // |server_cert_verify_result_| doesn't contain all the information about // the cert. if (result == OK) LogConnectionTypeMetrics(); completed_handshake_ = true; #if defined(OFFICIAL_BUILD) && !defined(OS_ANDROID) // Take care of any mandates for public key pinning. // // Pinning is only enabled for official builds to make sure that others don't // end up with pins that cannot be easily updated. // // TODO(agl): we might have an issue here where a request for foo.example.com // merges into a SPDY connection to www.example.com, and gets a different // certificate. const CertStatus cert_status = server_cert_verify_result_.cert_status; if ((result == OK || (IsCertificateError(result) && IsCertStatusMinorError(cert_status))) && server_cert_verify_result_.is_issued_by_known_root && transport_security_state_) { bool sni_available = ssl_config_.version_max >= SSL_PROTOCOL_VERSION_TLS1 || ssl_config_.version_fallback; const std::string& host = host_and_port_.host(); TransportSecurityState::DomainState domain_state; if (transport_security_state_->GetDomainState(host, sni_available, &domain_state) && domain_state.HasPins()) { if (!domain_state.IsChainOfPublicKeysPermitted( server_cert_verify_result_.public_key_hashes)) { const base::Time build_time = base::GetBuildTime(); // Pins are not enforced if the build is sufficiently old. Chrome // users should get updates every six weeks or so, but it's possible // that some users will stop getting updates for some reason. We // don't want those users building up as a pool of people with bad // pins. if ((base::Time::Now() - build_time).InDays() < 70 /* 10 weeks */) { result = ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN; UMA_HISTOGRAM_BOOLEAN("Net.PublicKeyPinSuccess", false); TransportSecurityState::ReportUMAOnPinFailure(host); } } else { UMA_HISTOGRAM_BOOLEAN("Net.PublicKeyPinSuccess", true); } } } #endif // Exit DoHandshakeLoop and return the result to the caller to Connect. DCHECK_EQ(STATE_NONE, next_handshake_state_); return result; } void SSLClientSocketNSS::LogConnectionTypeMetrics() const { UpdateConnectionTypeHistograms(CONNECTION_SSL); if (server_cert_verify_result_.has_md5) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5); if (server_cert_verify_result_.has_md2) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2); if (server_cert_verify_result_.has_md4) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD4); if (server_cert_verify_result_.has_md5_ca) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD5_CA); if (server_cert_verify_result_.has_md2_ca) UpdateConnectionTypeHistograms(CONNECTION_SSL_MD2_CA); int ssl_version = SSLConnectionStatusToVersion( core_->state().ssl_connection_status); switch (ssl_version) { case SSL_CONNECTION_VERSION_SSL2: UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL2); break; case SSL_CONNECTION_VERSION_SSL3: UpdateConnectionTypeHistograms(CONNECTION_SSL_SSL3); break; case SSL_CONNECTION_VERSION_TLS1: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1); break; case SSL_CONNECTION_VERSION_TLS1_1: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_1); break; case SSL_CONNECTION_VERSION_TLS1_2: UpdateConnectionTypeHistograms(CONNECTION_SSL_TLS1_2); break; }; } void SSLClientSocketNSS::EnsureThreadIdAssigned() const { base::AutoLock auto_lock(lock_); if (valid_thread_id_ != base::kInvalidThreadId) return; valid_thread_id_ = base::PlatformThread::CurrentId(); } bool SSLClientSocketNSS::CalledOnValidThread() const { EnsureThreadIdAssigned(); base::AutoLock auto_lock(lock_); return valid_thread_id_ == base::PlatformThread::CurrentId(); } ServerBoundCertService* SSLClientSocketNSS::GetServerBoundCertService() const { return server_bound_cert_service_; } } // namespace net