// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // OpenSSL binding for SSLClientSocket. The class layout and general principle // of operation is derived from SSLClientSocketNSS. #include "net/socket/ssl_client_socket_openssl.h" #include #include #include #include #include #include #include #include #include #include "base/bind.h" #include "base/callback_helpers.h" #include "base/lazy_instance.h" #include "base/macros.h" #include "base/memory/singleton.h" #include "base/metrics/histogram_macros.h" #include "base/metrics/sparse_histogram.h" #include "base/profiler/scoped_tracker.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_piece.h" #include "base/synchronization/lock.h" #include "base/threading/thread_local.h" #include "base/values.h" #include "crypto/ec_private_key.h" #include "crypto/openssl_util.h" #include "crypto/scoped_openssl_types.h" #include "net/base/ip_address_number.h" #include "net/base/net_errors.h" #include "net/cert/cert_verifier.h" #include "net/cert/ct_ev_whitelist.h" #include "net/cert/ct_policy_enforcer.h" #include "net/cert/ct_policy_status.h" #include "net/cert/ct_verifier.h" #include "net/cert/x509_certificate_net_log_param.h" #include "net/cert/x509_util_openssl.h" #include "net/http/transport_security_state.h" #include "net/ssl/scoped_openssl_types.h" #include "net/ssl/ssl_cert_request_info.h" #include "net/ssl/ssl_client_session_cache_openssl.h" #include "net/ssl/ssl_connection_status_flags.h" #include "net/ssl/ssl_failure_state.h" #include "net/ssl/ssl_info.h" #include "net/ssl/ssl_private_key.h" #if !defined(OS_NACL) #include "net/ssl/ssl_key_logger.h" #endif #if defined(USE_NSS_CERTS) || defined(OS_IOS) #include "net/cert_net/nss_ocsp.h" #endif namespace net { namespace { // Enable this to see logging for state machine state transitions. #if 0 #define GotoState(s) do { DVLOG(2) << (void *)this << " " << __FUNCTION__ << \ " jump to state " << s; \ next_handshake_state_ = s; } while (0) #else #define GotoState(s) next_handshake_state_ = s #endif // This constant can be any non-negative/non-zero value (eg: it does not // overlap with any value of the net::Error range, including net::OK). const int kNoPendingResult = 1; // If a client doesn't have a list of protocols that it supports, but // the server supports NPN, choosing "http/1.1" is the best answer. const char kDefaultSupportedNPNProtocol[] = "http/1.1"; // Default size of the internal BoringSSL buffers. const int KDefaultOpenSSLBufferSize = 17 * 1024; // TLS extension number use for Token Binding. const unsigned int kTbExtNum = 24; // Token Binding ProtocolVersions supported. const uint8_t kTbProtocolVersionMajor = 0; const uint8_t kTbProtocolVersionMinor = 4; const uint8_t kTbMinProtocolVersionMajor = 0; const uint8_t kTbMinProtocolVersionMinor = 3; bool EVP_MDToPrivateKeyHash(const EVP_MD* md, SSLPrivateKey::Hash* hash) { switch (EVP_MD_type(md)) { case NID_md5_sha1: *hash = SSLPrivateKey::Hash::MD5_SHA1; return true; case NID_sha1: *hash = SSLPrivateKey::Hash::SHA1; return true; case NID_sha256: *hash = SSLPrivateKey::Hash::SHA256; return true; case NID_sha384: *hash = SSLPrivateKey::Hash::SHA384; return true; case NID_sha512: *hash = SSLPrivateKey::Hash::SHA512; return true; default: return false; } } class ScopedCBB { public: ScopedCBB() { CBB_zero(&cbb_); } ~ScopedCBB() { CBB_cleanup(&cbb_); } CBB* get() { return &cbb_; } private: CBB cbb_; DISALLOW_COPY_AND_ASSIGN(ScopedCBB); }; scoped_ptr NetLogPrivateKeyOperationCallback( SSLPrivateKey::Type type, SSLPrivateKey::Hash hash, NetLogCaptureMode mode) { std::string type_str; switch (type) { case SSLPrivateKey::Type::RSA: type_str = "RSA"; break; case SSLPrivateKey::Type::ECDSA: type_str = "ECDSA"; break; } std::string hash_str; switch (hash) { case SSLPrivateKey::Hash::MD5_SHA1: hash_str = "MD5_SHA1"; break; case SSLPrivateKey::Hash::SHA1: hash_str = "SHA1"; break; case SSLPrivateKey::Hash::SHA256: hash_str = "SHA256"; break; case SSLPrivateKey::Hash::SHA384: hash_str = "SHA384"; break; case SSLPrivateKey::Hash::SHA512: hash_str = "SHA512"; break; } scoped_ptr value(new base::DictionaryValue); value->SetString("type", type_str); value->SetString("hash", hash_str); return std::move(value); } scoped_ptr NetLogChannelIDLookupCallback( ChannelIDService* channel_id_service, NetLogCaptureMode capture_mode) { ChannelIDStore* store = channel_id_service->GetChannelIDStore(); scoped_ptr dict(new base::DictionaryValue()); dict->SetBoolean("ephemeral", store->IsEphemeral()); dict->SetString("service", base::HexEncode(&channel_id_service, sizeof(channel_id_service))); dict->SetString("store", base::HexEncode(&store, sizeof(store))); return std::move(dict); } scoped_ptr NetLogChannelIDLookupCompleteCallback( crypto::ECPrivateKey* key, int result, NetLogCaptureMode capture_mode) { scoped_ptr dict(new base::DictionaryValue()); dict->SetInteger("net_error", result); std::string raw_key; if (result == OK && key && key->ExportRawPublicKey(&raw_key)) { std::string key_to_log = "redacted"; if (capture_mode.include_cookies_and_credentials()) { key_to_log = base::HexEncode(raw_key.data(), raw_key.length()); } dict->SetString("key", key_to_log); } return std::move(dict); } } // namespace class SSLClientSocketOpenSSL::SSLContext { public: static SSLContext* GetInstance() { return base::Singleton::get(); } SSL_CTX* ssl_ctx() { return ssl_ctx_.get(); } SSLClientSessionCacheOpenSSL* session_cache() { return &session_cache_; } SSLClientSocketOpenSSL* GetClientSocketFromSSL(const SSL* ssl) { DCHECK(ssl); SSLClientSocketOpenSSL* socket = static_cast( SSL_get_ex_data(ssl, ssl_socket_data_index_)); DCHECK(socket); return socket; } bool SetClientSocketForSSL(SSL* ssl, SSLClientSocketOpenSSL* socket) { return SSL_set_ex_data(ssl, ssl_socket_data_index_, socket) != 0; } #if !defined(OS_NACL) void SetSSLKeyLogFile( const base::FilePath& path, const scoped_refptr& task_runner) { DCHECK(!ssl_key_logger_); ssl_key_logger_.reset(new SSLKeyLogger(path, task_runner)); SSL_CTX_set_keylog_callback(ssl_ctx_.get(), KeyLogCallback); } #endif static const SSL_PRIVATE_KEY_METHOD kPrivateKeyMethod; private: friend struct base::DefaultSingletonTraits; SSLContext() : session_cache_(SSLClientSessionCacheOpenSSL::Config()) { crypto::EnsureOpenSSLInit(); ssl_socket_data_index_ = SSL_get_ex_new_index(0, 0, 0, 0, 0); DCHECK_NE(ssl_socket_data_index_, -1); ssl_ctx_.reset(SSL_CTX_new(SSLv23_client_method())); SSL_CTX_set_cert_verify_callback(ssl_ctx_.get(), CertVerifyCallback, NULL); SSL_CTX_set_cert_cb(ssl_ctx_.get(), ClientCertRequestCallback, NULL); SSL_CTX_set_verify(ssl_ctx_.get(), SSL_VERIFY_PEER, NULL); // This stops |SSL_shutdown| from generating the close_notify message, which // is currently not sent on the network. // TODO(haavardm): Remove setting quiet shutdown once 118366 is fixed. SSL_CTX_set_quiet_shutdown(ssl_ctx_.get(), 1); // Note that SSL_OP_DISABLE_NPN is used to disable NPN if // ssl_config_.next_proto is empty. SSL_CTX_set_next_proto_select_cb(ssl_ctx_.get(), SelectNextProtoCallback, NULL); // Disable the internal session cache. Session caching is handled // externally (i.e. by SSLClientSessionCacheOpenSSL). SSL_CTX_set_session_cache_mode( ssl_ctx_.get(), SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL); SSL_CTX_sess_set_new_cb(ssl_ctx_.get(), NewSessionCallback); if (!SSL_CTX_add_client_custom_ext(ssl_ctx_.get(), kTbExtNum, &TokenBindingAddCallback, &TokenBindingFreeCallback, nullptr, &TokenBindingParseCallback, nullptr)) { NOTREACHED(); } } static int TokenBindingAddCallback(SSL* ssl, unsigned int extension_value, const uint8_t** out, size_t* out_len, int* out_alert_value, void* add_arg) { DCHECK_EQ(extension_value, kTbExtNum); SSLClientSocketOpenSSL* socket = SSLClientSocketOpenSSL::SSLContext::GetInstance() ->GetClientSocketFromSSL(ssl); return socket->TokenBindingAdd(out, out_len, out_alert_value); } static void TokenBindingFreeCallback(SSL* ssl, unsigned extension_value, const uint8_t* out, void* add_arg) { DCHECK_EQ(extension_value, kTbExtNum); OPENSSL_free(const_cast(out)); } static int TokenBindingParseCallback(SSL* ssl, unsigned int extension_value, const uint8_t* contents, size_t contents_len, int* out_alert_value, void* parse_arg) { DCHECK_EQ(extension_value, kTbExtNum); SSLClientSocketOpenSSL* socket = SSLClientSocketOpenSSL::SSLContext::GetInstance() ->GetClientSocketFromSSL(ssl); return socket->TokenBindingParse(contents, contents_len, out_alert_value); } static int ClientCertRequestCallback(SSL* ssl, void* arg) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); DCHECK(socket); return socket->ClientCertRequestCallback(ssl); } static int CertVerifyCallback(X509_STORE_CTX *store_ctx, void *arg) { SSL* ssl = reinterpret_cast(X509_STORE_CTX_get_ex_data( store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx())); SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); CHECK(socket); return socket->CertVerifyCallback(store_ctx); } static int SelectNextProtoCallback(SSL* ssl, unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->SelectNextProtoCallback(out, outlen, in, inlen); } static int NewSessionCallback(SSL* ssl, SSL_SESSION* session) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->NewSessionCallback(session); } static int PrivateKeyTypeCallback(SSL* ssl) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->PrivateKeyTypeCallback(); } static size_t PrivateKeyMaxSignatureLenCallback(SSL* ssl) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->PrivateKeyMaxSignatureLenCallback(); } static ssl_private_key_result_t PrivateKeySignCallback(SSL* ssl, uint8_t* out, size_t* out_len, size_t max_out, const EVP_MD* md, const uint8_t* in, size_t in_len) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->PrivateKeySignCallback(out, out_len, max_out, md, in, in_len); } static ssl_private_key_result_t PrivateKeySignCompleteCallback( SSL* ssl, uint8_t* out, size_t* out_len, size_t max_out) { SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl); return socket->PrivateKeySignCompleteCallback(out, out_len, max_out); } #if !defined(OS_NACL) static void KeyLogCallback(const SSL* ssl, const char* line) { GetInstance()->ssl_key_logger_->WriteLine(line); } #endif // This is the index used with SSL_get_ex_data to retrieve the owner // SSLClientSocketOpenSSL object from an SSL instance. int ssl_socket_data_index_; ScopedSSL_CTX ssl_ctx_; #if !defined(OS_NACL) scoped_ptr ssl_key_logger_; #endif // TODO(davidben): Use a separate cache per URLRequestContext. // https://crbug.com/458365 // // TODO(davidben): Sessions should be invalidated on fatal // alerts. https://crbug.com/466352 SSLClientSessionCacheOpenSSL session_cache_; }; const SSL_PRIVATE_KEY_METHOD SSLClientSocketOpenSSL::SSLContext::kPrivateKeyMethod = { &SSLClientSocketOpenSSL::SSLContext::PrivateKeyTypeCallback, &SSLClientSocketOpenSSL::SSLContext::PrivateKeyMaxSignatureLenCallback, &SSLClientSocketOpenSSL::SSLContext::PrivateKeySignCallback, &SSLClientSocketOpenSSL::SSLContext::PrivateKeySignCompleteCallback, }; // PeerCertificateChain is a helper object which extracts the certificate // chain, as given by the server, from an OpenSSL socket and performs the needed // resource management. The first element of the chain is the leaf certificate // and the other elements are in the order given by the server. class SSLClientSocketOpenSSL::PeerCertificateChain { public: explicit PeerCertificateChain(STACK_OF(X509)* chain) { Reset(chain); } PeerCertificateChain(const PeerCertificateChain& other) { *this = other; } ~PeerCertificateChain() {} PeerCertificateChain& operator=(const PeerCertificateChain& other); // Resets the PeerCertificateChain to the set of certificates in|chain|, // which may be NULL, indicating to empty the store certificates. // Note: If an error occurs, such as being unable to parse the certificates, // this will behave as if Reset(NULL) was called. void Reset(STACK_OF(X509)* chain); // Note that when USE_OPENSSL is defined, OSCertHandle is X509* scoped_refptr AsOSChain() const; size_t size() const { if (!openssl_chain_.get()) return 0; return sk_X509_num(openssl_chain_.get()); } bool empty() const { return size() == 0; } X509* Get(size_t index) const { DCHECK_LT(index, size()); return sk_X509_value(openssl_chain_.get(), index); } private: ScopedX509Stack openssl_chain_; }; SSLClientSocketOpenSSL::PeerCertificateChain& SSLClientSocketOpenSSL::PeerCertificateChain::operator=( const PeerCertificateChain& other) { if (this == &other) return *this; openssl_chain_.reset(X509_chain_up_ref(other.openssl_chain_.get())); return *this; } void SSLClientSocketOpenSSL::PeerCertificateChain::Reset( STACK_OF(X509)* chain) { openssl_chain_.reset(chain ? X509_chain_up_ref(chain) : NULL); } scoped_refptr SSLClientSocketOpenSSL::PeerCertificateChain::AsOSChain() const { #if defined(USE_OPENSSL_CERTS) // When OSCertHandle is typedef'ed to X509, this implementation does a short // cut to avoid converting back and forth between DER and the X509 struct. X509Certificate::OSCertHandles intermediates; for (size_t i = 1; i < sk_X509_num(openssl_chain_.get()); ++i) { intermediates.push_back(sk_X509_value(openssl_chain_.get(), i)); } return X509Certificate::CreateFromHandle( sk_X509_value(openssl_chain_.get(), 0), intermediates); #else // DER-encode the chain and convert to a platform certificate handle. std::vector der_chain; for (size_t i = 0; i < sk_X509_num(openssl_chain_.get()); ++i) { X509* x = sk_X509_value(openssl_chain_.get(), i); base::StringPiece der; if (!x509_util::GetDER(x, &der)) return NULL; der_chain.push_back(der); } return X509Certificate::CreateFromDERCertChain(der_chain); #endif } // static void SSLClientSocket::ClearSessionCache() { SSLClientSocketOpenSSL::SSLContext* context = SSLClientSocketOpenSSL::SSLContext::GetInstance(); context->session_cache()->Flush(); } SSLClientSocketOpenSSL::SSLClientSocketOpenSSL( scoped_ptr transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config, const SSLClientSocketContext& context) : transport_send_busy_(false), transport_recv_busy_(false), pending_read_error_(kNoPendingResult), pending_read_ssl_error_(SSL_ERROR_NONE), transport_read_error_(OK), transport_write_error_(OK), server_cert_chain_(new PeerCertificateChain(NULL)), completed_connect_(false), was_ever_used_(false), cert_verifier_(context.cert_verifier), cert_transparency_verifier_(context.cert_transparency_verifier), channel_id_service_(context.channel_id_service), tb_was_negotiated_(false), tb_negotiated_param_(TB_PARAM_ECDSAP256), tb_signed_ekm_map_(10), ssl_(NULL), transport_bio_(NULL), transport_(std::move(transport_socket)), host_and_port_(host_and_port), ssl_config_(ssl_config), ssl_session_cache_shard_(context.ssl_session_cache_shard), next_handshake_state_(STATE_NONE), disconnected_(false), npn_status_(kNextProtoUnsupported), channel_id_sent_(false), session_pending_(false), certificate_verified_(false), ssl_failure_state_(SSL_FAILURE_NONE), signature_result_(kNoPendingResult), transport_security_state_(context.transport_security_state), policy_enforcer_(context.ct_policy_enforcer), net_log_(transport_->socket()->NetLog()), weak_factory_(this) { DCHECK(cert_verifier_); } SSLClientSocketOpenSSL::~SSLClientSocketOpenSSL() { Disconnect(); } #if !defined(OS_NACL) void SSLClientSocketOpenSSL::SetSSLKeyLogFile( const base::FilePath& ssl_keylog_file, const scoped_refptr& task_runner) { SSLContext::GetInstance()->SetSSLKeyLogFile(ssl_keylog_file, task_runner); } #endif void SSLClientSocketOpenSSL::GetSSLCertRequestInfo( SSLCertRequestInfo* cert_request_info) { cert_request_info->host_and_port = host_and_port_; cert_request_info->cert_authorities = cert_authorities_; cert_request_info->cert_key_types = cert_key_types_; } SSLClientSocket::NextProtoStatus SSLClientSocketOpenSSL::GetNextProto( std::string* proto) const { *proto = npn_proto_; return npn_status_; } ChannelIDService* SSLClientSocketOpenSSL::GetChannelIDService() const { return channel_id_service_; } Error SSLClientSocketOpenSSL::GetSignedEKMForTokenBinding( crypto::ECPrivateKey* key, std::vector* out) { // The same key will be used across multiple requests to sign the same value, // so the signature is cached. std::string raw_public_key; if (!key->ExportRawPublicKey(&raw_public_key)) return ERR_FAILED; SignedEkmMap::iterator it = tb_signed_ekm_map_.Get(raw_public_key); if (it != tb_signed_ekm_map_.end()) { *out = it->second; return OK; } uint8_t tb_ekm_buf[32]; static const char kTokenBindingExporterLabel[] = "EXPORTER-Token-Binding"; if (!SSL_export_keying_material(ssl_, tb_ekm_buf, sizeof(tb_ekm_buf), kTokenBindingExporterLabel, strlen(kTokenBindingExporterLabel), nullptr, 0, false /* no context */)) { return ERR_FAILED; } size_t sig_len; crypto::ScopedEVP_PKEY_CTX pctx(EVP_PKEY_CTX_new(key->key(), nullptr)); if (!EVP_PKEY_sign_init(pctx.get()) || !EVP_PKEY_sign(pctx.get(), nullptr, &sig_len, tb_ekm_buf, sizeof(tb_ekm_buf))) { return ERR_FAILED; } out->resize(sig_len); if (!EVP_PKEY_sign(pctx.get(), out->data(), &sig_len, tb_ekm_buf, sizeof(tb_ekm_buf))) { return ERR_FAILED; } out->resize(sig_len); tb_signed_ekm_map_.Put(raw_public_key, *out); return OK; } crypto::ECPrivateKey* SSLClientSocketOpenSSL::GetChannelIDKey() const { return channel_id_key_.get(); } SSLFailureState SSLClientSocketOpenSSL::GetSSLFailureState() const { return ssl_failure_state_; } int SSLClientSocketOpenSSL::ExportKeyingMaterial( const base::StringPiece& label, bool has_context, const base::StringPiece& context, unsigned char* out, unsigned int outlen) { if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); int rv = SSL_export_keying_material( ssl_, out, outlen, label.data(), label.size(), reinterpret_cast(context.data()), context.length(), has_context ? 1 : 0); if (rv != 1) { int ssl_error = SSL_get_error(ssl_, rv); LOG(ERROR) << "Failed to export keying material;" << " returned " << rv << ", SSL error code " << ssl_error; return MapOpenSSLError(ssl_error, err_tracer); } return OK; } int SSLClientSocketOpenSSL::GetTLSUniqueChannelBinding(std::string* out) { NOTIMPLEMENTED(); return ERR_NOT_IMPLEMENTED; } int SSLClientSocketOpenSSL::Connect(const CompletionCallback& callback) { // It is an error to create an SSLClientSocket whose context has no // TransportSecurityState. DCHECK(transport_security_state_); // Although StreamSocket does allow calling Connect() after Disconnect(), // this has never worked for layered sockets. CHECK to detect any consumers // reconnecting an SSL socket. // // TODO(davidben,mmenke): Remove this API feature. See // https://crbug.com/499289. CHECK(!disconnected_); net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT); // Set up new ssl object. int rv = Init(); if (rv != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); return rv; } // Set SSL to client mode. Handshake happens in the loop below. SSL_set_connect_state(ssl_); GotoState(STATE_HANDSHAKE); rv = DoHandshakeLoop(OK); if (rv == ERR_IO_PENDING) { user_connect_callback_ = callback; } else { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); } return rv > OK ? OK : rv; } void SSLClientSocketOpenSSL::Disconnect() { if (ssl_) { // Calling SSL_shutdown prevents the session from being marked as // unresumable. SSL_shutdown(ssl_); SSL_free(ssl_); ssl_ = NULL; } if (transport_bio_) { BIO_free_all(transport_bio_); transport_bio_ = NULL; } disconnected_ = true; // Shut down anything that may call us back. cert_verifier_request_.reset(); transport_->socket()->Disconnect(); // Null all callbacks, delete all buffers. transport_send_busy_ = false; send_buffer_ = NULL; transport_recv_busy_ = false; recv_buffer_ = NULL; user_connect_callback_.Reset(); user_read_callback_.Reset(); user_write_callback_.Reset(); user_read_buf_ = NULL; user_read_buf_len_ = 0; user_write_buf_ = NULL; user_write_buf_len_ = 0; pending_read_error_ = kNoPendingResult; pending_read_ssl_error_ = SSL_ERROR_NONE; pending_read_error_info_ = OpenSSLErrorInfo(); transport_read_error_ = OK; transport_write_error_ = OK; server_cert_verify_result_.Reset(); completed_connect_ = false; cert_authorities_.clear(); cert_key_types_.clear(); start_cert_verification_time_ = base::TimeTicks(); npn_status_ = kNextProtoUnsupported; npn_proto_.clear(); channel_id_sent_ = false; tb_was_negotiated_ = false; session_pending_ = false; certificate_verified_ = false; channel_id_request_.Cancel(); ssl_failure_state_ = SSL_FAILURE_NONE; signature_result_ = kNoPendingResult; signature_.clear(); } bool SSLClientSocketOpenSSL::IsConnected() const { // If the handshake has not yet completed. if (!completed_connect_) return false; // If an asynchronous operation is still pending. if (user_read_buf_.get() || user_write_buf_.get()) return true; return transport_->socket()->IsConnected(); } bool SSLClientSocketOpenSSL::IsConnectedAndIdle() const { // If the handshake has not yet completed. if (!completed_connect_) return false; // If an asynchronous operation is still pending. if (user_read_buf_.get() || user_write_buf_.get()) return false; // If there is data read from the network that has not yet been consumed, do // not treat the connection as idle. // // Note that this does not check |BIO_pending|, whether there is ciphertext // that has not yet been flushed to the network. |Write| returns early, so // this can cause race conditions which cause a socket to not be treated // reusable when it should be. See https://crbug.com/466147. if (BIO_wpending(transport_bio_) > 0) return false; return transport_->socket()->IsConnectedAndIdle(); } int SSLClientSocketOpenSSL::GetPeerAddress(IPEndPoint* addressList) const { return transport_->socket()->GetPeerAddress(addressList); } int SSLClientSocketOpenSSL::GetLocalAddress(IPEndPoint* addressList) const { return transport_->socket()->GetLocalAddress(addressList); } const BoundNetLog& SSLClientSocketOpenSSL::NetLog() const { return net_log_; } void SSLClientSocketOpenSSL::SetSubresourceSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetSubresourceSpeculation(); } else { NOTREACHED(); } } void SSLClientSocketOpenSSL::SetOmniboxSpeculation() { if (transport_.get() && transport_->socket()) { transport_->socket()->SetOmniboxSpeculation(); } else { NOTREACHED(); } } bool SSLClientSocketOpenSSL::WasEverUsed() const { return was_ever_used_; } bool SSLClientSocketOpenSSL::UsingTCPFastOpen() const { if (transport_.get() && transport_->socket()) return transport_->socket()->UsingTCPFastOpen(); NOTREACHED(); return false; } bool SSLClientSocketOpenSSL::GetSSLInfo(SSLInfo* ssl_info) { ssl_info->Reset(); if (server_cert_chain_->empty()) return false; ssl_info->cert = server_cert_verify_result_.verified_cert; ssl_info->unverified_cert = server_cert_; ssl_info->cert_status = server_cert_verify_result_.cert_status; ssl_info->is_issued_by_known_root = server_cert_verify_result_.is_issued_by_known_root; ssl_info->public_key_hashes = server_cert_verify_result_.public_key_hashes; ssl_info->client_cert_sent = ssl_config_.send_client_cert && ssl_config_.client_cert.get(); ssl_info->channel_id_sent = channel_id_sent_; ssl_info->token_binding_negotiated = tb_was_negotiated_; ssl_info->token_binding_key_param = tb_negotiated_param_; ssl_info->pinning_failure_log = pinning_failure_log_; AddCTInfoToSSLInfo(ssl_info); const SSL_CIPHER* cipher = SSL_get_current_cipher(ssl_); CHECK(cipher); ssl_info->security_bits = SSL_CIPHER_get_bits(cipher, NULL); ssl_info->key_exchange_info = SSL_SESSION_get_key_exchange_info(SSL_get_session(ssl_)); SSLConnectionStatusSetCipherSuite( static_cast(SSL_CIPHER_get_id(cipher)), &ssl_info->connection_status); SSLConnectionStatusSetVersion(GetNetSSLVersion(ssl_), &ssl_info->connection_status); if (!SSL_get_secure_renegotiation_support(ssl_)) ssl_info->connection_status |= SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION; if (ssl_config_.version_fallback) ssl_info->connection_status |= SSL_CONNECTION_VERSION_FALLBACK; ssl_info->handshake_type = SSL_session_reused(ssl_) ? SSLInfo::HANDSHAKE_RESUME : SSLInfo::HANDSHAKE_FULL; DVLOG(3) << "Encoded connection status: cipher suite = " << SSLConnectionStatusToCipherSuite(ssl_info->connection_status) << " version = " << SSLConnectionStatusToVersion(ssl_info->connection_status); return true; } void SSLClientSocketOpenSSL::GetConnectionAttempts( ConnectionAttempts* out) const { out->clear(); } int64_t SSLClientSocketOpenSSL::GetTotalReceivedBytes() const { return transport_->socket()->GetTotalReceivedBytes(); } int SSLClientSocketOpenSSL::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { user_read_buf_ = buf; user_read_buf_len_ = buf_len; int rv = DoReadLoop(); if (rv == ERR_IO_PENDING) { user_read_callback_ = callback; } else { if (rv > 0) was_ever_used_ = true; user_read_buf_ = NULL; user_read_buf_len_ = 0; } return rv; } int SSLClientSocketOpenSSL::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { user_write_buf_ = buf; user_write_buf_len_ = buf_len; int rv = DoWriteLoop(); if (rv == ERR_IO_PENDING) { user_write_callback_ = callback; } else { if (rv > 0) was_ever_used_ = true; user_write_buf_ = NULL; user_write_buf_len_ = 0; } return rv; } int SSLClientSocketOpenSSL::SetReceiveBufferSize(int32_t size) { return transport_->socket()->SetReceiveBufferSize(size); } int SSLClientSocketOpenSSL::SetSendBufferSize(int32_t size) { return transport_->socket()->SetSendBufferSize(size); } int SSLClientSocketOpenSSL::Init() { DCHECK(!ssl_); DCHECK(!transport_bio_); #if defined(USE_NSS_CERTS) || defined(OS_IOS) if (ssl_config_.cert_io_enabled) { // TODO(davidben): Move this out of SSLClientSocket. See // https://crbug.com/539520. EnsureNSSHttpIOInit(); } #endif SSLContext* context = SSLContext::GetInstance(); crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); ssl_ = SSL_new(context->ssl_ctx()); if (!ssl_ || !context->SetClientSocketForSSL(ssl_, this)) return ERR_UNEXPECTED; // SNI should only contain valid DNS hostnames, not IP addresses (see RFC // 6066, Section 3). // // TODO(rsleevi): Should this code allow hostnames that violate the LDH rule? // See https://crbug.com/496472 and https://crbug.com/496468 for discussion. IPAddressNumber unused; if (!ParseIPLiteralToNumber(host_and_port_.host(), &unused) && !SSL_set_tlsext_host_name(ssl_, host_and_port_.host().c_str())) { return ERR_UNEXPECTED; } ScopedSSL_SESSION session = context->session_cache()->Lookup(GetSessionCacheKey()); if (session) SSL_set_session(ssl_, session.get()); send_buffer_ = new GrowableIOBuffer(); send_buffer_->SetCapacity(KDefaultOpenSSLBufferSize); recv_buffer_ = new GrowableIOBuffer(); recv_buffer_->SetCapacity(KDefaultOpenSSLBufferSize); BIO* ssl_bio = NULL; // SSLClientSocketOpenSSL retains ownership of the BIO buffers. if (!BIO_new_bio_pair_external_buf( &ssl_bio, send_buffer_->capacity(), reinterpret_cast(send_buffer_->data()), &transport_bio_, recv_buffer_->capacity(), reinterpret_cast(recv_buffer_->data()))) return ERR_UNEXPECTED; DCHECK(ssl_bio); DCHECK(transport_bio_); // Install a callback on OpenSSL's end to plumb transport errors through. BIO_set_callback(ssl_bio, &SSLClientSocketOpenSSL::BIOCallback); BIO_set_callback_arg(ssl_bio, reinterpret_cast(this)); SSL_set_bio(ssl_, ssl_bio, ssl_bio); DCHECK_LT(SSL3_VERSION, ssl_config_.version_min); DCHECK_LT(SSL3_VERSION, ssl_config_.version_max); SSL_set_min_version(ssl_, ssl_config_.version_min); SSL_set_max_version(ssl_, ssl_config_.version_max); // OpenSSL defaults some options to on, others to off. To avoid ambiguity, // set everything we care about to an absolute value. SslSetClearMask options; options.ConfigureFlag(SSL_OP_NO_COMPRESSION, true); // TODO(joth): Set this conditionally, see http://crbug.com/55410 options.ConfigureFlag(SSL_OP_LEGACY_SERVER_CONNECT, true); SSL_set_options(ssl_, options.set_mask); SSL_clear_options(ssl_, options.clear_mask); // Same as above, this time for the SSL mode. SslSetClearMask mode; mode.ConfigureFlag(SSL_MODE_RELEASE_BUFFERS, true); mode.ConfigureFlag(SSL_MODE_CBC_RECORD_SPLITTING, true); mode.ConfigureFlag(SSL_MODE_ENABLE_FALSE_START, ssl_config_.false_start_enabled); mode.ConfigureFlag(SSL_MODE_SEND_FALLBACK_SCSV, ssl_config_.version_fallback); SSL_set_mode(ssl_, mode.set_mask); SSL_clear_mode(ssl_, mode.clear_mask); // See SSLConfig::disabled_cipher_suites for description of the suites // disabled by default. Note that SHA256 and SHA384 only select HMAC-SHA256 // and HMAC-SHA384 cipher suites, not GCM cipher suites with SHA256 or SHA384 // as the handshake hash. std::string command("DEFAULT:!SHA256:-SHA384:!AESGCM+AES256:!aPSK"); if (ssl_config_.require_ecdhe) command.append(":!kRSA:!kDHE"); if (!(ssl_config_.rc4_enabled && ssl_config_.deprecated_cipher_suites_enabled)) { command.append(":!RC4"); } if (!ssl_config_.deprecated_cipher_suites_enabled) { // Only offer DHE on the second handshake. https://crbug.com/538690 command.append(":!kDHE"); } // Remove any disabled ciphers. for (uint16_t id : ssl_config_.disabled_cipher_suites) { const SSL_CIPHER* cipher = SSL_get_cipher_by_value(id); if (cipher) { command.append(":!"); command.append(SSL_CIPHER_get_name(cipher)); } } int rv = SSL_set_cipher_list(ssl_, command.c_str()); // If this fails (rv = 0) it means there are no ciphers enabled on this SSL. // This will almost certainly result in the socket failing to complete the // handshake at which point the appropriate error is bubbled up to the client. LOG_IF(WARNING, rv != 1) << "SSL_set_cipher_list('" << command << "') " "returned " << rv; // TLS channel ids. if (IsChannelIDEnabled(ssl_config_, channel_id_service_)) { SSL_enable_tls_channel_id(ssl_); } if (!ssl_config_.alpn_protos.empty()) { // Get list of ciphers that are enabled. STACK_OF(SSL_CIPHER)* enabled_ciphers = SSL_get_ciphers(ssl_); DCHECK(enabled_ciphers); std::vector enabled_ciphers_vector; for (size_t i = 0; i < sk_SSL_CIPHER_num(enabled_ciphers); ++i) { const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(enabled_ciphers, i); const uint16_t id = static_cast(SSL_CIPHER_get_id(cipher)); enabled_ciphers_vector.push_back(id); } NextProtoVector alpn_protos = ssl_config_.alpn_protos; if (!HasCipherAdequateForHTTP2(enabled_ciphers_vector) || !IsTLSVersionAdequateForHTTP2(ssl_config_)) { DisableHTTP2(&alpn_protos); } std::vector wire_protos = SerializeNextProtos(alpn_protos); SSL_set_alpn_protos(ssl_, wire_protos.empty() ? NULL : &wire_protos[0], wire_protos.size()); } if (ssl_config_.npn_protos.empty()) SSL_set_options(ssl_, SSL_OP_DISABLE_NPN); if (ssl_config_.signed_cert_timestamps_enabled) { SSL_enable_signed_cert_timestamps(ssl_); SSL_enable_ocsp_stapling(ssl_); } if (cert_verifier_->SupportsOCSPStapling()) SSL_enable_ocsp_stapling(ssl_); return OK; } void SSLClientSocketOpenSSL::DoReadCallback(int rv) { // Since Run may result in Read being called, clear |user_read_callback_| // up front. if (rv > 0) was_ever_used_ = true; user_read_buf_ = NULL; user_read_buf_len_ = 0; base::ResetAndReturn(&user_read_callback_).Run(rv); } void SSLClientSocketOpenSSL::DoWriteCallback(int rv) { // Since Run may result in Write being called, clear |user_write_callback_| // up front. if (rv > 0) was_ever_used_ = true; user_write_buf_ = NULL; user_write_buf_len_ = 0; base::ResetAndReturn(&user_write_callback_).Run(rv); } bool SSLClientSocketOpenSSL::DoTransportIO() { bool network_moved = false; int rv; // Read and write as much data as possible. The loop is necessary because // Write() may return synchronously. do { rv = BufferSend(); if (rv != ERR_IO_PENDING && rv != 0) network_moved = true; } while (rv > 0); if (transport_read_error_ == OK && BufferRecv() != ERR_IO_PENDING) network_moved = true; return network_moved; } // TODO(cbentzel): Remove including "base/threading/thread_local.h" and // g_first_run_completed once crbug.com/424386 is fixed. base::LazyInstance::Leaky g_first_run_completed = LAZY_INSTANCE_INITIALIZER; int SSLClientSocketOpenSSL::DoHandshake() { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); int rv; // TODO(cbentzel): Leave only 1 call to SSL_do_handshake once crbug.com/424386 // is fixed. if (ssl_config_.send_client_cert && ssl_config_.client_cert.get()) { rv = SSL_do_handshake(ssl_); } else { if (g_first_run_completed.Get().Get()) { // TODO(cbentzel): Remove ScopedTracker below once crbug.com/424386 is // fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION("424386 SSL_do_handshake()")); rv = SSL_do_handshake(ssl_); } else { g_first_run_completed.Get().Set(true); rv = SSL_do_handshake(ssl_); } } int net_error = OK; if (rv <= 0) { int ssl_error = SSL_get_error(ssl_, rv); if (ssl_error == SSL_ERROR_WANT_CHANNEL_ID_LOOKUP) { // The server supports channel ID. Stop to look one up before returning to // the handshake. GotoState(STATE_CHANNEL_ID_LOOKUP); return OK; } if (ssl_error == SSL_ERROR_WANT_X509_LOOKUP && !ssl_config_.send_client_cert) { return ERR_SSL_CLIENT_AUTH_CERT_NEEDED; } if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) { DCHECK(ssl_config_.client_private_key); DCHECK_NE(kNoPendingResult, signature_result_); GotoState(STATE_HANDSHAKE); return ERR_IO_PENDING; } OpenSSLErrorInfo error_info; net_error = MapOpenSSLErrorWithDetails(ssl_error, err_tracer, &error_info); if (net_error == ERR_IO_PENDING) { // If not done, stay in this state GotoState(STATE_HANDSHAKE); return ERR_IO_PENDING; } LOG(ERROR) << "handshake failed; returned " << rv << ", SSL error code " << ssl_error << ", net_error " << net_error; net_log_.AddEvent( NetLog::TYPE_SSL_HANDSHAKE_ERROR, CreateNetLogOpenSSLErrorCallback(net_error, ssl_error, error_info)); // Classify the handshake failure. This is used to determine causes of the // TLS version fallback. // |cipher| is the current outgoing cipher suite, so it is non-null iff // ChangeCipherSpec was sent. const SSL_CIPHER* cipher = SSL_get_current_cipher(ssl_); if (SSL_get_state(ssl_) == SSL3_ST_CR_SRVR_HELLO_A) { ssl_failure_state_ = SSL_FAILURE_CLIENT_HELLO; } else if (cipher && (SSL_CIPHER_get_id(cipher) == TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256 || SSL_CIPHER_get_id(cipher) == TLS1_CK_RSA_WITH_AES_128_GCM_SHA256)) { ssl_failure_state_ = SSL_FAILURE_BUGGY_GCM; } else if (cipher && ssl_config_.send_client_cert) { ssl_failure_state_ = SSL_FAILURE_CLIENT_AUTH; } else if (ERR_GET_LIB(error_info.error_code) == ERR_LIB_SSL && ERR_GET_REASON(error_info.error_code) == SSL_R_OLD_SESSION_VERSION_NOT_RETURNED) { ssl_failure_state_ = SSL_FAILURE_SESSION_MISMATCH; } else if (cipher && npn_status_ != kNextProtoUnsupported) { ssl_failure_state_ = SSL_FAILURE_NEXT_PROTO; } else { ssl_failure_state_ = SSL_FAILURE_UNKNOWN; } } GotoState(STATE_HANDSHAKE_COMPLETE); return net_error; } int SSLClientSocketOpenSSL::DoHandshakeComplete(int result) { if (result < 0) return result; if (ssl_config_.version_fallback && ssl_config_.version_max < ssl_config_.version_fallback_min) { return ERR_SSL_FALLBACK_BEYOND_MINIMUM_VERSION; } // Check that if token binding was negotiated, then extended master secret // must also be negotiated. if (tb_was_negotiated_ && !SSL_get_extms_support(ssl_)) return ERR_SSL_PROTOCOL_ERROR; // SSL handshake is completed. If NPN wasn't negotiated, see if ALPN was. if (npn_status_ == kNextProtoUnsupported) { const uint8_t* alpn_proto = NULL; unsigned alpn_len = 0; SSL_get0_alpn_selected(ssl_, &alpn_proto, &alpn_len); if (alpn_len > 0) { npn_proto_.assign(reinterpret_cast(alpn_proto), alpn_len); npn_status_ = kNextProtoNegotiated; set_negotiation_extension(kExtensionALPN); } } RecordNegotiationExtension(); RecordChannelIDSupport(channel_id_service_, channel_id_sent_, ssl_config_.channel_id_enabled); // Only record OCSP histograms if OCSP was requested. if (ssl_config_.signed_cert_timestamps_enabled || cert_verifier_->SupportsOCSPStapling()) { const uint8_t* ocsp_response; size_t ocsp_response_len; SSL_get0_ocsp_response(ssl_, &ocsp_response, &ocsp_response_len); set_stapled_ocsp_response_received(ocsp_response_len != 0); UMA_HISTOGRAM_BOOLEAN("Net.OCSPResponseStapled", ocsp_response_len != 0); } const uint8_t* sct_list; size_t sct_list_len; SSL_get0_signed_cert_timestamp_list(ssl_, &sct_list, &sct_list_len); set_signed_cert_timestamps_received(sct_list_len != 0); if (IsRenegotiationAllowed()) SSL_set_renegotiate_mode(ssl_, ssl_renegotiate_freely); uint8_t server_key_exchange_hash = SSL_get_server_key_exchange_hash(ssl_); if (server_key_exchange_hash != TLSEXT_hash_none) { UMA_HISTOGRAM_SPARSE_SLOWLY("Net.SSLServerKeyExchangeHash", server_key_exchange_hash); } // Verify the certificate. UpdateServerCert(); GotoState(STATE_VERIFY_CERT); return OK; } int SSLClientSocketOpenSSL::DoChannelIDLookup() { NetLog::ParametersCallback callback = base::Bind( &NetLogChannelIDLookupCallback, base::Unretained(channel_id_service_)); net_log_.BeginEvent(NetLog::TYPE_SSL_GET_CHANNEL_ID, callback); GotoState(STATE_CHANNEL_ID_LOOKUP_COMPLETE); return channel_id_service_->GetOrCreateChannelID( host_and_port_.host(), &channel_id_key_, base::Bind(&SSLClientSocketOpenSSL::OnHandshakeIOComplete, base::Unretained(this)), &channel_id_request_); } int SSLClientSocketOpenSSL::DoChannelIDLookupComplete(int result) { net_log_.EndEvent(NetLog::TYPE_SSL_GET_CHANNEL_ID, base::Bind(&NetLogChannelIDLookupCompleteCallback, channel_id_key_.get(), result)); if (result < 0) return result; // Hand the key to OpenSSL. Check for error in case OpenSSL rejects the key // type. DCHECK(channel_id_key_); crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); int rv = SSL_set1_tls_channel_id(ssl_, channel_id_key_->key()); if (!rv) { LOG(ERROR) << "Failed to set Channel ID."; int err = SSL_get_error(ssl_, rv); return MapOpenSSLError(err, err_tracer); } // Return to the handshake. channel_id_sent_ = true; GotoState(STATE_HANDSHAKE); return OK; } int SSLClientSocketOpenSSL::DoVerifyCert(int result) { DCHECK(!server_cert_chain_->empty()); DCHECK(start_cert_verification_time_.is_null()); GotoState(STATE_VERIFY_CERT_COMPLETE); // OpenSSL decoded the certificate, but the platform certificate // implementation could not. This is treated as a fatal SSL-level protocol // error rather than a certificate error. See https://crbug.com/91341. if (!server_cert_.get()) return ERR_SSL_SERVER_CERT_BAD_FORMAT; // If the certificate is bad and has been previously accepted, use // the previous status and bypass the error. base::StringPiece der_cert; if (!x509_util::GetDER(server_cert_chain_->Get(0), &der_cert)) { NOTREACHED(); return ERR_CERT_INVALID; } CertStatus cert_status; if (ssl_config_.IsAllowedBadCert(der_cert, &cert_status)) { VLOG(1) << "Received an expected bad cert with status: " << cert_status; server_cert_verify_result_.Reset(); server_cert_verify_result_.cert_status = cert_status; server_cert_verify_result_.verified_cert = server_cert_; return OK; } std::string ocsp_response; if (cert_verifier_->SupportsOCSPStapling()) { const uint8_t* ocsp_response_raw; size_t ocsp_response_len; SSL_get0_ocsp_response(ssl_, &ocsp_response_raw, &ocsp_response_len); ocsp_response.assign(reinterpret_cast(ocsp_response_raw), ocsp_response_len); } start_cert_verification_time_ = base::TimeTicks::Now(); return cert_verifier_->Verify( server_cert_.get(), host_and_port_.host(), ocsp_response, ssl_config_.GetCertVerifyFlags(), // TODO(davidben): Route the CRLSet through SSLConfig so // SSLClientSocket doesn't depend on SSLConfigService. SSLConfigService::GetCRLSet().get(), &server_cert_verify_result_, base::Bind(&SSLClientSocketOpenSSL::OnHandshakeIOComplete, base::Unretained(this)), &cert_verifier_request_, net_log_); } int SSLClientSocketOpenSSL::DoVerifyCertComplete(int result) { cert_verifier_request_.reset(); if (!start_cert_verification_time_.is_null()) { base::TimeDelta verify_time = base::TimeTicks::Now() - start_cert_verification_time_; if (result == OK) { UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time); } else { UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time); } } const CertStatus cert_status = server_cert_verify_result_.cert_status; if (transport_security_state_ && (result == OK || (IsCertificateError(result) && IsCertStatusMinorError(cert_status))) && !transport_security_state_->CheckPublicKeyPins( host_and_port_, server_cert_verify_result_.is_issued_by_known_root, server_cert_verify_result_.public_key_hashes, server_cert_.get(), server_cert_verify_result_.verified_cert.get(), TransportSecurityState::ENABLE_PIN_REPORTS, &pinning_failure_log_)) { result = ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN; } if (result == OK) { // Only check Certificate Transparency if there were no other errors with // the connection. VerifyCT(); DCHECK(!certificate_verified_); certificate_verified_ = true; MaybeCacheSession(); } else { DVLOG(1) << "DoVerifyCertComplete error " << ErrorToString(result) << " (" << result << ")"; } completed_connect_ = true; // Exit DoHandshakeLoop and return the result to the caller to Connect. DCHECK_EQ(STATE_NONE, next_handshake_state_); return result; } void SSLClientSocketOpenSSL::DoConnectCallback(int rv) { if (!user_connect_callback_.is_null()) { CompletionCallback c = user_connect_callback_; user_connect_callback_.Reset(); c.Run(rv > OK ? OK : rv); } } void SSLClientSocketOpenSSL::UpdateServerCert() { server_cert_chain_->Reset(SSL_get_peer_cert_chain(ssl_)); server_cert_ = server_cert_chain_->AsOSChain(); if (server_cert_.get()) { net_log_.AddEvent( NetLog::TYPE_SSL_CERTIFICATES_RECEIVED, base::Bind(&NetLogX509CertificateCallback, base::Unretained(server_cert_.get()))); } } void SSLClientSocketOpenSSL::VerifyCT() { if (!cert_transparency_verifier_) return; const uint8_t* ocsp_response_raw; size_t ocsp_response_len; SSL_get0_ocsp_response(ssl_, &ocsp_response_raw, &ocsp_response_len); std::string ocsp_response; if (ocsp_response_len > 0) { ocsp_response.assign(reinterpret_cast(ocsp_response_raw), ocsp_response_len); } const uint8_t* sct_list_raw; size_t sct_list_len; SSL_get0_signed_cert_timestamp_list(ssl_, &sct_list_raw, &sct_list_len); std::string sct_list; if (sct_list_len > 0) sct_list.assign(reinterpret_cast(sct_list_raw), sct_list_len); // Note that this is a completely synchronous operation: The CT Log Verifier // gets all the data it needs for SCT verification and does not do any // external communication. cert_transparency_verifier_->Verify( server_cert_verify_result_.verified_cert.get(), ocsp_response, sct_list, &ct_verify_result_, net_log_); ct_verify_result_.ct_policies_applied = (policy_enforcer_ != nullptr); ct_verify_result_.ev_policy_compliance = ct::EVPolicyCompliance::EV_POLICY_DOES_NOT_APPLY; if (policy_enforcer_) { if ((server_cert_verify_result_.cert_status & CERT_STATUS_IS_EV)) { scoped_refptr ev_whitelist = SSLConfigService::GetEVCertsWhitelist(); ct::EVPolicyCompliance ev_policy_compliance = policy_enforcer_->DoesConformToCTEVPolicy( server_cert_verify_result_.verified_cert.get(), ev_whitelist.get(), ct_verify_result_.verified_scts, net_log_); ct_verify_result_.ev_policy_compliance = ev_policy_compliance; if (ev_policy_compliance != ct::EVPolicyCompliance::EV_POLICY_DOES_NOT_APPLY && ev_policy_compliance != ct::EVPolicyCompliance::EV_POLICY_COMPLIES_VIA_WHITELIST && ev_policy_compliance != ct::EVPolicyCompliance::EV_POLICY_COMPLIES_VIA_SCTS) { // TODO(eranm): Log via the BoundNetLog, see crbug.com/437766 VLOG(1) << "EV certificate for " << server_cert_verify_result_.verified_cert->subject() .GetDisplayName() << " does not conform to CT policy, removing EV status."; server_cert_verify_result_.cert_status |= CERT_STATUS_CT_COMPLIANCE_FAILED; server_cert_verify_result_.cert_status &= ~CERT_STATUS_IS_EV; } } ct_verify_result_.cert_policy_compliance = policy_enforcer_->DoesConformToCertPolicy( server_cert_verify_result_.verified_cert.get(), ct_verify_result_.verified_scts, net_log_); } } void SSLClientSocketOpenSSL::OnHandshakeIOComplete(int result) { int rv = DoHandshakeLoop(result); if (rv != ERR_IO_PENDING) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv); DoConnectCallback(rv); } } void SSLClientSocketOpenSSL::OnSendComplete(int result) { if (next_handshake_state_ == STATE_HANDSHAKE) { // In handshake phase. OnHandshakeIOComplete(result); return; } // During a renegotiation, a Read call may also be blocked on a transport // write, so retry both operations. PumpReadWriteEvents(); } void SSLClientSocketOpenSSL::OnRecvComplete(int result) { if (next_handshake_state_ == STATE_HANDSHAKE) { // In handshake phase. OnHandshakeIOComplete(result); return; } // Network layer received some data, check if client requested to read // decrypted data. if (!user_read_buf_.get()) return; int rv = DoReadLoop(); if (rv != ERR_IO_PENDING) DoReadCallback(rv); } int SSLClientSocketOpenSSL::DoHandshakeLoop(int last_io_result) { int rv = last_io_result; do { // Default to STATE_NONE for next state. // (This is a quirk carried over from the windows // implementation. It makes reading the logs a bit harder.) // State handlers can and often do call GotoState just // to stay in the current state. State state = next_handshake_state_; GotoState(STATE_NONE); switch (state) { case STATE_HANDSHAKE: rv = DoHandshake(); break; case STATE_HANDSHAKE_COMPLETE: rv = DoHandshakeComplete(rv); break; case STATE_CHANNEL_ID_LOOKUP: DCHECK_EQ(OK, rv); rv = DoChannelIDLookup(); break; case STATE_CHANNEL_ID_LOOKUP_COMPLETE: rv = DoChannelIDLookupComplete(rv); break; case STATE_VERIFY_CERT: DCHECK_EQ(OK, rv); rv = DoVerifyCert(rv); break; case STATE_VERIFY_CERT_COMPLETE: rv = DoVerifyCertComplete(rv); break; case STATE_NONE: default: rv = ERR_UNEXPECTED; NOTREACHED() << "unexpected state" << state; break; } bool network_moved = DoTransportIO(); if (network_moved && next_handshake_state_ == STATE_HANDSHAKE) { // In general we exit the loop if rv is ERR_IO_PENDING. In this // special case we keep looping even if rv is ERR_IO_PENDING because // the transport IO may allow DoHandshake to make progress. rv = OK; // This causes us to stay in the loop. } } while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE); return rv; } int SSLClientSocketOpenSSL::DoReadLoop() { bool network_moved; int rv; do { rv = DoPayloadRead(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); return rv; } int SSLClientSocketOpenSSL::DoWriteLoop() { bool network_moved; int rv; do { rv = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv == ERR_IO_PENDING && network_moved); return rv; } int SSLClientSocketOpenSSL::DoPayloadRead() { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); DCHECK_LT(0, user_read_buf_len_); DCHECK(user_read_buf_.get()); int rv; if (pending_read_error_ != kNoPendingResult) { rv = pending_read_error_; pending_read_error_ = kNoPendingResult; if (rv == 0) { net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv, user_read_buf_->data()); } else { net_log_.AddEvent( NetLog::TYPE_SSL_READ_ERROR, CreateNetLogOpenSSLErrorCallback(rv, pending_read_ssl_error_, pending_read_error_info_)); } pending_read_ssl_error_ = SSL_ERROR_NONE; pending_read_error_info_ = OpenSSLErrorInfo(); return rv; } int total_bytes_read = 0; int ssl_ret; do { ssl_ret = SSL_read(ssl_, user_read_buf_->data() + total_bytes_read, user_read_buf_len_ - total_bytes_read); if (ssl_ret > 0) total_bytes_read += ssl_ret; } while (total_bytes_read < user_read_buf_len_ && ssl_ret > 0); // Although only the final SSL_read call may have failed, the failure needs to // processed immediately, while the information still available in OpenSSL's // error queue. if (ssl_ret <= 0) { // A zero return from SSL_read may mean any of: // - The underlying BIO_read returned 0. // - The peer sent a close_notify. // - Any arbitrary error. https://crbug.com/466303 // // TransportReadComplete converts the first to an ERR_CONNECTION_CLOSED // error, so it does not occur. The second and third are distinguished by // SSL_ERROR_ZERO_RETURN. pending_read_ssl_error_ = SSL_get_error(ssl_, ssl_ret); if (pending_read_ssl_error_ == SSL_ERROR_ZERO_RETURN) { pending_read_error_ = 0; } else if (pending_read_ssl_error_ == SSL_ERROR_WANT_X509_LOOKUP && !ssl_config_.send_client_cert) { pending_read_error_ = ERR_SSL_CLIENT_AUTH_CERT_NEEDED; } else if (pending_read_ssl_error_ == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) { DCHECK(ssl_config_.client_private_key); DCHECK_NE(kNoPendingResult, signature_result_); pending_read_error_ = ERR_IO_PENDING; } else { pending_read_error_ = MapOpenSSLErrorWithDetails( pending_read_ssl_error_, err_tracer, &pending_read_error_info_); } // Many servers do not reliably send a close_notify alert when shutting down // a connection, and instead terminate the TCP connection. This is reported // as ERR_CONNECTION_CLOSED. Because of this, map the unclean shutdown to a // graceful EOF, instead of treating it as an error as it should be. if (pending_read_error_ == ERR_CONNECTION_CLOSED) pending_read_error_ = 0; } if (total_bytes_read > 0) { // Return any bytes read to the caller. The error will be deferred to the // next call of DoPayloadRead. rv = total_bytes_read; // Do not treat insufficient data as an error to return in the next call to // DoPayloadRead() - instead, let the call fall through to check SSL_read() // again. This is because DoTransportIO() may complete in between the next // call to DoPayloadRead(), and thus it is important to check SSL_read() on // subsequent invocations to see if a complete record may now be read. if (pending_read_error_ == ERR_IO_PENDING) pending_read_error_ = kNoPendingResult; } else { // No bytes were returned. Return the pending read error immediately. DCHECK_NE(kNoPendingResult, pending_read_error_); rv = pending_read_error_; pending_read_error_ = kNoPendingResult; } if (rv >= 0) { net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv, user_read_buf_->data()); } else if (rv != ERR_IO_PENDING) { net_log_.AddEvent( NetLog::TYPE_SSL_READ_ERROR, CreateNetLogOpenSSLErrorCallback(rv, pending_read_ssl_error_, pending_read_error_info_)); pending_read_ssl_error_ = SSL_ERROR_NONE; pending_read_error_info_ = OpenSSLErrorInfo(); } return rv; } int SSLClientSocketOpenSSL::DoPayloadWrite() { crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); int rv = SSL_write(ssl_, user_write_buf_->data(), user_write_buf_len_); if (rv >= 0) { net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_SENT, rv, user_write_buf_->data()); return rv; } int ssl_error = SSL_get_error(ssl_, rv); if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) return ERR_IO_PENDING; OpenSSLErrorInfo error_info; int net_error = MapOpenSSLErrorWithDetails(ssl_error, err_tracer, &error_info); if (net_error != ERR_IO_PENDING) { net_log_.AddEvent( NetLog::TYPE_SSL_WRITE_ERROR, CreateNetLogOpenSSLErrorCallback(net_error, ssl_error, error_info)); } return net_error; } void SSLClientSocketOpenSSL::PumpReadWriteEvents() { int rv_read = ERR_IO_PENDING; int rv_write = ERR_IO_PENDING; bool network_moved; do { if (user_read_buf_.get()) rv_read = DoPayloadRead(); if (user_write_buf_.get()) rv_write = DoPayloadWrite(); network_moved = DoTransportIO(); } while (rv_read == ERR_IO_PENDING && rv_write == ERR_IO_PENDING && (user_read_buf_.get() || user_write_buf_.get()) && network_moved); // Performing the Read callback may cause |this| to be deleted. If this // happens, the Write callback should not be invoked. Guard against this by // holding a WeakPtr to |this| and ensuring it's still valid. base::WeakPtr guard(weak_factory_.GetWeakPtr()); if (user_read_buf_.get() && rv_read != ERR_IO_PENDING) DoReadCallback(rv_read); if (!guard.get()) return; if (user_write_buf_.get() && rv_write != ERR_IO_PENDING) DoWriteCallback(rv_write); } int SSLClientSocketOpenSSL::BufferSend(void) { if (transport_send_busy_) return ERR_IO_PENDING; size_t buffer_read_offset; uint8_t* read_buf; size_t max_read; int status = BIO_zero_copy_get_read_buf(transport_bio_, &read_buf, &buffer_read_offset, &max_read); DCHECK_EQ(status, 1); // Should never fail. if (!max_read) return 0; // Nothing pending in the OpenSSL write BIO. CHECK_EQ(read_buf, reinterpret_cast(send_buffer_->StartOfBuffer())); CHECK_LT(buffer_read_offset, static_cast(send_buffer_->capacity())); send_buffer_->set_offset(buffer_read_offset); int rv = transport_->socket()->Write( send_buffer_.get(), max_read, base::Bind(&SSLClientSocketOpenSSL::BufferSendComplete, base::Unretained(this))); if (rv == ERR_IO_PENDING) { transport_send_busy_ = true; } else { TransportWriteComplete(rv); } return rv; } int SSLClientSocketOpenSSL::BufferRecv(void) { if (transport_recv_busy_) return ERR_IO_PENDING; // Determine how much was requested from |transport_bio_| that was not // actually available. size_t requested = BIO_ctrl_get_read_request(transport_bio_); if (requested == 0) { // This is not a perfect match of error codes, as no operation is // actually pending. However, returning 0 would be interpreted as // a possible sign of EOF, which is also an inappropriate match. return ERR_IO_PENDING; } // Known Issue: While only reading |requested| data is the more correct // implementation, it has the downside of resulting in frequent reads: // One read for the SSL record header (~5 bytes) and one read for the SSL // record body. Rather than issuing these reads to the underlying socket // (and constantly allocating new IOBuffers), a single Read() request to // fill |transport_bio_| is issued. As long as an SSL client socket cannot // be gracefully shutdown (via SSL close alerts) and re-used for non-SSL // traffic, this over-subscribed Read()ing will not cause issues. size_t buffer_write_offset; uint8_t* write_buf; size_t max_write; int status = BIO_zero_copy_get_write_buf(transport_bio_, &write_buf, &buffer_write_offset, &max_write); DCHECK_EQ(status, 1); // Should never fail. if (!max_write) return ERR_IO_PENDING; CHECK_EQ(write_buf, reinterpret_cast(recv_buffer_->StartOfBuffer())); CHECK_LT(buffer_write_offset, static_cast(recv_buffer_->capacity())); recv_buffer_->set_offset(buffer_write_offset); int rv = transport_->socket()->Read( recv_buffer_.get(), max_write, base::Bind(&SSLClientSocketOpenSSL::BufferRecvComplete, base::Unretained(this))); if (rv == ERR_IO_PENDING) { transport_recv_busy_ = true; } else { rv = TransportReadComplete(rv); } return rv; } void SSLClientSocketOpenSSL::BufferSendComplete(int result) { TransportWriteComplete(result); OnSendComplete(result); } void SSLClientSocketOpenSSL::BufferRecvComplete(int result) { result = TransportReadComplete(result); OnRecvComplete(result); } void SSLClientSocketOpenSSL::TransportWriteComplete(int result) { DCHECK(ERR_IO_PENDING != result); int bytes_written = 0; if (result < 0) { // Record the error. Save it to be reported in a future read or write on // transport_bio_'s peer. transport_write_error_ = result; } else { bytes_written = result; } DCHECK_GE(send_buffer_->RemainingCapacity(), bytes_written); int ret = BIO_zero_copy_get_read_buf_done(transport_bio_, bytes_written); DCHECK_EQ(1, ret); transport_send_busy_ = false; } int SSLClientSocketOpenSSL::TransportReadComplete(int result) { DCHECK(ERR_IO_PENDING != result); // If an EOF, canonicalize to ERR_CONNECTION_CLOSED here so MapOpenSSLError // does not report success. if (result == 0) result = ERR_CONNECTION_CLOSED; int bytes_read = 0; if (result < 0) { DVLOG(1) << "TransportReadComplete result " << result; // Received an error. Save it to be reported in a future read on // transport_bio_'s peer. transport_read_error_ = result; } else { bytes_read = result; } DCHECK_GE(recv_buffer_->RemainingCapacity(), bytes_read); int ret = BIO_zero_copy_get_write_buf_done(transport_bio_, bytes_read); DCHECK_EQ(1, ret); transport_recv_busy_ = false; return result; } int SSLClientSocketOpenSSL::ClientCertRequestCallback(SSL* ssl) { DVLOG(3) << "OpenSSL ClientCertRequestCallback called"; DCHECK(ssl == ssl_); net_log_.AddEvent(NetLog::TYPE_SSL_CLIENT_CERT_REQUESTED); // Clear any currently configured certificates. SSL_certs_clear(ssl_); #if defined(OS_IOS) // TODO(droger): Support client auth on iOS. See http://crbug.com/145954). LOG(WARNING) << "Client auth is not supported"; #else // !defined(OS_IOS) if (!ssl_config_.send_client_cert) { // First pass: we know that a client certificate is needed, but we do not // have one at hand. STACK_OF(X509_NAME) *authorities = SSL_get_client_CA_list(ssl); for (size_t i = 0; i < sk_X509_NAME_num(authorities); i++) { X509_NAME *ca_name = (X509_NAME *)sk_X509_NAME_value(authorities, i); unsigned char* str = NULL; int length = i2d_X509_NAME(ca_name, &str); cert_authorities_.push_back(std::string( reinterpret_cast(str), static_cast(length))); OPENSSL_free(str); } const unsigned char* client_cert_types; size_t num_client_cert_types = SSL_get0_certificate_types(ssl, &client_cert_types); for (size_t i = 0; i < num_client_cert_types; i++) { cert_key_types_.push_back( static_cast(client_cert_types[i])); } // Suspends handshake. SSL_get_error will return SSL_ERROR_WANT_X509_LOOKUP. return -1; } // Second pass: a client certificate should have been selected. if (ssl_config_.client_cert.get()) { ScopedX509 leaf_x509 = OSCertHandleToOpenSSL(ssl_config_.client_cert->os_cert_handle()); if (!leaf_x509) { LOG(WARNING) << "Failed to import certificate"; OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT); return -1; } ScopedX509Stack chain = OSCertHandlesToOpenSSL( ssl_config_.client_cert->GetIntermediateCertificates()); if (!chain) { LOG(WARNING) << "Failed to import intermediate certificates"; OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT); return -1; } if (!SSL_use_certificate(ssl_, leaf_x509.get()) || !SSL_set1_chain(ssl_, chain.get())) { LOG(WARNING) << "Failed to set client certificate"; return -1; } if (!ssl_config_.client_private_key) { // The caller supplied a null private key. Fail the handshake and surface // an appropriate error to the caller. LOG(WARNING) << "Client cert found without private key"; OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY); return -1; } SSL_set_private_key_method(ssl_, &SSLContext::kPrivateKeyMethod); std::vector digest_prefs = ssl_config_.client_private_key->GetDigestPreferences(); size_t digests_len = digest_prefs.size(); std::vector digests; for (size_t i = 0; i < digests_len; i++) { switch (digest_prefs[i]) { case SSLPrivateKey::Hash::SHA1: digests.push_back(NID_sha1); break; case SSLPrivateKey::Hash::SHA256: digests.push_back(NID_sha256); break; case SSLPrivateKey::Hash::SHA384: digests.push_back(NID_sha384); break; case SSLPrivateKey::Hash::SHA512: digests.push_back(NID_sha512); break; case SSLPrivateKey::Hash::MD5_SHA1: // MD5-SHA1 is not used in TLS 1.2. break; } } SSL_set_private_key_digest_prefs(ssl_, digests.data(), digests.size()); int cert_count = 1 + sk_X509_num(chain.get()); net_log_.AddEvent(NetLog::TYPE_SSL_CLIENT_CERT_PROVIDED, NetLog::IntCallback("cert_count", cert_count)); return 1; } #endif // defined(OS_IOS) // Send no client certificate. net_log_.AddEvent(NetLog::TYPE_SSL_CLIENT_CERT_PROVIDED, NetLog::IntCallback("cert_count", 0)); return 1; } int SSLClientSocketOpenSSL::CertVerifyCallback(X509_STORE_CTX* store_ctx) { if (!completed_connect_) { // If the first handshake hasn't completed then we accept any certificates // because we verify after the handshake. return 1; } // Disallow the server certificate to change in a renegotiation. if (server_cert_chain_->empty()) { LOG(ERROR) << "Received invalid certificate chain between handshakes"; return 0; } base::StringPiece old_der, new_der; if (store_ctx->cert == NULL || !x509_util::GetDER(server_cert_chain_->Get(0), &old_der) || !x509_util::GetDER(store_ctx->cert, &new_der)) { LOG(ERROR) << "Failed to encode certificates"; return 0; } if (old_der != new_der) { LOG(ERROR) << "Server certificate changed between handshakes"; return 0; } return 1; } // SelectNextProtoCallback is called by OpenSSL during the handshake. If the // server supports NPN, selects a protocol from the list that the server // provides. According to third_party/boringssl/src/ssl/ssl_lib.c, the // callback can assume that |in| is syntactically valid. int SSLClientSocketOpenSSL::SelectNextProtoCallback(unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen) { if (ssl_config_.npn_protos.empty()) { *out = reinterpret_cast( const_cast(kDefaultSupportedNPNProtocol)); *outlen = arraysize(kDefaultSupportedNPNProtocol) - 1; npn_status_ = kNextProtoUnsupported; return SSL_TLSEXT_ERR_OK; } // Assume there's no overlap between our protocols and the server's list. npn_status_ = kNextProtoNoOverlap; // For each protocol in server preference order, see if we support it. for (unsigned int i = 0; i < inlen; i += in[i] + 1) { for (NextProto next_proto : ssl_config_.npn_protos) { const std::string proto = NextProtoToString(next_proto); if (in[i] == proto.size() && memcmp(&in[i + 1], proto.data(), in[i]) == 0) { // We found a match. *out = const_cast(in) + i + 1; *outlen = in[i]; npn_status_ = kNextProtoNegotiated; break; } } if (npn_status_ == kNextProtoNegotiated) break; } // If we didn't find a protocol, we select the last one from our list. if (npn_status_ == kNextProtoNoOverlap) { // NextProtoToString returns a pointer to a static string. const char* proto = NextProtoToString(ssl_config_.npn_protos.back()); *out = reinterpret_cast(const_cast(proto)); *outlen = strlen(proto); } npn_proto_.assign(reinterpret_cast(*out), *outlen); DVLOG(2) << "next protocol: '" << npn_proto_ << "' status: " << npn_status_; set_negotiation_extension(kExtensionNPN); return SSL_TLSEXT_ERR_OK; } long SSLClientSocketOpenSSL::MaybeReplayTransportError( BIO *bio, int cmd, const char *argp, int argi, long argl, long retvalue) { if (cmd == (BIO_CB_READ|BIO_CB_RETURN) && retvalue <= 0) { // If there is no more data in the buffer, report any pending errors that // were observed. Note that both the readbuf and the writebuf are checked // for errors, since the application may have encountered a socket error // while writing that would otherwise not be reported until the application // attempted to write again - which it may never do. See // https://crbug.com/249848. if (transport_read_error_ != OK) { OpenSSLPutNetError(FROM_HERE, transport_read_error_); return -1; } if (transport_write_error_ != OK) { OpenSSLPutNetError(FROM_HERE, transport_write_error_); return -1; } } else if (cmd == BIO_CB_WRITE) { // Because of the write buffer, this reports a failure from the previous // write payload. If the current payload fails to write, the error will be // reported in a future write or read to |bio|. if (transport_write_error_ != OK) { OpenSSLPutNetError(FROM_HERE, transport_write_error_); return -1; } } return retvalue; } // static long SSLClientSocketOpenSSL::BIOCallback( BIO *bio, int cmd, const char *argp, int argi, long argl, long retvalue) { SSLClientSocketOpenSSL* socket = reinterpret_cast( BIO_get_callback_arg(bio)); CHECK(socket); return socket->MaybeReplayTransportError( bio, cmd, argp, argi, argl, retvalue); } void SSLClientSocketOpenSSL::MaybeCacheSession() { // Only cache the session once both a new session has been established and the // certificate has been verified. Due to False Start, these events may happen // in either order. if (!session_pending_ || !certificate_verified_) return; SSLContext::GetInstance()->session_cache()->Insert(GetSessionCacheKey(), SSL_get_session(ssl_)); session_pending_ = false; } int SSLClientSocketOpenSSL::NewSessionCallback(SSL_SESSION* session) { DCHECK_EQ(session, SSL_get_session(ssl_)); // Only sessions from the initial handshake get cached. Note this callback may // be signaled on abbreviated handshakes if the ticket was renewed. session_pending_ = true; MaybeCacheSession(); // OpenSSL passes a reference to |session|, but the session cache does not // take this reference, so release it. SSL_SESSION_free(session); return 1; } void SSLClientSocketOpenSSL::AddCTInfoToSSLInfo(SSLInfo* ssl_info) const { ssl_info->UpdateCertificateTransparencyInfo(ct_verify_result_); } std::string SSLClientSocketOpenSSL::GetSessionCacheKey() const { std::string result = host_and_port_.ToString(); result.append("/"); result.append(ssl_session_cache_shard_); // Shard the session cache based on maximum protocol version. This causes // fallback connections to use a separate session cache. result.append("/"); switch (ssl_config_.version_max) { case SSL_PROTOCOL_VERSION_TLS1: result.append("tls1"); break; case SSL_PROTOCOL_VERSION_TLS1_1: result.append("tls1.1"); break; case SSL_PROTOCOL_VERSION_TLS1_2: result.append("tls1.2"); break; default: NOTREACHED(); } result.append("/"); if (ssl_config_.deprecated_cipher_suites_enabled) result.append("deprecated"); result.append("/"); if (ssl_config_.channel_id_enabled) result.append("channelid"); return result; } bool SSLClientSocketOpenSSL::IsRenegotiationAllowed() const { if (tb_was_negotiated_) return false; if (npn_status_ == kNextProtoUnsupported) return ssl_config_.renego_allowed_default; NextProto next_proto = NextProtoFromString(npn_proto_); for (NextProto allowed : ssl_config_.renego_allowed_for_protos) { if (next_proto == allowed) return true; } return false; } int SSLClientSocketOpenSSL::PrivateKeyTypeCallback() { switch (ssl_config_.client_private_key->GetType()) { case SSLPrivateKey::Type::RSA: return EVP_PKEY_RSA; case SSLPrivateKey::Type::ECDSA: return EVP_PKEY_EC; } NOTREACHED(); return EVP_PKEY_NONE; } size_t SSLClientSocketOpenSSL::PrivateKeyMaxSignatureLenCallback() { return ssl_config_.client_private_key->GetMaxSignatureLengthInBytes(); } ssl_private_key_result_t SSLClientSocketOpenSSL::PrivateKeySignCallback( uint8_t* out, size_t* out_len, size_t max_out, const EVP_MD* md, const uint8_t* in, size_t in_len) { DCHECK_EQ(kNoPendingResult, signature_result_); DCHECK(signature_.empty()); DCHECK(ssl_config_.client_private_key); SSLPrivateKey::Hash hash; if (!EVP_MDToPrivateKeyHash(md, &hash)) { OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED); return ssl_private_key_failure; } net_log_.BeginEvent( NetLog::TYPE_SSL_PRIVATE_KEY_OPERATION, base::Bind(&NetLogPrivateKeyOperationCallback, ssl_config_.client_private_key->GetType(), hash)); signature_result_ = ERR_IO_PENDING; ssl_config_.client_private_key->SignDigest( hash, base::StringPiece(reinterpret_cast(in), in_len), base::Bind(&SSLClientSocketOpenSSL::OnPrivateKeySignComplete, weak_factory_.GetWeakPtr())); return ssl_private_key_retry; } ssl_private_key_result_t SSLClientSocketOpenSSL::PrivateKeySignCompleteCallback( uint8_t* out, size_t* out_len, size_t max_out) { DCHECK_NE(kNoPendingResult, signature_result_); DCHECK(ssl_config_.client_private_key); if (signature_result_ == ERR_IO_PENDING) return ssl_private_key_retry; if (signature_result_ != OK) { OpenSSLPutNetError(FROM_HERE, signature_result_); return ssl_private_key_failure; } if (signature_.size() > max_out) { OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED); return ssl_private_key_failure; } memcpy(out, signature_.data(), signature_.size()); *out_len = signature_.size(); signature_.clear(); return ssl_private_key_success; } void SSLClientSocketOpenSSL::OnPrivateKeySignComplete( Error error, const std::vector& signature) { DCHECK_EQ(ERR_IO_PENDING, signature_result_); DCHECK(signature_.empty()); DCHECK(ssl_config_.client_private_key); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_PRIVATE_KEY_OPERATION, error); signature_result_ = error; if (signature_result_ == OK) signature_ = signature; if (next_handshake_state_ == STATE_HANDSHAKE) { OnHandshakeIOComplete(signature_result_); return; } // During a renegotiation, either Read or Write calls may be blocked on an // asynchronous private key operation. PumpReadWriteEvents(); } int SSLClientSocketOpenSSL::TokenBindingAdd(const uint8_t** out, size_t* out_len, int* out_alert_value) { if (ssl_config_.token_binding_params.empty()) { return 0; } ScopedCBB output; CBB parameters_list; if (!CBB_init(output.get(), 7) || !CBB_add_u8(output.get(), kTbProtocolVersionMajor) || !CBB_add_u8(output.get(), kTbProtocolVersionMinor) || !CBB_add_u8_length_prefixed(output.get(), ¶meters_list)) { *out_alert_value = SSL_AD_INTERNAL_ERROR; return -1; } for (size_t i = 0; i < ssl_config_.token_binding_params.size(); ++i) { if (!CBB_add_u8(¶meters_list, ssl_config_.token_binding_params[i])) { *out_alert_value = SSL_AD_INTERNAL_ERROR; return -1; } } // |*out| will be freed by TokenBindingFreeCallback. if (!CBB_finish(output.get(), const_cast(out), out_len)) { *out_alert_value = SSL_AD_INTERNAL_ERROR; return -1; } return 1; } int SSLClientSocketOpenSSL::TokenBindingParse(const uint8_t* contents, size_t contents_len, int* out_alert_value) { if (completed_connect_) { // Token Binding may only be negotiated on the initial handshake. *out_alert_value = SSL_AD_ILLEGAL_PARAMETER; return 0; } CBS extension; CBS_init(&extension, contents, contents_len); CBS parameters_list; uint8_t version_major, version_minor, param; if (!CBS_get_u8(&extension, &version_major) || !CBS_get_u8(&extension, &version_minor) || !CBS_get_u8_length_prefixed(&extension, ¶meters_list) || !CBS_get_u8(¶meters_list, ¶m) || CBS_len(¶meters_list) > 0 || CBS_len(&extension) > 0) { *out_alert_value = SSL_AD_DECODE_ERROR; return 0; } // The server-negotiated version must be less than or equal to our version. if (version_major > kTbProtocolVersionMajor || (version_minor > kTbProtocolVersionMinor && version_major == kTbProtocolVersionMajor)) { *out_alert_value = SSL_AD_ILLEGAL_PARAMETER; return 0; } // If the version the server negotiated is older than we support, don't fail // parsing the extension, but also don't set |negotiated_|. if (version_major < kTbMinProtocolVersionMajor || (version_minor < kTbMinProtocolVersionMinor && version_major == kTbMinProtocolVersionMajor)) { return 1; } for (size_t i = 0; i < ssl_config_.token_binding_params.size(); ++i) { if (param == ssl_config_.token_binding_params[i]) { tb_negotiated_param_ = ssl_config_.token_binding_params[i]; tb_was_negotiated_ = true; return 1; } } *out_alert_value = SSL_AD_ILLEGAL_PARAMETER; return 0; } } // namespace net