// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/ssl_client_socket.h" #include #include "base/callback_helpers.h" #include "base/files/file_util.h" #include "base/location.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/thread_task_runner_handle.h" #include "base/time/time.h" #include "net/base/address_list.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/test_completion_callback.h" #include "net/base/test_data_directory.h" #include "net/cert/asn1_util.h" #include "net/cert/ct_policy_enforcer.h" #include "net/cert/ct_policy_status.h" #include "net/cert/ct_verifier.h" #include "net/cert/mock_cert_verifier.h" #include "net/cert/test_root_certs.h" #include "net/der/input.h" #include "net/der/parser.h" #include "net/der/tag.h" #include "net/dns/host_resolver.h" #include "net/http/transport_security_state.h" #include "net/log/net_log.h" #include "net/log/test_net_log.h" #include "net/log/test_net_log_entry.h" #include "net/log/test_net_log_util.h" #include "net/socket/client_socket_factory.h" #include "net/socket/client_socket_handle.h" #include "net/socket/socket_test_util.h" #include "net/socket/tcp_client_socket.h" #include "net/ssl/channel_id_service.h" #include "net/ssl/default_channel_id_store.h" #include "net/ssl/ssl_cert_request_info.h" #include "net/ssl/ssl_config_service.h" #include "net/ssl/ssl_connection_status_flags.h" #include "net/ssl/ssl_info.h" #include "net/test/cert_test_util.h" #include "net/test/spawned_test_server/spawned_test_server.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/platform_test.h" #if defined(USE_OPENSSL) #include #include #include #include #include #include "crypto/scoped_openssl_types.h" #include "net/ssl/test_ssl_private_key.h" #endif using testing::_; using testing::Return; using testing::Truly; namespace net { namespace { // WrappedStreamSocket is a base class that wraps an existing StreamSocket, // forwarding the Socket and StreamSocket interfaces to the underlying // transport. // This is to provide a common base class for subclasses to override specific // StreamSocket methods for testing, while still communicating with a 'real' // StreamSocket. class WrappedStreamSocket : public StreamSocket { public: explicit WrappedStreamSocket(scoped_ptr transport) : transport_(std::move(transport)) {} ~WrappedStreamSocket() override {} // StreamSocket implementation: int Connect(const CompletionCallback& callback) override { return transport_->Connect(callback); } void Disconnect() override { transport_->Disconnect(); } bool IsConnected() const override { return transport_->IsConnected(); } bool IsConnectedAndIdle() const override { return transport_->IsConnectedAndIdle(); } int GetPeerAddress(IPEndPoint* address) const override { return transport_->GetPeerAddress(address); } int GetLocalAddress(IPEndPoint* address) const override { return transport_->GetLocalAddress(address); } const BoundNetLog& NetLog() const override { return transport_->NetLog(); } void SetSubresourceSpeculation() override { transport_->SetSubresourceSpeculation(); } void SetOmniboxSpeculation() override { transport_->SetOmniboxSpeculation(); } bool WasEverUsed() const override { return transport_->WasEverUsed(); } bool UsingTCPFastOpen() const override { return transport_->UsingTCPFastOpen(); } bool WasNpnNegotiated() const override { return transport_->WasNpnNegotiated(); } NextProto GetNegotiatedProtocol() const override { return transport_->GetNegotiatedProtocol(); } bool GetSSLInfo(SSLInfo* ssl_info) override { return transport_->GetSSLInfo(ssl_info); } void GetConnectionAttempts(ConnectionAttempts* out) const override { transport_->GetConnectionAttempts(out); } void ClearConnectionAttempts() override { transport_->ClearConnectionAttempts(); } void AddConnectionAttempts(const ConnectionAttempts& attempts) override { transport_->AddConnectionAttempts(attempts); } int64_t GetTotalReceivedBytes() const override { return transport_->GetTotalReceivedBytes(); } // Socket implementation: int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override { return transport_->Read(buf, buf_len, callback); } int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override { return transport_->Write(buf, buf_len, callback); } int SetReceiveBufferSize(int32_t size) override { return transport_->SetReceiveBufferSize(size); } int SetSendBufferSize(int32_t size) override { return transport_->SetSendBufferSize(size); } protected: scoped_ptr transport_; }; // ReadBufferingStreamSocket is a wrapper for an existing StreamSocket that // will ensure a certain amount of data is internally buffered before // satisfying a Read() request. It exists to mimic OS-level internal // buffering, but in a way to guarantee that X number of bytes will be // returned to callers of Read(), regardless of how quickly the OS receives // them from the TestServer. class ReadBufferingStreamSocket : public WrappedStreamSocket { public: explicit ReadBufferingStreamSocket(scoped_ptr transport); ~ReadBufferingStreamSocket() override {} // Socket implementation: int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override; // Sets the internal buffer to |size|. This must not be greater than // the largest value supplied to Read() - that is, it does not handle // having "leftovers" at the end of Read(). // Each call to Read() will be prevented from completion until at least // |size| data has been read. // Set to 0 to turn off buffering, causing Read() to transparently // read via the underlying transport. void SetBufferSize(int size); private: enum State { STATE_NONE, STATE_READ, STATE_READ_COMPLETE, }; int DoLoop(int result); int DoRead(); int DoReadComplete(int result); void OnReadCompleted(int result); State state_; scoped_refptr read_buffer_; int buffer_size_; scoped_refptr user_read_buf_; CompletionCallback user_read_callback_; }; ReadBufferingStreamSocket::ReadBufferingStreamSocket( scoped_ptr transport) : WrappedStreamSocket(std::move(transport)), read_buffer_(new GrowableIOBuffer()), buffer_size_(0) {} void ReadBufferingStreamSocket::SetBufferSize(int size) { DCHECK(!user_read_buf_.get()); buffer_size_ = size; read_buffer_->SetCapacity(size); } int ReadBufferingStreamSocket::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (buffer_size_ == 0) return transport_->Read(buf, buf_len, callback); if (buf_len < buffer_size_) return ERR_UNEXPECTED; state_ = STATE_READ; user_read_buf_ = buf; int result = DoLoop(OK); if (result == ERR_IO_PENDING) user_read_callback_ = callback; else user_read_buf_ = NULL; return result; } int ReadBufferingStreamSocket::DoLoop(int result) { int rv = result; do { State current_state = state_; state_ = STATE_NONE; switch (current_state) { case STATE_READ: rv = DoRead(); break; case STATE_READ_COMPLETE: rv = DoReadComplete(rv); break; case STATE_NONE: default: NOTREACHED() << "Unexpected state: " << current_state; rv = ERR_UNEXPECTED; break; } } while (rv != ERR_IO_PENDING && state_ != STATE_NONE); return rv; } int ReadBufferingStreamSocket::DoRead() { state_ = STATE_READ_COMPLETE; int rv = transport_->Read(read_buffer_.get(), read_buffer_->RemainingCapacity(), base::Bind(&ReadBufferingStreamSocket::OnReadCompleted, base::Unretained(this))); return rv; } int ReadBufferingStreamSocket::DoReadComplete(int result) { state_ = STATE_NONE; if (result <= 0) return result; read_buffer_->set_offset(read_buffer_->offset() + result); if (read_buffer_->RemainingCapacity() > 0) { state_ = STATE_READ; return OK; } memcpy(user_read_buf_->data(), read_buffer_->StartOfBuffer(), read_buffer_->capacity()); read_buffer_->set_offset(0); return read_buffer_->capacity(); } void ReadBufferingStreamSocket::OnReadCompleted(int result) { result = DoLoop(result); if (result == ERR_IO_PENDING) return; user_read_buf_ = NULL; base::ResetAndReturn(&user_read_callback_).Run(result); } // Simulates synchronously receiving an error during Read() or Write() class SynchronousErrorStreamSocket : public WrappedStreamSocket { public: explicit SynchronousErrorStreamSocket(scoped_ptr transport); ~SynchronousErrorStreamSocket() override {} // Socket implementation: int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override; int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override; // Sets the next Read() call and all future calls to return |error|. // If there is already a pending asynchronous read, the configured error // will not be returned until that asynchronous read has completed and Read() // is called again. void SetNextReadError(int error) { DCHECK_GE(0, error); have_read_error_ = true; pending_read_error_ = error; } // Sets the next Write() call and all future calls to return |error|. // If there is already a pending asynchronous write, the configured error // will not be returned until that asynchronous write has completed and // Write() is called again. void SetNextWriteError(int error) { DCHECK_GE(0, error); have_write_error_ = true; pending_write_error_ = error; } private: bool have_read_error_; int pending_read_error_; bool have_write_error_; int pending_write_error_; DISALLOW_COPY_AND_ASSIGN(SynchronousErrorStreamSocket); }; SynchronousErrorStreamSocket::SynchronousErrorStreamSocket( scoped_ptr transport) : WrappedStreamSocket(std::move(transport)), have_read_error_(false), pending_read_error_(OK), have_write_error_(false), pending_write_error_(OK) {} int SynchronousErrorStreamSocket::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (have_read_error_) return pending_read_error_; return transport_->Read(buf, buf_len, callback); } int SynchronousErrorStreamSocket::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (have_write_error_) return pending_write_error_; return transport_->Write(buf, buf_len, callback); } // FakeBlockingStreamSocket wraps an existing StreamSocket and simulates the // underlying transport needing to complete things asynchronously in a // deterministic manner (e.g.: independent of the TestServer and the OS's // semantics). class FakeBlockingStreamSocket : public WrappedStreamSocket { public: explicit FakeBlockingStreamSocket(scoped_ptr transport); ~FakeBlockingStreamSocket() override {} // Socket implementation: int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override; int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override; int pending_read_result() const { return pending_read_result_; } IOBuffer* pending_read_buf() const { return pending_read_buf_.get(); } // Blocks read results on the socket. Reads will not complete until // UnblockReadResult() has been called and a result is ready from the // underlying transport. Note: if BlockReadResult() is called while there is a // hanging asynchronous Read(), that Read is blocked. void BlockReadResult(); void UnblockReadResult(); // Waits for the blocked Read() call to be complete at the underlying // transport. void WaitForReadResult(); // Causes the next call to Write() to return ERR_IO_PENDING, not beginning the // underlying transport until UnblockWrite() has been called. Note: if there // is a pending asynchronous write, it is NOT blocked. For purposes of // blocking writes, data is considered to have reached the underlying // transport as soon as Write() is called. void BlockWrite(); void UnblockWrite(); // Waits for the blocked Write() call to be scheduled. void WaitForWrite(); private: // Handles completion from the underlying transport read. void OnReadCompleted(int result); // True if read callbacks are blocked. bool should_block_read_; // The buffer for the pending read, or NULL if not consumed. scoped_refptr pending_read_buf_; // The user callback for the pending read call. CompletionCallback pending_read_callback_; // The result for the blocked read callback, or ERR_IO_PENDING if not // completed. int pending_read_result_; // WaitForReadResult() wait loop. scoped_ptr read_loop_; // True if write calls are blocked. bool should_block_write_; // The buffer for the pending write, or NULL if not scheduled. scoped_refptr pending_write_buf_; // The callback for the pending write call. CompletionCallback pending_write_callback_; // The length for the pending write, or -1 if not scheduled. int pending_write_len_; // WaitForWrite() wait loop. scoped_ptr write_loop_; }; FakeBlockingStreamSocket::FakeBlockingStreamSocket( scoped_ptr transport) : WrappedStreamSocket(std::move(transport)), should_block_read_(false), pending_read_result_(ERR_IO_PENDING), should_block_write_(false), pending_write_len_(-1) {} int FakeBlockingStreamSocket::Read(IOBuffer* buf, int len, const CompletionCallback& callback) { DCHECK(!pending_read_buf_); DCHECK(pending_read_callback_.is_null()); DCHECK_EQ(ERR_IO_PENDING, pending_read_result_); DCHECK(!callback.is_null()); int rv = transport_->Read(buf, len, base::Bind( &FakeBlockingStreamSocket::OnReadCompleted, base::Unretained(this))); if (rv == ERR_IO_PENDING) { // Save the callback to be called later. pending_read_buf_ = buf; pending_read_callback_ = callback; } else if (should_block_read_) { // Save the callback and read result to be called later. pending_read_buf_ = buf; pending_read_callback_ = callback; OnReadCompleted(rv); rv = ERR_IO_PENDING; } return rv; } int FakeBlockingStreamSocket::Write(IOBuffer* buf, int len, const CompletionCallback& callback) { DCHECK(buf); DCHECK_LE(0, len); if (!should_block_write_) return transport_->Write(buf, len, callback); // Schedule the write, but do nothing. DCHECK(!pending_write_buf_.get()); DCHECK_EQ(-1, pending_write_len_); DCHECK(pending_write_callback_.is_null()); DCHECK(!callback.is_null()); pending_write_buf_ = buf; pending_write_len_ = len; pending_write_callback_ = callback; // Stop the write loop, if any. if (write_loop_) write_loop_->Quit(); return ERR_IO_PENDING; } void FakeBlockingStreamSocket::BlockReadResult() { DCHECK(!should_block_read_); should_block_read_ = true; } void FakeBlockingStreamSocket::UnblockReadResult() { DCHECK(should_block_read_); should_block_read_ = false; // If the operation is still pending in the underlying transport, immediately // return - OnReadCompleted() will handle invoking the callback once the // transport has completed. if (pending_read_result_ == ERR_IO_PENDING) return; int result = pending_read_result_; pending_read_buf_ = nullptr; pending_read_result_ = ERR_IO_PENDING; base::ResetAndReturn(&pending_read_callback_).Run(result); } void FakeBlockingStreamSocket::WaitForReadResult() { DCHECK(should_block_read_); DCHECK(!read_loop_); if (pending_read_result_ != ERR_IO_PENDING) return; read_loop_.reset(new base::RunLoop); read_loop_->Run(); read_loop_.reset(); DCHECK_NE(ERR_IO_PENDING, pending_read_result_); } void FakeBlockingStreamSocket::BlockWrite() { DCHECK(!should_block_write_); should_block_write_ = true; } void FakeBlockingStreamSocket::UnblockWrite() { DCHECK(should_block_write_); should_block_write_ = false; // Do nothing if UnblockWrite() was called after BlockWrite(), // without a Write() in between. if (!pending_write_buf_.get()) return; int rv = transport_->Write( pending_write_buf_.get(), pending_write_len_, pending_write_callback_); pending_write_buf_ = NULL; pending_write_len_ = -1; if (rv == ERR_IO_PENDING) { pending_write_callback_.Reset(); } else { base::ResetAndReturn(&pending_write_callback_).Run(rv); } } void FakeBlockingStreamSocket::WaitForWrite() { DCHECK(should_block_write_); DCHECK(!write_loop_); if (pending_write_buf_.get()) return; write_loop_.reset(new base::RunLoop); write_loop_->Run(); write_loop_.reset(); DCHECK(pending_write_buf_.get()); } void FakeBlockingStreamSocket::OnReadCompleted(int result) { DCHECK_EQ(ERR_IO_PENDING, pending_read_result_); DCHECK(!pending_read_callback_.is_null()); if (should_block_read_) { // Store the result so that the callback can be invoked once Unblock() is // called. pending_read_result_ = result; // Stop the WaitForReadResult() call if any. if (read_loop_) read_loop_->Quit(); } else { // Either the Read() was never blocked or UnblockReadResult() was called // before the Read() completed. Either way, return the result to the caller. pending_read_buf_ = nullptr; base::ResetAndReturn(&pending_read_callback_).Run(result); } } // CountingStreamSocket wraps an existing StreamSocket and maintains a count of // reads and writes on the socket. class CountingStreamSocket : public WrappedStreamSocket { public: explicit CountingStreamSocket(scoped_ptr transport) : WrappedStreamSocket(std::move(transport)), read_count_(0), write_count_(0) {} ~CountingStreamSocket() override {} // Socket implementation: int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override { read_count_++; return transport_->Read(buf, buf_len, callback); } int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) override { write_count_++; return transport_->Write(buf, buf_len, callback); } int read_count() const { return read_count_; } int write_count() const { return write_count_; } private: int read_count_; int write_count_; }; // CompletionCallback that will delete the associated StreamSocket when // the callback is invoked. class DeleteSocketCallback : public TestCompletionCallbackBase { public: explicit DeleteSocketCallback(StreamSocket* socket) : socket_(socket), callback_(base::Bind(&DeleteSocketCallback::OnComplete, base::Unretained(this))) {} ~DeleteSocketCallback() override {} const CompletionCallback& callback() const { return callback_; } private: void OnComplete(int result) { if (socket_) { delete socket_; socket_ = NULL; } else { ADD_FAILURE() << "Deleting socket twice"; } SetResult(result); } StreamSocket* socket_; CompletionCallback callback_; DISALLOW_COPY_AND_ASSIGN(DeleteSocketCallback); }; // A ChannelIDStore that always returns an error when asked for a // channel id. class FailingChannelIDStore : public ChannelIDStore { int GetChannelID(const std::string& server_identifier, scoped_ptr* key_result, const GetChannelIDCallback& callback) override { return ERR_UNEXPECTED; } void SetChannelID(scoped_ptr channel_id) override {} void DeleteChannelID(const std::string& server_identifier, const base::Closure& completion_callback) override {} void DeleteAllCreatedBetween( base::Time delete_begin, base::Time delete_end, const base::Closure& completion_callback) override {} void DeleteAll(const base::Closure& completion_callback) override {} void GetAllChannelIDs(const GetChannelIDListCallback& callback) override {} int GetChannelIDCount() override { return 0; } void SetForceKeepSessionState() override {} bool IsEphemeral() override { return true; } }; // A ChannelIDStore that asynchronously returns an error when asked for a // channel id. class AsyncFailingChannelIDStore : public ChannelIDStore { int GetChannelID(const std::string& server_identifier, scoped_ptr* key_result, const GetChannelIDCallback& callback) override { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, ERR_UNEXPECTED, server_identifier, nullptr)); return ERR_IO_PENDING; } void SetChannelID(scoped_ptr channel_id) override {} void DeleteChannelID(const std::string& server_identifier, const base::Closure& completion_callback) override {} void DeleteAllCreatedBetween( base::Time delete_begin, base::Time delete_end, const base::Closure& completion_callback) override {} void DeleteAll(const base::Closure& completion_callback) override {} void GetAllChannelIDs(const GetChannelIDListCallback& callback) override {} int GetChannelIDCount() override { return 0; } void SetForceKeepSessionState() override {} bool IsEphemeral() override { return true; } }; // A mock CTVerifier that records every call to Verify but doesn't verify // anything. class MockCTVerifier : public CTVerifier { public: MOCK_METHOD5(Verify, int(X509Certificate*, const std::string&, const std::string&, ct::CTVerifyResult*, const BoundNetLog&)); MOCK_METHOD1(SetObserver, void(CTVerifier::Observer*)); }; // A mock CTPolicyEnforcer that returns a custom verification result. class MockCTPolicyEnforcer : public CTPolicyEnforcer { public: MOCK_METHOD4(DoesConformToCTEVPolicy, ct::EVPolicyCompliance(X509Certificate* cert, const ct::EVCertsWhitelist*, const ct::SCTList&, const BoundNetLog&)); }; class SSLClientSocketTest : public PlatformTest { public: SSLClientSocketTest() : socket_factory_(ClientSocketFactory::GetDefaultFactory()), cert_verifier_(new MockCertVerifier), transport_security_state_(new TransportSecurityState) { cert_verifier_->set_default_result(OK); context_.cert_verifier = cert_verifier_.get(); context_.transport_security_state = transport_security_state_.get(); } protected: // The address of the spawned test server, after calling StartTestServer(). const AddressList& addr() const { return addr_; } // The SpawnedTestServer object, after calling StartTestServer(). const SpawnedTestServer* spawned_test_server() const { return spawned_test_server_.get(); } void SetCTVerifier(CTVerifier* ct_verifier) { context_.cert_transparency_verifier = ct_verifier; } void SetCTPolicyEnforcer(CTPolicyEnforcer* policy_enforcer) { context_.ct_policy_enforcer = policy_enforcer; } // Starts the test server with SSL configuration |ssl_options|. Returns true // on success. bool StartTestServer(const SpawnedTestServer::SSLOptions& ssl_options) { spawned_test_server_.reset(new SpawnedTestServer( SpawnedTestServer::TYPE_HTTPS, ssl_options, base::FilePath())); if (!spawned_test_server_->Start()) { LOG(ERROR) << "Could not start SpawnedTestServer"; return false; } if (!spawned_test_server_->GetAddressList(&addr_)) { LOG(ERROR) << "Could not get SpawnedTestServer address list"; return false; } return true; } scoped_ptr CreateSSLClientSocket( scoped_ptr transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config) { scoped_ptr connection(new ClientSocketHandle); connection->SetSocket(std::move(transport_socket)); return socket_factory_->CreateSSLClientSocket( std::move(connection), host_and_port, ssl_config, context_); } // Create an SSLClientSocket object and use it to connect to a test // server, then wait for connection results. This must be called after // a successful StartTestServer() call. // |ssl_config| the SSL configuration to use. // |result| will retrieve the ::Connect() result value. // Returns true on success, false otherwise. Success means that the SSL socket // could be created and its Connect() was called, not that the connection // itself was a success. bool CreateAndConnectSSLClientSocket(const SSLConfig& ssl_config, int* result) { scoped_ptr transport( new TCPClientSocket(addr_, &log_, NetLog::Source())); int rv = callback_.GetResult(transport->Connect(callback_.callback())); if (rv != OK) { LOG(ERROR) << "Could not connect to SpawnedTestServer"; return false; } sock_ = CreateSSLClientSocket(std::move(transport), spawned_test_server_->host_port_pair(), ssl_config); EXPECT_FALSE(sock_->IsConnected()); *result = callback_.GetResult(sock_->Connect(callback_.callback())); return true; } // Adds the server certificate with provided cert status. // Must be called after StartTestServer has been called. void AddServerCertStatusToSSLConfig(CertStatus status, SSLConfig* ssl_config) { ASSERT_TRUE(spawned_test_server()); // Find out the certificate the server is using. scoped_refptr server_cert = spawned_test_server()->GetCertificate(); // Get the MockCertVerifier to verify it as an EV cert. CertVerifyResult verify_result; verify_result.cert_status = status; verify_result.verified_cert = server_cert; cert_verifier_->AddResultForCert(server_cert.get(), verify_result, OK); } ClientSocketFactory* socket_factory_; scoped_ptr cert_verifier_; scoped_ptr transport_security_state_; SSLClientSocketContext context_; scoped_ptr sock_; TestNetLog log_; private: scoped_ptr spawned_test_server_; TestCompletionCallback callback_; AddressList addr_; }; // Verifies the correctness of GetSSLCertRequestInfo. class SSLClientSocketCertRequestInfoTest : public SSLClientSocketTest { protected: // Creates a test server with the given SSLOptions, connects to it and returns // the SSLCertRequestInfo reported by the socket. scoped_refptr GetCertRequest( SpawnedTestServer::SSLOptions ssl_options) { SpawnedTestServer spawned_test_server(SpawnedTestServer::TYPE_HTTPS, ssl_options, base::FilePath()); if (!spawned_test_server.Start()) return NULL; AddressList addr; if (!spawned_test_server.GetAddressList(&addr)) return NULL; TestCompletionCallback callback; TestNetLog log; scoped_ptr transport( new TCPClientSocket(addr, &log, NetLog::Source())); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server.host_port_pair(), SSLConfig())); EXPECT_FALSE(sock->IsConnected()); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv); scoped_refptr request_info = new SSLCertRequestInfo(); sock->GetSSLCertRequestInfo(request_info.get()); sock->Disconnect(); EXPECT_FALSE(sock->IsConnected()); EXPECT_TRUE(spawned_test_server.host_port_pair().Equals( request_info->host_and_port)); return request_info; } }; class SSLClientSocketFalseStartTest : public SSLClientSocketTest { protected: // Creates an SSLClientSocket with |client_config| attached to a // FakeBlockingStreamSocket, returning both in |*out_raw_transport| and // |*out_sock|. The FakeBlockingStreamSocket is owned by the SSLClientSocket, // so |*out_raw_transport| is a raw pointer. // // The client socket will begin a connect using |callback| but stop before the // server's finished message is received. The finished message will be blocked // in |*out_raw_transport|. To complete the handshake and successfully read // data, the caller must unblock reads on |*out_raw_transport|. (Note that, if // the client successfully false started, |callback.WaitForResult()| will // return OK without unblocking transport reads. But Read() will still block.) // // Must be called after StartTestServer is called. void CreateAndConnectUntilServerFinishedReceived( const SSLConfig& client_config, TestCompletionCallback* callback, FakeBlockingStreamSocket** out_raw_transport, scoped_ptr* out_sock) { CHECK(spawned_test_server()); scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(real_transport))); int rv = callback->GetResult(transport->Connect(callback->callback())); EXPECT_EQ(OK, rv); FakeBlockingStreamSocket* raw_transport = transport.get(); scoped_ptr sock = CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), client_config); // Connect. Stop before the client processes the first server leg // (ServerHello, etc.) raw_transport->BlockReadResult(); rv = sock->Connect(callback->callback()); EXPECT_EQ(ERR_IO_PENDING, rv); raw_transport->WaitForReadResult(); // Release the ServerHello and wait for the client to write // ClientKeyExchange, etc. (A proxy for waiting for the entirety of the // server's leg to complete, since it may span multiple reads.) EXPECT_FALSE(callback->have_result()); raw_transport->BlockWrite(); raw_transport->UnblockReadResult(); raw_transport->WaitForWrite(); // And, finally, release that and block the next server leg // (ChangeCipherSpec, Finished). raw_transport->BlockReadResult(); raw_transport->UnblockWrite(); *out_raw_transport = raw_transport; *out_sock = std::move(sock); } void TestFalseStart(const SpawnedTestServer::SSLOptions& server_options, const SSLConfig& client_config, bool expect_false_start) { ASSERT_TRUE(StartTestServer(server_options)); TestCompletionCallback callback; FakeBlockingStreamSocket* raw_transport = NULL; scoped_ptr sock; ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived( client_config, &callback, &raw_transport, &sock)); if (expect_false_start) { // When False Starting, the handshake should complete before receiving the // Change Cipher Spec and Finished messages. // // Note: callback.have_result() may not be true without waiting. The NSS // state machine sometimes lives on a separate thread, so this thread may // not yet have processed the signal that the handshake has completed. int rv = callback.WaitForResult(); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; static const int kRequestTextSize = static_cast(arraysize(request_text) - 1); scoped_refptr request_buffer(new IOBuffer(kRequestTextSize)); memcpy(request_buffer->data(), request_text, kRequestTextSize); // Write the request. rv = callback.GetResult(sock->Write(request_buffer.get(), kRequestTextSize, callback.callback())); EXPECT_EQ(kRequestTextSize, rv); // The read will hang; it's waiting for the peer to complete the // handshake, and the handshake is still blocked. scoped_refptr buf(new IOBuffer(4096)); rv = sock->Read(buf.get(), 4096, callback.callback()); // After releasing reads, the connection proceeds. raw_transport->UnblockReadResult(); rv = callback.GetResult(rv); EXPECT_LT(0, rv); } else { // False Start is not enabled, so the handshake will not complete because // the server second leg is blocked. base::RunLoop().RunUntilIdle(); EXPECT_FALSE(callback.have_result()); } } }; class SSLClientSocketChannelIDTest : public SSLClientSocketTest { protected: void EnableChannelID() { channel_id_service_.reset(new ChannelIDService( new DefaultChannelIDStore(NULL), base::ThreadTaskRunnerHandle::Get())); context_.channel_id_service = channel_id_service_.get(); } void EnableFailingChannelID() { channel_id_service_.reset(new ChannelIDService( new FailingChannelIDStore(), base::ThreadTaskRunnerHandle::Get())); context_.channel_id_service = channel_id_service_.get(); } void EnableAsyncFailingChannelID() { channel_id_service_.reset(new ChannelIDService( new AsyncFailingChannelIDStore(), base::ThreadTaskRunnerHandle::Get())); context_.channel_id_service = channel_id_service_.get(); } private: scoped_ptr channel_id_service_; }; } // namespace TEST_F(SSLClientSocketTest, Connect) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; TestNetLog log; scoped_ptr transport( new TCPClientSocket(addr(), &log, NetLog::Source())); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); EXPECT_FALSE(sock->IsConnected()); rv = sock->Connect(callback.callback()); TestNetLogEntry::List entries; log.GetEntries(&entries); EXPECT_TRUE(LogContainsBeginEvent(entries, 5, NetLog::TYPE_SSL_CONNECT)); if (rv == ERR_IO_PENDING) rv = callback.WaitForResult(); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); log.GetEntries(&entries); EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT)); sock->Disconnect(); EXPECT_FALSE(sock->IsConnected()); } TEST_F(SSLClientSocketTest, ConnectExpired) { SpawnedTestServer::SSLOptions ssl_options( SpawnedTestServer::SSLOptions::CERT_EXPIRED); ASSERT_TRUE(StartTestServer(ssl_options)); cert_verifier_->set_default_result(ERR_CERT_DATE_INVALID); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(ERR_CERT_DATE_INVALID, rv); // Rather than testing whether or not the underlying socket is connected, // test that the handshake has finished. This is because it may be // desirable to disconnect the socket before showing a user prompt, since // the user may take indefinitely long to respond. TestNetLogEntry::List entries; log_.GetEntries(&entries); EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT)); } TEST_F(SSLClientSocketTest, ConnectMismatched) { SpawnedTestServer::SSLOptions ssl_options( SpawnedTestServer::SSLOptions::CERT_MISMATCHED_NAME); ASSERT_TRUE(StartTestServer(ssl_options)); cert_verifier_->set_default_result(ERR_CERT_COMMON_NAME_INVALID); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(ERR_CERT_COMMON_NAME_INVALID, rv); // Rather than testing whether or not the underlying socket is connected, // test that the handshake has finished. This is because it may be // desirable to disconnect the socket before showing a user prompt, since // the user may take indefinitely long to respond. TestNetLogEntry::List entries; log_.GetEntries(&entries); EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT)); } #if defined(OS_WIN) // Tests that certificates parsable by SSLClientSocket's internal SSL // implementation, but not X509Certificate are treated as fatal non-certificate // errors. This is regression test for https://crbug.com/91341. TEST_F(SSLClientSocketTest, ConnectBadValidity) { SpawnedTestServer::SSLOptions ssl_options( SpawnedTestServer::SSLOptions::CERT_BAD_VALIDITY); ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_SERVER_CERT_BAD_FORMAT, rv); EXPECT_FALSE(IsCertificateError(rv)); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_FALSE(ssl_info.cert); } #endif // defined(OS_WIN) // Attempt to connect to a page which requests a client certificate. It should // return an error code on connect. TEST_F(SSLClientSocketTest, ConnectClientAuthCertRequested) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ASSERT_TRUE(StartTestServer(ssl_options)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv); TestNetLogEntry::List entries; log_.GetEntries(&entries); EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT)); EXPECT_FALSE(sock_->IsConnected()); } // Connect to a server requesting optional client authentication. Send it a // null certificate. It should allow the connection. // // TODO(davidben): Also test providing an actual certificate. TEST_F(SSLClientSocketTest, ConnectClientAuthSendNullCert) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ASSERT_TRUE(StartTestServer(ssl_options)); // Our test server accepts certificate-less connections. // TODO(davidben): Add a test which requires them and verify the error. SSLConfig ssl_config; ssl_config.send_client_cert = true; ssl_config.client_cert = NULL; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); // We responded to the server's certificate request with a Certificate // message with no client certificate in it. ssl_info.client_cert_sent // should be false in this case. SSLInfo ssl_info; sock_->GetSSLInfo(&ssl_info); EXPECT_FALSE(ssl_info.client_cert_sent); sock_->Disconnect(); EXPECT_FALSE(sock_->IsConnected()); } // TODO(wtc): Add unit tests for IsConnectedAndIdle: // - Server closes an SSL connection (with a close_notify alert message). // - Server closes the underlying TCP connection directly. // - Server sends data unexpectedly. // Tests that the socket can be read from successfully. Also test that a peer's // close_notify alert is successfully processed without error. TEST_F(SSLClientSocketTest, Read) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); EXPECT_EQ(0, transport->GetTotalReceivedBytes()); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); EXPECT_EQ(0, sock->GetTotalReceivedBytes()); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Number of network bytes received should increase because of SSL socket // establishment. EXPECT_GT(sock->GetTotalReceivedBytes(), 0); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; scoped_refptr request_buffer( new IOBuffer(arraysize(request_text) - 1)); memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1); rv = callback.GetResult(sock->Write( request_buffer.get(), arraysize(request_text) - 1, callback.callback())); EXPECT_EQ(static_cast(arraysize(request_text) - 1), rv); scoped_refptr buf(new IOBuffer(4096)); int64_t unencrypted_bytes_read = 0; int64_t network_bytes_read_during_handshake = sock->GetTotalReceivedBytes(); do { rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback())); EXPECT_GE(rv, 0); if (rv >= 0) { unencrypted_bytes_read += rv; } } while (rv > 0); EXPECT_GT(unencrypted_bytes_read, 0); // Reading the payload should increase the number of bytes on network layer. EXPECT_GT(sock->GetTotalReceivedBytes(), network_bytes_read_during_handshake); // Number of bytes received on the network after the handshake should be // higher than the number of encrypted bytes read. EXPECT_GE(sock->GetTotalReceivedBytes() - network_bytes_read_during_handshake, unencrypted_bytes_read); // The peer should have cleanly closed the connection with a close_notify. EXPECT_EQ(0, rv); } // Tests that SSLClientSocket properly handles when the underlying transport // synchronously fails a transport read in during the handshake. The error code // should be preserved so SSLv3 fallback logic can condition on it. TEST_F(SSLClientSocketTest, Connect_WithSynchronousError) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new SynchronousErrorStreamSocket(std::move(real_transport))); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; SynchronousErrorStreamSocket* raw_transport = transport.get(); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); raw_transport->SetNextWriteError(ERR_CONNECTION_RESET); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(ERR_CONNECTION_RESET, rv); EXPECT_FALSE(sock->IsConnected()); } // Tests that the SSLClientSocket properly handles when the underlying transport // synchronously returns an error code - such as if an intermediary terminates // the socket connection uncleanly. // This is a regression test for http://crbug.com/238536 TEST_F(SSLClientSocketTest, Read_WithSynchronousError) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new SynchronousErrorStreamSocket(std::move(real_transport))); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; SynchronousErrorStreamSocket* raw_transport = transport.get(); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; static const int kRequestTextSize = static_cast(arraysize(request_text) - 1); scoped_refptr request_buffer(new IOBuffer(kRequestTextSize)); memcpy(request_buffer->data(), request_text, kRequestTextSize); rv = callback.GetResult( sock->Write(request_buffer.get(), kRequestTextSize, callback.callback())); EXPECT_EQ(kRequestTextSize, rv); // Simulate an unclean/forcible shutdown. raw_transport->SetNextReadError(ERR_CONNECTION_RESET); scoped_refptr buf(new IOBuffer(4096)); // Note: This test will hang if this bug has regressed. Simply checking that // rv != ERR_IO_PENDING is insufficient, as ERR_IO_PENDING is a legitimate // result when using a dedicated task runner for NSS. rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback())); EXPECT_EQ(ERR_CONNECTION_RESET, rv); } // Tests that the SSLClientSocket properly handles when the underlying transport // asynchronously returns an error code while writing data - such as if an // intermediary terminates the socket connection uncleanly. // This is a regression test for http://crbug.com/249848 TEST_F(SSLClientSocketTest, Write_WithSynchronousError) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); // Note: |error_socket|'s ownership is handed to |transport|, but a pointer // is retained in order to configure additional errors. scoped_ptr error_socket( new SynchronousErrorStreamSocket(std::move(real_transport))); SynchronousErrorStreamSocket* raw_error_socket = error_socket.get(); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(error_socket))); FakeBlockingStreamSocket* raw_transport = transport.get(); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; static const int kRequestTextSize = static_cast(arraysize(request_text) - 1); scoped_refptr request_buffer(new IOBuffer(kRequestTextSize)); memcpy(request_buffer->data(), request_text, kRequestTextSize); // Simulate an unclean/forcible shutdown on the underlying socket. // However, simulate this error asynchronously. raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET); raw_transport->BlockWrite(); // This write should complete synchronously, because the TLS ciphertext // can be created and placed into the outgoing buffers independent of the // underlying transport. rv = callback.GetResult( sock->Write(request_buffer.get(), kRequestTextSize, callback.callback())); EXPECT_EQ(kRequestTextSize, rv); scoped_refptr buf(new IOBuffer(4096)); rv = sock->Read(buf.get(), 4096, callback.callback()); EXPECT_EQ(ERR_IO_PENDING, rv); // Now unblock the outgoing request, having it fail with the connection // being reset. raw_transport->UnblockWrite(); // Note: This will cause an inifite loop if this bug has regressed. Simply // checking that rv != ERR_IO_PENDING is insufficient, as ERR_IO_PENDING // is a legitimate result when using a dedicated task runner for NSS. rv = callback.GetResult(rv); EXPECT_EQ(ERR_CONNECTION_RESET, rv); } // If there is a Write failure at the transport with no follow-up Read, although // the write error will not be returned to the client until a future Read or // Write operation, SSLClientSocket should not spin attempting to re-write on // the socket. This is a regression test for part of https://crbug.com/381160. TEST_F(SSLClientSocketTest, Write_WithSynchronousErrorNoRead) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); // Note: intermediate sockets' ownership are handed to |sock|, but a pointer // is retained in order to query them. scoped_ptr error_socket( new SynchronousErrorStreamSocket(std::move(real_transport))); SynchronousErrorStreamSocket* raw_error_socket = error_socket.get(); scoped_ptr counting_socket( new CountingStreamSocket(std::move(error_socket))); CountingStreamSocket* raw_counting_socket = counting_socket.get(); int rv = callback.GetResult(counting_socket->Connect(callback.callback())); ASSERT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; scoped_ptr sock(CreateSSLClientSocket( std::move(counting_socket), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); ASSERT_EQ(OK, rv); ASSERT_TRUE(sock->IsConnected()); // Simulate an unclean/forcible shutdown on the underlying socket. raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; static const int kRequestTextSize = static_cast(arraysize(request_text) - 1); scoped_refptr request_buffer(new IOBuffer(kRequestTextSize)); memcpy(request_buffer->data(), request_text, kRequestTextSize); // This write should complete synchronously, because the TLS ciphertext // can be created and placed into the outgoing buffers independent of the // underlying transport. rv = callback.GetResult( sock->Write(request_buffer.get(), kRequestTextSize, callback.callback())); ASSERT_EQ(kRequestTextSize, rv); // Let the event loop spin for a little bit of time. Even on platforms where // pumping the state machine involve thread hops, there should be no further // writes on the transport socket. // // TODO(davidben): Avoid the arbitrary timeout? int old_write_count = raw_counting_socket->write_count(); base::RunLoop loop; base::ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, loop.QuitClosure(), base::TimeDelta::FromMilliseconds(100)); loop.Run(); EXPECT_EQ(old_write_count, raw_counting_socket->write_count()); } // Test the full duplex mode, with Read and Write pending at the same time. // This test also serves as a regression test for http://crbug.com/29815. TEST_F(SSLClientSocketTest, Read_FullDuplex) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); // Issue a "hanging" Read first. TestCompletionCallback callback; scoped_refptr buf(new IOBuffer(4096)); rv = sock_->Read(buf.get(), 4096, callback.callback()); // We haven't written the request, so there should be no response yet. ASSERT_EQ(ERR_IO_PENDING, rv); // Write the request. // The request is padded with a User-Agent header to a size that causes the // memio circular buffer (4k bytes) in SSLClientSocketNSS to wrap around. // This tests the fix for http://crbug.com/29815. std::string request_text = "GET / HTTP/1.1\r\nUser-Agent: long browser name "; for (int i = 0; i < 3770; ++i) request_text.push_back('*'); request_text.append("\r\n\r\n"); scoped_refptr request_buffer(new StringIOBuffer(request_text)); TestCompletionCallback callback2; // Used for Write only. rv = callback2.GetResult(sock_->Write( request_buffer.get(), request_text.size(), callback2.callback())); EXPECT_EQ(static_cast(request_text.size()), rv); // Now get the Read result. rv = callback.WaitForResult(); EXPECT_GT(rv, 0); } // Attempts to Read() and Write() from an SSLClientSocketNSS in full duplex // mode when the underlying transport is blocked on sending data. When the // underlying transport completes due to an error, it should invoke both the // Read() and Write() callbacks. If the socket is deleted by the Read() // callback, the Write() callback should not be invoked. // Regression test for http://crbug.com/232633 TEST_F(SSLClientSocketTest, Read_DeleteWhilePendingFullDuplex) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); // Note: |error_socket|'s ownership is handed to |transport|, but a pointer // is retained in order to configure additional errors. scoped_ptr error_socket( new SynchronousErrorStreamSocket(std::move(real_transport))); SynchronousErrorStreamSocket* raw_error_socket = error_socket.get(); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(error_socket))); FakeBlockingStreamSocket* raw_transport = transport.get(); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; scoped_ptr sock = CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); std::string request_text = "GET / HTTP/1.1\r\nUser-Agent: long browser name "; request_text.append(20 * 1024, '*'); request_text.append("\r\n\r\n"); scoped_refptr request_buffer(new DrainableIOBuffer( new StringIOBuffer(request_text), request_text.size())); // Simulate errors being returned from the underlying Read() and Write() ... raw_error_socket->SetNextReadError(ERR_CONNECTION_RESET); raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET); // ... but have those errors returned asynchronously. Because the Write() will // return first, this will trigger the error. raw_transport->BlockReadResult(); raw_transport->BlockWrite(); // Enqueue a Read() before calling Write(), which should "hang" due to // the ERR_IO_PENDING caused by SetReadShouldBlock() and thus return. SSLClientSocket* raw_sock = sock.get(); DeleteSocketCallback read_callback(sock.release()); scoped_refptr read_buf(new IOBuffer(4096)); rv = raw_sock->Read(read_buf.get(), 4096, read_callback.callback()); // Ensure things didn't complete synchronously, otherwise |sock| is invalid. ASSERT_EQ(ERR_IO_PENDING, rv); ASSERT_FALSE(read_callback.have_result()); #if !defined(USE_OPENSSL) // NSS follows a pattern where a call to PR_Write will only consume as // much data as it can encode into application data records before the // internal memio buffer is full, which should only fill if writing a large // amount of data and the underlying transport is blocked. Once this happens, // NSS will return (total size of all application data records it wrote) - 1, // with the caller expected to resume with the remaining unsent data. // // This causes SSLClientSocketNSS::Write to return that it wrote some data // before it will return ERR_IO_PENDING, so make an extra call to Write() to // get the socket in the state needed for the test below. // // This is not needed for OpenSSL, because for OpenSSL, // SSL_MODE_ENABLE_PARTIAL_WRITE is not specified - thus // SSLClientSocketOpenSSL::Write() will not return until all of // |request_buffer| has been written to the underlying BIO (although not // necessarily the underlying transport). rv = callback.GetResult(raw_sock->Write(request_buffer.get(), request_buffer->BytesRemaining(), callback.callback())); ASSERT_LT(0, rv); request_buffer->DidConsume(rv); // Guard to ensure that |request_buffer| was larger than all of the internal // buffers (transport, memio, NSS) along the way - otherwise the next call // to Write() will crash with an invalid buffer. ASSERT_LT(0, request_buffer->BytesRemaining()); #endif // Attempt to write the remaining data. NSS will not be able to consume the // application data because the internal buffers are full, while OpenSSL will // return that its blocked because the underlying transport is blocked. rv = raw_sock->Write(request_buffer.get(), request_buffer->BytesRemaining(), callback.callback()); ASSERT_EQ(ERR_IO_PENDING, rv); ASSERT_FALSE(callback.have_result()); // Now unblock Write(), which will invoke OnSendComplete and (eventually) // call the Read() callback, deleting the socket and thus aborting calling // the Write() callback. raw_transport->UnblockWrite(); rv = read_callback.WaitForResult(); EXPECT_EQ(ERR_CONNECTION_RESET, rv); // The Write callback should not have been called. EXPECT_FALSE(callback.have_result()); } // Tests that the SSLClientSocket does not crash if data is received on the // transport socket after a failing write. This can occur if we have a Write // error in a SPDY socket. // Regression test for http://crbug.com/335557 TEST_F(SSLClientSocketTest, Read_WithWriteError) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); // Note: |error_socket|'s ownership is handed to |transport|, but a pointer // is retained in order to configure additional errors. scoped_ptr error_socket( new SynchronousErrorStreamSocket(std::move(real_transport))); SynchronousErrorStreamSocket* raw_error_socket = error_socket.get(); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(error_socket))); FakeBlockingStreamSocket* raw_transport = transport.get(); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to avoid handshake non-determinism. SSLConfig ssl_config; ssl_config.false_start_enabled = false; scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); // Send a request so there is something to read from the socket. const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; static const int kRequestTextSize = static_cast(arraysize(request_text) - 1); scoped_refptr request_buffer(new IOBuffer(kRequestTextSize)); memcpy(request_buffer->data(), request_text, kRequestTextSize); rv = callback.GetResult( sock->Write(request_buffer.get(), kRequestTextSize, callback.callback())); EXPECT_EQ(kRequestTextSize, rv); // Start a hanging read. TestCompletionCallback read_callback; raw_transport->BlockReadResult(); scoped_refptr buf(new IOBuffer(4096)); rv = sock->Read(buf.get(), 4096, read_callback.callback()); EXPECT_EQ(ERR_IO_PENDING, rv); // Perform another write, but have it fail. Write a request larger than the // internal socket buffers so that the request hits the underlying transport // socket and detects the error. std::string long_request_text = "GET / HTTP/1.1\r\nUser-Agent: long browser name "; long_request_text.append(20 * 1024, '*'); long_request_text.append("\r\n\r\n"); scoped_refptr long_request_buffer(new DrainableIOBuffer( new StringIOBuffer(long_request_text), long_request_text.size())); raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET); // Write as much data as possible until hitting an error. This is necessary // for NSS. PR_Write will only consume as much data as it can encode into // application data records before the internal memio buffer is full, which // should only fill if writing a large amount of data and the underlying // transport is blocked. Once this happens, NSS will return (total size of all // application data records it wrote) - 1, with the caller expected to resume // with the remaining unsent data. do { rv = callback.GetResult(sock->Write(long_request_buffer.get(), long_request_buffer->BytesRemaining(), callback.callback())); if (rv > 0) { long_request_buffer->DidConsume(rv); // Abort if the entire buffer is ever consumed. ASSERT_LT(0, long_request_buffer->BytesRemaining()); } } while (rv > 0); EXPECT_EQ(ERR_CONNECTION_RESET, rv); // Release the read. raw_transport->UnblockReadResult(); rv = read_callback.WaitForResult(); #if defined(USE_OPENSSL) // Should still read bytes despite the write error. EXPECT_LT(0, rv); #else // NSS attempts to flush the write buffer in PR_Read on an SSL socket before // pumping the read state machine, unless configured with SSL_ENABLE_FDX, so // the write error stops future reads. EXPECT_EQ(ERR_CONNECTION_RESET, rv); #endif } // Tests that SSLClientSocket fails the handshake if the underlying // transport is cleanly closed. TEST_F(SSLClientSocketTest, Connect_WithZeroReturn) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new SynchronousErrorStreamSocket(std::move(real_transport))); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); SynchronousErrorStreamSocket* raw_transport = transport.get(); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); raw_transport->SetNextReadError(0); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(ERR_CONNECTION_CLOSED, rv); EXPECT_FALSE(sock->IsConnected()); } // Tests that SSLClientSocket returns a Read of size 0 if the underlying socket // is cleanly closed, but the peer does not send close_notify. // This is a regression test for https://crbug.com/422246 TEST_F(SSLClientSocketTest, Read_WithZeroReturn) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new SynchronousErrorStreamSocket(std::move(real_transport))); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to ensure the handshake has completed. SSLConfig ssl_config; ssl_config.false_start_enabled = false; SynchronousErrorStreamSocket* raw_transport = transport.get(); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); raw_transport->SetNextReadError(0); scoped_refptr buf(new IOBuffer(4096)); rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback())); EXPECT_EQ(0, rv); } // Tests that SSLClientSocket cleanly returns a Read of size 0 if the // underlying socket is cleanly closed asynchronously. // This is a regression test for https://crbug.com/422246 TEST_F(SSLClientSocketTest, Read_WithAsyncZeroReturn) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr error_socket( new SynchronousErrorStreamSocket(std::move(real_transport))); SynchronousErrorStreamSocket* raw_error_socket = error_socket.get(); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(error_socket))); FakeBlockingStreamSocket* raw_transport = transport.get(); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); // Disable TLS False Start to ensure the handshake has completed. SSLConfig ssl_config; ssl_config.false_start_enabled = false; scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), ssl_config)); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); raw_error_socket->SetNextReadError(0); raw_transport->BlockReadResult(); scoped_refptr buf(new IOBuffer(4096)); rv = sock->Read(buf.get(), 4096, callback.callback()); EXPECT_EQ(ERR_IO_PENDING, rv); raw_transport->UnblockReadResult(); rv = callback.GetResult(rv); EXPECT_EQ(0, rv); } // Tests that fatal alerts from the peer are processed. This is a regression // test for https://crbug.com/466303. TEST_F(SSLClientSocketTest, Read_WithFatalAlert) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.alert_after_handshake = true; ASSERT_TRUE(StartTestServer(ssl_options)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); // Receive the fatal alert. TestCompletionCallback callback; scoped_refptr buf(new IOBuffer(4096)); EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, callback.GetResult(sock_->Read( buf.get(), 4096, callback.callback()))); } TEST_F(SSLClientSocketTest, Read_SmallChunks) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; scoped_refptr request_buffer( new IOBuffer(arraysize(request_text) - 1)); memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1); TestCompletionCallback callback; rv = callback.GetResult(sock_->Write( request_buffer.get(), arraysize(request_text) - 1, callback.callback())); EXPECT_EQ(static_cast(arraysize(request_text) - 1), rv); scoped_refptr buf(new IOBuffer(1)); do { rv = callback.GetResult(sock_->Read(buf.get(), 1, callback.callback())); EXPECT_GE(rv, 0); } while (rv > 0); } TEST_F(SSLClientSocketTest, Read_ManySmallRecords) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new ReadBufferingStreamSocket(std::move(real_transport))); ReadBufferingStreamSocket* raw_transport = transport.get(); int rv = callback.GetResult(transport->Connect(callback.callback())); ASSERT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); rv = callback.GetResult(sock->Connect(callback.callback())); ASSERT_EQ(OK, rv); ASSERT_TRUE(sock->IsConnected()); const char request_text[] = "GET /ssl-many-small-records HTTP/1.0\r\n\r\n"; scoped_refptr request_buffer( new IOBuffer(arraysize(request_text) - 1)); memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1); rv = callback.GetResult(sock->Write( request_buffer.get(), arraysize(request_text) - 1, callback.callback())); ASSERT_GT(rv, 0); ASSERT_EQ(static_cast(arraysize(request_text) - 1), rv); // Note: This relies on SSLClientSocketNSS attempting to read up to 17K of // data (the max SSL record size) at a time. Ensure that at least 15K worth // of SSL data is buffered first. The 15K of buffered data is made up of // many smaller SSL records (the TestServer writes along 1350 byte // plaintext boundaries), although there may also be a few records that are // smaller or larger, due to timing and SSL False Start. // 15K was chosen because 15K is smaller than the 17K (max) read issued by // the SSLClientSocket implementation, and larger than the minimum amount // of ciphertext necessary to contain the 8K of plaintext requested below. raw_transport->SetBufferSize(15000); scoped_refptr buffer(new IOBuffer(8192)); rv = callback.GetResult(sock->Read(buffer.get(), 8192, callback.callback())); ASSERT_EQ(rv, 8192); } TEST_F(SSLClientSocketTest, Read_Interrupted) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; scoped_refptr request_buffer( new IOBuffer(arraysize(request_text) - 1)); memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1); TestCompletionCallback callback; rv = callback.GetResult(sock_->Write( request_buffer.get(), arraysize(request_text) - 1, callback.callback())); EXPECT_EQ(static_cast(arraysize(request_text) - 1), rv); // Do a partial read and then exit. This test should not crash! scoped_refptr buf(new IOBuffer(512)); rv = callback.GetResult(sock_->Read(buf.get(), 512, callback.callback())); EXPECT_GT(rv, 0); } TEST_F(SSLClientSocketTest, Read_FullLogging) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; TestNetLog log; log.SetCaptureMode(NetLogCaptureMode::IncludeSocketBytes()); scoped_ptr transport( new TCPClientSocket(addr(), &log, NetLog::Source())); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock->IsConnected()); const char request_text[] = "GET / HTTP/1.0\r\n\r\n"; scoped_refptr request_buffer( new IOBuffer(arraysize(request_text) - 1)); memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1); rv = callback.GetResult(sock->Write( request_buffer.get(), arraysize(request_text) - 1, callback.callback())); EXPECT_EQ(static_cast(arraysize(request_text) - 1), rv); TestNetLogEntry::List entries; log.GetEntries(&entries); size_t last_index = ExpectLogContainsSomewhereAfter( entries, 5, NetLog::TYPE_SSL_SOCKET_BYTES_SENT, NetLog::PHASE_NONE); scoped_refptr buf(new IOBuffer(4096)); for (;;) { rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback())); EXPECT_GE(rv, 0); if (rv <= 0) break; log.GetEntries(&entries); last_index = ExpectLogContainsSomewhereAfter(entries, last_index + 1, NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, NetLog::PHASE_NONE); } } // Regression test for http://crbug.com/42538 TEST_F(SSLClientSocketTest, PrematureApplicationData) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); static const unsigned char application_data[] = { 0x17, 0x03, 0x01, 0x00, 0x4a, 0x02, 0x00, 0x00, 0x46, 0x03, 0x01, 0x4b, 0xc2, 0xf8, 0xb2, 0xc1, 0x56, 0x42, 0xb9, 0x57, 0x7f, 0xde, 0x87, 0x46, 0xf7, 0xa3, 0x52, 0x42, 0x21, 0xf0, 0x13, 0x1c, 0x9c, 0x83, 0x88, 0xd6, 0x93, 0x0c, 0xf6, 0x36, 0x30, 0x05, 0x7e, 0x20, 0xb5, 0xb5, 0x73, 0x36, 0x53, 0x83, 0x0a, 0xfc, 0x17, 0x63, 0xbf, 0xa0, 0xe4, 0x42, 0x90, 0x0d, 0x2f, 0x18, 0x6d, 0x20, 0xd8, 0x36, 0x3f, 0xfc, 0xe6, 0x01, 0xfa, 0x0f, 0xa5, 0x75, 0x7f, 0x09, 0x00, 0x04, 0x00, 0x16, 0x03, 0x01, 0x11, 0x57, 0x0b, 0x00, 0x11, 0x53, 0x00, 0x11, 0x50, 0x00, 0x06, 0x22, 0x30, 0x82, 0x06, 0x1e, 0x30, 0x82, 0x05, 0x06, 0xa0, 0x03, 0x02, 0x01, 0x02, 0x02, 0x0a}; // All reads and writes complete synchronously (async=false). MockRead data_reads[] = { MockRead(SYNCHRONOUS, reinterpret_cast(application_data), arraysize(application_data)), MockRead(SYNCHRONOUS, OK), }; StaticSocketDataProvider data(data_reads, arraysize(data_reads), NULL, 0); TestCompletionCallback callback; scoped_ptr transport( new MockTCPClientSocket(addr(), NULL, &data)); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, rv); } TEST_F(SSLClientSocketTest, CipherSuiteDisables) { // Rather than exhaustively disabling every AES_128_CBC ciphersuite defined at // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml, only // disabling those cipher suites that the test server actually implements. const uint16_t kCiphersToDisable[] = { 0x002f, // TLS_RSA_WITH_AES_128_CBC_SHA 0x0033, // TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0xc013, // TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA }; SpawnedTestServer::SSLOptions ssl_options; // Enable only AES_128_CBC on the test server. ssl_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; for (size_t i = 0; i < arraysize(kCiphersToDisable); ++i) ssl_config.disabled_cipher_suites.push_back(kCiphersToDisable[i]); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); } // When creating an SSLClientSocket, it is allowed to pass in a // ClientSocketHandle that is not obtained from a client socket pool. // Here we verify that such a simple ClientSocketHandle, not associated with any // client socket pool, can be destroyed safely. TEST_F(SSLClientSocketTest, ClientSocketHandleNotFromPool) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); int rv = callback.GetResult(transport->Connect(callback.callback())); EXPECT_EQ(OK, rv); scoped_ptr socket_handle(new ClientSocketHandle()); socket_handle->SetSocket(std::move(transport)); scoped_ptr sock(socket_factory_->CreateSSLClientSocket( std::move(socket_handle), spawned_test_server()->host_port_pair(), SSLConfig(), context_)); EXPECT_FALSE(sock->IsConnected()); rv = callback.GetResult(sock->Connect(callback.callback())); EXPECT_EQ(OK, rv); } // Verifies that SSLClientSocket::ExportKeyingMaterial return a success // code and different keying label results in different keying material. TEST_F(SSLClientSocketTest, ExportKeyingMaterial) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->IsConnected()); const int kKeyingMaterialSize = 32; const char kKeyingLabel1[] = "client-socket-test-1"; const char kKeyingContext1[] = ""; unsigned char client_out1[kKeyingMaterialSize]; memset(client_out1, 0, sizeof(client_out1)); rv = sock_->ExportKeyingMaterial(kKeyingLabel1, false, kKeyingContext1, client_out1, sizeof(client_out1)); EXPECT_EQ(rv, OK); const char kKeyingLabel2[] = "client-socket-test-2"; unsigned char client_out2[kKeyingMaterialSize]; memset(client_out2, 0, sizeof(client_out2)); rv = sock_->ExportKeyingMaterial(kKeyingLabel2, false, kKeyingContext1, client_out2, sizeof(client_out2)); EXPECT_EQ(rv, OK); EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0); const char kKeyingContext2[] = "context"; rv = sock_->ExportKeyingMaterial(kKeyingLabel1, true, kKeyingContext2, client_out2, sizeof(client_out2)); EXPECT_EQ(rv, OK); EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0); // Using an empty context should give different key material from not using a // context at all. memset(client_out2, 0, sizeof(client_out2)); rv = sock_->ExportKeyingMaterial(kKeyingLabel1, true, kKeyingContext1, client_out2, sizeof(client_out2)); EXPECT_EQ(rv, OK); EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0); } // Verifies that SSLClientSocket::ClearSessionCache can be called without // explicit NSS initialization. TEST(SSLClientSocket, ClearSessionCache) { SSLClientSocket::ClearSessionCache(); } TEST(SSLClientSocket, SerializeNextProtos) { NextProtoVector next_protos; next_protos.push_back(kProtoHTTP11); next_protos.push_back(kProtoSPDY31); static std::vector serialized = SSLClientSocket::SerializeNextProtos(next_protos); ASSERT_EQ(18u, serialized.size()); EXPECT_EQ(8, serialized[0]); // length("http/1.1") EXPECT_EQ('h', serialized[1]); EXPECT_EQ('t', serialized[2]); EXPECT_EQ('t', serialized[3]); EXPECT_EQ('p', serialized[4]); EXPECT_EQ('/', serialized[5]); EXPECT_EQ('1', serialized[6]); EXPECT_EQ('.', serialized[7]); EXPECT_EQ('1', serialized[8]); EXPECT_EQ(8, serialized[9]); // length("spdy/3.1") EXPECT_EQ('s', serialized[10]); EXPECT_EQ('p', serialized[11]); EXPECT_EQ('d', serialized[12]); EXPECT_EQ('y', serialized[13]); EXPECT_EQ('/', serialized[14]); EXPECT_EQ('3', serialized[15]); EXPECT_EQ('.', serialized[16]); EXPECT_EQ('1', serialized[17]); } // Test that the server certificates are properly retrieved from the underlying // SSL stack. TEST_F(SSLClientSocketTest, VerifyServerChainProperlyOrdered) { // The connection does not have to be successful. cert_verifier_->set_default_result(ERR_CERT_INVALID); // Set up a test server with CERT_CHAIN_WRONG_ROOT. // This makes the server present redundant-server-chain.pem, which contains // intermediate certificates. SpawnedTestServer::SSLOptions ssl_options( SpawnedTestServer::SSLOptions::CERT_CHAIN_WRONG_ROOT); ASSERT_TRUE(StartTestServer(ssl_options)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(ERR_CERT_INVALID, rv); EXPECT_TRUE(sock_->IsConnected()); // When given option CERT_CHAIN_WRONG_ROOT, SpawnedTestServer will present // certs from redundant-server-chain.pem. CertificateList server_certs = CreateCertificateListFromFile(GetTestCertsDirectory(), "redundant-server-chain.pem", X509Certificate::FORMAT_AUTO); // Get the server certificate as received client side. SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); scoped_refptr server_certificate = ssl_info.unverified_cert; // Get the intermediates as received client side. const X509Certificate::OSCertHandles& server_intermediates = server_certificate->GetIntermediateCertificates(); // Check that the unverified server certificate chain is properly retrieved // from the underlying ssl stack. ASSERT_EQ(4U, server_certs.size()); EXPECT_TRUE(X509Certificate::IsSameOSCert( server_certificate->os_cert_handle(), server_certs[0]->os_cert_handle())); ASSERT_EQ(3U, server_intermediates.size()); EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[0], server_certs[1]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[1], server_certs[2]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[2], server_certs[3]->os_cert_handle())); sock_->Disconnect(); EXPECT_FALSE(sock_->IsConnected()); } // This tests that SSLInfo contains a properly re-constructed certificate // chain. That, in turn, verifies that GetSSLInfo is giving us the chain as // verified, not the chain as served by the server. (They may be different.) // // CERT_CHAIN_WRONG_ROOT is redundant-server-chain.pem. It contains A // (end-entity) -> B -> C, and C is signed by D. redundant-validated-chain.pem // contains a chain of A -> B -> C2, where C2 is the same public key as C, but // a self-signed root. Such a situation can occur when a new root (C2) is // cross-certified by an old root (D) and has two different versions of its // floating around. Servers may supply C2 as an intermediate, but the // SSLClientSocket should return the chain that was verified, from // verify_result, instead. TEST_F(SSLClientSocketTest, VerifyReturnChainProperlyOrdered) { // By default, cause the CertVerifier to treat all certificates as // expired. cert_verifier_->set_default_result(ERR_CERT_DATE_INVALID); CertificateList unverified_certs = CreateCertificateListFromFile( GetTestCertsDirectory(), "redundant-server-chain.pem", X509Certificate::FORMAT_AUTO); ASSERT_EQ(4u, unverified_certs.size()); // We will expect SSLInfo to ultimately contain this chain. CertificateList certs = CreateCertificateListFromFile(GetTestCertsDirectory(), "redundant-validated-chain.pem", X509Certificate::FORMAT_AUTO); ASSERT_EQ(3U, certs.size()); X509Certificate::OSCertHandles temp_intermediates; temp_intermediates.push_back(certs[1]->os_cert_handle()); temp_intermediates.push_back(certs[2]->os_cert_handle()); CertVerifyResult verify_result; verify_result.verified_cert = X509Certificate::CreateFromHandle( certs[0]->os_cert_handle(), temp_intermediates); // Add a rule that maps the server cert (A) to the chain of A->B->C2 // rather than A->B->C. cert_verifier_->AddResultForCert(certs[0].get(), verify_result, OK); // Load and install the root for the validated chain. scoped_refptr root_cert = ImportCertFromFile( GetTestCertsDirectory(), "redundant-validated-chain-root.pem"); ASSERT_NE(static_cast(NULL), root_cert.get()); ScopedTestRoot scoped_root(root_cert.get()); // Set up a test server with CERT_CHAIN_WRONG_ROOT. SpawnedTestServer::SSLOptions ssl_options( SpawnedTestServer::SSLOptions::CERT_CHAIN_WRONG_ROOT); ASSERT_TRUE(StartTestServer(ssl_options)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->IsConnected()); TestNetLogEntry::List entries; log_.GetEntries(&entries); EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT)); SSLInfo ssl_info; sock_->GetSSLInfo(&ssl_info); // Verify that SSLInfo contains the corrected re-constructed chain A -> B // -> C2. const X509Certificate::OSCertHandles& intermediates = ssl_info.cert->GetIntermediateCertificates(); ASSERT_EQ(2U, intermediates.size()); EXPECT_TRUE(X509Certificate::IsSameOSCert(ssl_info.cert->os_cert_handle(), certs[0]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert(intermediates[0], certs[1]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert(intermediates[1], certs[2]->os_cert_handle())); // Verify that SSLInfo also contains the chain as received from the server. const X509Certificate::OSCertHandles& served_intermediates = ssl_info.unverified_cert->GetIntermediateCertificates(); ASSERT_EQ(3U, served_intermediates.size()); EXPECT_TRUE(X509Certificate::IsSameOSCert( ssl_info.cert->os_cert_handle(), unverified_certs[0]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert( served_intermediates[0], unverified_certs[1]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert( served_intermediates[1], unverified_certs[2]->os_cert_handle())); EXPECT_TRUE(X509Certificate::IsSameOSCert( served_intermediates[2], unverified_certs[3]->os_cert_handle())); sock_->Disconnect(); EXPECT_FALSE(sock_->IsConnected()); } TEST_F(SSLClientSocketCertRequestInfoTest, NoAuthorities) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; scoped_refptr request_info = GetCertRequest(ssl_options); ASSERT_TRUE(request_info.get()); EXPECT_EQ(0u, request_info->cert_authorities.size()); } TEST_F(SSLClientSocketCertRequestInfoTest, TwoAuthorities) { const base::FilePath::CharType kThawteFile[] = FILE_PATH_LITERAL("thawte.single.pem"); const unsigned char kThawteDN[] = { 0x30, 0x4c, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x5a, 0x41, 0x31, 0x25, 0x30, 0x23, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x1c, 0x54, 0x68, 0x61, 0x77, 0x74, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x28, 0x50, 0x74, 0x79, 0x29, 0x20, 0x4c, 0x74, 0x64, 0x2e, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0d, 0x54, 0x68, 0x61, 0x77, 0x74, 0x65, 0x20, 0x53, 0x47, 0x43, 0x20, 0x43, 0x41}; const size_t kThawteLen = sizeof(kThawteDN); const base::FilePath::CharType kDiginotarFile[] = FILE_PATH_LITERAL("diginotar_root_ca.pem"); const unsigned char kDiginotarDN[] = { 0x30, 0x5f, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x4e, 0x4c, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x09, 0x44, 0x69, 0x67, 0x69, 0x4e, 0x6f, 0x74, 0x61, 0x72, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x11, 0x44, 0x69, 0x67, 0x69, 0x4e, 0x6f, 0x74, 0x61, 0x72, 0x20, 0x52, 0x6f, 0x6f, 0x74, 0x20, 0x43, 0x41, 0x31, 0x20, 0x30, 0x1e, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6e, 0x66, 0x6f, 0x40, 0x64, 0x69, 0x67, 0x69, 0x6e, 0x6f, 0x74, 0x61, 0x72, 0x2e, 0x6e, 0x6c}; const size_t kDiginotarLen = sizeof(kDiginotarDN); SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ssl_options.client_authorities.push_back( GetTestClientCertsDirectory().Append(kThawteFile)); ssl_options.client_authorities.push_back( GetTestClientCertsDirectory().Append(kDiginotarFile)); scoped_refptr request_info = GetCertRequest(ssl_options); ASSERT_TRUE(request_info.get()); ASSERT_EQ(2u, request_info->cert_authorities.size()); EXPECT_EQ(std::string(reinterpret_cast(kThawteDN), kThawteLen), request_info->cert_authorities[0]); EXPECT_EQ( std::string(reinterpret_cast(kDiginotarDN), kDiginotarLen), request_info->cert_authorities[1]); } // cert_key_types is currently only populated on OpenSSL. #if defined(USE_OPENSSL) TEST_F(SSLClientSocketCertRequestInfoTest, CertKeyTypes) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ssl_options.client_cert_types.push_back(CLIENT_CERT_RSA_SIGN); ssl_options.client_cert_types.push_back(CLIENT_CERT_ECDSA_SIGN); scoped_refptr request_info = GetCertRequest(ssl_options); ASSERT_TRUE(request_info.get()); ASSERT_EQ(2u, request_info->cert_key_types.size()); EXPECT_EQ(CLIENT_CERT_RSA_SIGN, request_info->cert_key_types[0]); EXPECT_EQ(CLIENT_CERT_ECDSA_SIGN, request_info->cert_key_types[1]); } #endif // defined(USE_OPENSSL) TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsEnabledTLSExtension) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.signed_cert_timestamps_tls_ext = "test"; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.signed_cert_timestamps_enabled = true; MockCTVerifier ct_verifier; SetCTVerifier(&ct_verifier); // Check that the SCT list is extracted as expected. EXPECT_CALL(ct_verifier, Verify(_, "", "test", _, _)).WillRepeatedly( Return(ERR_CT_NO_SCTS_VERIFIED_OK)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->signed_cert_timestamps_received_); } // Test that when an EV certificate is received, but no CT verifier // or certificate policy enforcer are defined, then the EV status // of the certificate is maintained. TEST_F(SSLClientSocketTest, EVCertStatusMaintainedNoCTVerifier) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config); // No verifier to skip CT and policy checks. int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo result; ASSERT_TRUE(sock_->GetSSLInfo(&result)); EXPECT_TRUE(result.cert_status & CERT_STATUS_IS_EV); } // Test that when a CT verifier and a CTPolicyEnforcer are defined, and // the EV certificate used conforms to the CT/EV policy, its EV status // is maintained. TEST_F(SSLClientSocketTest, EVCertStatusMaintainedForCompliantCert) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config); // To activate the CT/EV policy enforcement non-null CTVerifier and // CTPolicyEnforcer are needed. MockCTVerifier ct_verifier; SetCTVerifier(&ct_verifier); EXPECT_CALL(ct_verifier, Verify(_, "", "", _, _)).WillRepeatedly(Return(OK)); // Emulate compliance of the certificate to the policy. MockCTPolicyEnforcer policy_enforcer; SetCTPolicyEnforcer(&policy_enforcer); EXPECT_CALL(policy_enforcer, DoesConformToCTEVPolicy(_, _, _, _)) .WillRepeatedly( Return(ct::EVPolicyCompliance::EV_POLICY_COMPLIES_VIA_SCTS)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo result; ASSERT_TRUE(sock_->GetSSLInfo(&result)); EXPECT_TRUE(result.cert_status & CERT_STATUS_IS_EV); } // Test that when a CT verifier and a CTPolicyEnforcer are defined, but // the EV certificate used does not conform to the CT/EV policy, its EV status // is removed. TEST_F(SSLClientSocketTest, EVCertStatusRemovedForNonCompliantCert) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config); // To activate the CT/EV policy enforcement non-null CTVerifier and // CTPolicyEnforcer are needed. MockCTVerifier ct_verifier; SetCTVerifier(&ct_verifier); EXPECT_CALL(ct_verifier, Verify(_, "", "", _, _)).WillRepeatedly(Return(OK)); // Emulate non-compliance of the certificate to the policy. MockCTPolicyEnforcer policy_enforcer; SetCTPolicyEnforcer(&policy_enforcer); EXPECT_CALL(policy_enforcer, DoesConformToCTEVPolicy(_, _, _, _)) .WillRepeatedly( Return(ct::EVPolicyCompliance::EV_POLICY_NOT_ENOUGH_SCTS)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo result; ASSERT_TRUE(sock_->GetSSLInfo(&result)); EXPECT_FALSE(result.cert_status & CERT_STATUS_IS_EV); EXPECT_TRUE(result.cert_status & CERT_STATUS_CT_COMPLIANCE_FAILED); } namespace { bool IsValidOCSPResponse(const base::StringPiece& input) { der::Parser parser((der::Input(input))); der::Parser sequence; return parser.ReadSequence(&sequence) && !parser.HasMore() && sequence.SkipTag(der::kEnumerated) && sequence.SkipTag(der::kTagContextSpecific | der::kTagConstructed | 0) && !sequence.HasMore(); } } // namespace // Test that enabling Signed Certificate Timestamps enables OCSP stapling. TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsEnabledOCSP) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.staple_ocsp_response = true; // The test server currently only knows how to generate OCSP responses // for a freshly minted certificate. ssl_options.server_certificate = SpawnedTestServer::SSLOptions::CERT_AUTO; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; // Enabling Signed Cert Timestamps ensures we request OCSP stapling for // Certificate Transparency verification regardless of whether the platform // is able to process the OCSP status itself. ssl_config.signed_cert_timestamps_enabled = true; MockCTVerifier ct_verifier; SetCTVerifier(&ct_verifier); // Check that the OCSP response is extracted and well-formed. It should be the // DER encoding of an OCSPResponse (RFC 2560), so check that it consists of a // SEQUENCE of an ENUMERATED type and an element tagged with [0] EXPLICIT. In // particular, it should not include the overall two-byte length prefix from // TLS. EXPECT_CALL(ct_verifier, Verify(_, Truly(IsValidOCSPResponse), "", _, _)).WillRepeatedly( Return(ERR_CT_NO_SCTS_VERIFIED_OK)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->stapled_ocsp_response_received_); } TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsDisabled) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.signed_cert_timestamps_tls_ext = "test"; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.signed_cert_timestamps_enabled = false; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_FALSE(sock_->signed_cert_timestamps_received_); } // Tests that IsConnectedAndIdle and WasEverUsed behave as expected. TEST_F(SSLClientSocketTest, ReuseStates) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); // The socket was just connected. It should be idle because it is speaking // HTTP. Although the transport has been used for the handshake, WasEverUsed() // returns false. EXPECT_TRUE(sock_->IsConnected()); EXPECT_TRUE(sock_->IsConnectedAndIdle()); EXPECT_FALSE(sock_->WasEverUsed()); const char kRequestText[] = "GET / HTTP/1.0\r\n\r\n"; const size_t kRequestLen = arraysize(kRequestText) - 1; scoped_refptr request_buffer(new IOBuffer(kRequestLen)); memcpy(request_buffer->data(), kRequestText, kRequestLen); TestCompletionCallback callback; rv = callback.GetResult( sock_->Write(request_buffer.get(), kRequestLen, callback.callback())); EXPECT_EQ(static_cast(kRequestLen), rv); // The socket has now been used. EXPECT_TRUE(sock_->WasEverUsed()); // TODO(davidben): Read one byte to ensure the test server has responded and // then assert IsConnectedAndIdle is false. This currently doesn't work // because neither SSLClientSocketNSS nor SSLClientSocketOpenSSL check their // SSL implementation's internal buffers. Either call PR_Available and // SSL_pending, although the former isn't actually implemented or perhaps // attempt to read one byte extra. } // Tests that IsConnectedAndIdle treats a socket as idle even if a Write hasn't // been flushed completely out of SSLClientSocket's internal buffers. This is a // regression test for https://crbug.com/466147. TEST_F(SSLClientSocketTest, ReusableAfterWrite) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); TestCompletionCallback callback; scoped_ptr real_transport( new TCPClientSocket(addr(), NULL, NetLog::Source())); scoped_ptr transport( new FakeBlockingStreamSocket(std::move(real_transport))); FakeBlockingStreamSocket* raw_transport = transport.get(); ASSERT_EQ(OK, callback.GetResult(transport->Connect(callback.callback()))); scoped_ptr sock(CreateSSLClientSocket( std::move(transport), spawned_test_server()->host_port_pair(), SSLConfig())); ASSERT_EQ(OK, callback.GetResult(sock->Connect(callback.callback()))); // Block any application data from reaching the network. raw_transport->BlockWrite(); // Write a partial HTTP request. const char kRequestText[] = "GET / HTTP/1.0"; const size_t kRequestLen = arraysize(kRequestText) - 1; scoped_refptr request_buffer(new IOBuffer(kRequestLen)); memcpy(request_buffer->data(), kRequestText, kRequestLen); // Although transport writes are blocked, both SSLClientSocketOpenSSL and // SSLClientSocketNSS complete the outer Write operation. EXPECT_EQ(static_cast(kRequestLen), callback.GetResult(sock->Write(request_buffer.get(), kRequestLen, callback.callback()))); // The Write operation is complete, so the socket should be treated as // reusable, in case the server returns an HTTP response before completely // consuming the request body. In this case, we assume the server will // properly drain the request body before trying to read the next request. EXPECT_TRUE(sock->IsConnectedAndIdle()); } // Tests that basic session resumption works. TEST_F(SSLClientSocketTest, SessionResumption) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); // First, perform a full handshake. SSLConfig ssl_config; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); ASSERT_EQ(OK, rv); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); // The next connection should resume. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); ASSERT_EQ(OK, rv); ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); sock_.reset(); // Using a different HostPortPair uses a different session cache key. scoped_ptr transport( new TCPClientSocket(addr(), &log_, NetLog::Source())); TestCompletionCallback callback; ASSERT_EQ(OK, callback.GetResult(transport->Connect(callback.callback()))); scoped_ptr sock = CreateSSLClientSocket( std::move(transport), HostPortPair("example.com", 443), ssl_config); ASSERT_EQ(OK, callback.GetResult(sock->Connect(callback.callback()))); ASSERT_TRUE(sock->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); sock.reset(); SSLClientSocket::ClearSessionCache(); // After clearing the session cache, the next handshake doesn't resume. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); ASSERT_EQ(OK, rv); ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); } // Tests that connections with certificate errors do not add entries to the // session cache. TEST_F(SSLClientSocketTest, CertificateErrorNoResume) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); cert_verifier_->set_default_result(ERR_CERT_COMMON_NAME_INVALID); SSLConfig ssl_config; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); ASSERT_EQ(ERR_CERT_COMMON_NAME_INVALID, rv); cert_verifier_->set_default_result(OK); // The next connection should perform a full handshake. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); ASSERT_EQ(OK, rv); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); } // Tests that session caches are sharded by max_version. TEST_F(SSLClientSocketTest, FallbackShardSessionCache) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); // Prepare a normal and fallback SSL config. SSLConfig ssl_config; SSLConfig fallback_ssl_config; fallback_ssl_config.version_max = SSL_PROTOCOL_VERSION_TLS1; fallback_ssl_config.version_fallback_min = SSL_PROTOCOL_VERSION_TLS1; fallback_ssl_config.version_fallback = true; // Connect with a fallback config from the test server to add an entry to the // session cache. int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(fallback_ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1, SSLConnectionStatusToVersion(ssl_info.connection_status)); // A non-fallback connection needs a full handshake. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1_2, SSLConnectionStatusToVersion(ssl_info.connection_status)); // Note: if the server (correctly) declines to resume a TLS 1.0 session at TLS // 1.2, the above test would not be sufficient to prove the session caches are // sharded. Implementations vary here, so, to avoid being sensitive to this, // attempt to resume with two more connections. // The non-fallback connection added a > TLS 1.0 entry to the session cache. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); // This does not check for equality because TLS 1.2 support is conditional on // system NSS features. EXPECT_LT(SSL_CONNECTION_VERSION_TLS1, SSLConnectionStatusToVersion(ssl_info.connection_status)); // The fallback connection still resumes from its session cache. It cannot // offer the > TLS 1.0 session, so this must have been the session from the // first fallback connection. ASSERT_TRUE(CreateAndConnectSSLClientSocket(fallback_ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1, SSLConnectionStatusToVersion(ssl_info.connection_status)); } // Test that RC4 is only enabled if rc4_enabled and // deprecated_cipher_suites_enabled are both set. TEST_F(SSLClientSocketTest, RC4Enabled) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_RC4; ASSERT_TRUE(StartTestServer(ssl_options)); // Normal handshakes with RC4 do not work. SSLConfig ssl_config; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); // RC4 is also not enabled in the fallback handshake. ssl_config.deprecated_cipher_suites_enabled = true; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); // Even if RC4 is enabled, it is not sent in the initial handshake. ssl_config.deprecated_cipher_suites_enabled = false; ssl_config.rc4_enabled = true; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); // If enabled, RC4 works in the fallback handshake. ssl_config.deprecated_cipher_suites_enabled = true; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); } // Test that DHE is only enabled if deprecated_cipher_suites_enabled is set. TEST_F(SSLClientSocketTest, DHEDeprecated) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_DHE_RSA; ASSERT_TRUE(StartTestServer(ssl_options)); // Normal handshakes with DHE do not work. SSLConfig ssl_config; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); // Enabling deprecated ciphers works fine. ssl_config.deprecated_cipher_suites_enabled = true; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); } // Tests that enabling deprecated ciphers shards the session cache. TEST_F(SSLClientSocketTest, DeprecatedShardSessionCache) { ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions())); // Prepare a normal and deprecated SSL config. SSLConfig ssl_config; SSLConfig deprecated_ssl_config; deprecated_ssl_config.deprecated_cipher_suites_enabled = true; // Connect with deprecated ciphers enabled to warm the session cache cache. int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); // Test that re-connecting with deprecated ciphers enabled still resumes. ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); // However, a normal connection needs a full handshake. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); // Clear the session cache for the inverse test. SSLClientSocket::ClearSessionCache(); // Now make a normal connection to prime the session cache. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); // A normal connection should be able to resume. ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); // However, enabling deprecated ciphers connects fresh. ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); } TEST_F(SSLClientSocketTest, RequireECDHE) { // Run test server without ECDHE. SpawnedTestServer::SSLOptions ssl_options; ssl_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_RSA; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig config; config.require_ecdhe = true; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(config, &rv)); EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv); } TEST_F(SSLClientSocketTest, TokenBindingEnabled) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.supported_token_binding_params.push_back(TB_PARAM_ECDSAP256); ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo info; EXPECT_TRUE(sock_->GetSSLInfo(&info)); EXPECT_TRUE(info.token_binding_negotiated); EXPECT_EQ(TB_PARAM_ECDSAP256, info.token_binding_key_param); } TEST_F(SSLClientSocketTest, TokenBindingFailsWithEmsDisabled) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.supported_token_binding_params.push_back(TB_PARAM_ECDSAP256); ssl_options.disable_extended_master_secret = true; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, rv); } TEST_F(SSLClientSocketTest, TokenBindingEnabledWithoutServerSupport) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); SSLInfo info; EXPECT_TRUE(sock_->GetSSLInfo(&info)); EXPECT_FALSE(info.token_binding_negotiated); } // In tests requiring NPN, client_config.alpn_protos and // client_config.npn_protos both need to be set when using NSS, otherwise NPN is // disabled due to quirks of the implementation. TEST_F(SSLClientSocketFalseStartTest, FalseStartEnabled) { // False Start requires NPN/ALPN, ECDHE, and an AEAD. SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); ASSERT_NO_FATAL_FAILURE( TestFalseStart(server_options, client_config, true)); } // Test that False Start is disabled without NPN. TEST_F(SSLClientSocketFalseStartTest, NoNPN) { SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; SSLConfig client_config; client_config.alpn_protos.clear(); client_config.npn_protos.clear(); ASSERT_NO_FATAL_FAILURE( TestFalseStart(server_options, client_config, false)); } // Test that False Start is disabled with plain RSA ciphers. TEST_F(SSLClientSocketFalseStartTest, RSA) { SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); ASSERT_NO_FATAL_FAILURE( TestFalseStart(server_options, client_config, false)); } // Test that False Start is disabled with DHE_RSA ciphers. TEST_F(SSLClientSocketFalseStartTest, DHE_RSA) { SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_DHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); // DHE is only advertised when deprecated ciphers are enabled. client_config.deprecated_cipher_suites_enabled = true; ASSERT_NO_FATAL_FAILURE(TestFalseStart(server_options, client_config, false)); } // Test that False Start is disabled without an AEAD. TEST_F(SSLClientSocketFalseStartTest, NoAEAD) { SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128; server_options.npn_protocols.push_back(std::string("http/1.1")); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); ASSERT_NO_FATAL_FAILURE(TestFalseStart(server_options, client_config, false)); } // Test that sessions are resumable after receiving the server Finished message. TEST_F(SSLClientSocketFalseStartTest, SessionResumption) { // Start a server. SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); // Let a full handshake complete with False Start. ASSERT_NO_FATAL_FAILURE( TestFalseStart(server_options, client_config, true)); // Make a second connection. int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); // It should resume the session. SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type); } // Test that False Started sessions are not resumable before receiving the // server Finished message. TEST_F(SSLClientSocketFalseStartTest, NoSessionResumptionBeforeFinished) { // Start a server. SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); // Start a handshake up to the server Finished message. TestCompletionCallback callback; FakeBlockingStreamSocket* raw_transport1 = NULL; scoped_ptr sock1; ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived( client_config, &callback, &raw_transport1, &sock1)); // Although raw_transport1 has the server Finished blocked, the handshake // still completes. EXPECT_EQ(OK, callback.WaitForResult()); // Continue to block the client (|sock1|) from processing the Finished // message, but allow it to arrive on the socket. This ensures that, from the // server's point of view, it has completed the handshake and added the // session to its session cache. // // The actual read on |sock1| will not complete until the Finished message is // processed; however, pump the underlying transport so that it is read from // the socket. NOTE: This may flakily pass if the server's final flight // doesn't come in one Read. scoped_refptr buf(new IOBuffer(4096)); int rv = sock1->Read(buf.get(), 4096, callback.callback()); EXPECT_EQ(ERR_IO_PENDING, rv); raw_transport1->WaitForReadResult(); // Drop the old socket. This is needed because the Python test server can't // service two sockets in parallel. sock1.reset(); // Start a second connection. ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); // No session resumption because the first connection never received a server // Finished message. SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); } // Test that False Started sessions are not resumable if the server Finished // message was bad. TEST_F(SSLClientSocketFalseStartTest, NoSessionResumptionBadFinished) { // Start a server. SpawnedTestServer::SSLOptions server_options; server_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA; server_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM; server_options.npn_protocols.push_back(std::string("http/1.1")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); // Start a handshake up to the server Finished message. TestCompletionCallback callback; FakeBlockingStreamSocket* raw_transport1 = NULL; scoped_ptr sock1; ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived( client_config, &callback, &raw_transport1, &sock1)); // Although raw_transport1 has the server Finished blocked, the handshake // still completes. EXPECT_EQ(OK, callback.WaitForResult()); // Continue to block the client (|sock1|) from processing the Finished // message, but allow it to arrive on the socket. This ensures that, from the // server's point of view, it has completed the handshake and added the // session to its session cache. // // The actual read on |sock1| will not complete until the Finished message is // processed; however, pump the underlying transport so that it is read from // the socket. scoped_refptr buf(new IOBuffer(4096)); int rv = sock1->Read(buf.get(), 4096, callback.callback()); EXPECT_EQ(ERR_IO_PENDING, rv); raw_transport1->WaitForReadResult(); // The server's second leg, or part of it, is now received but not yet sent to // |sock1|. Before doing so, break the server's second leg. int bytes_read = raw_transport1->pending_read_result(); ASSERT_LT(0, bytes_read); raw_transport1->pending_read_buf()->data()[bytes_read - 1]++; // Unblock the Finished message. |sock1->Read| should now fail. raw_transport1->UnblockReadResult(); EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, callback.GetResult(rv)); // Drop the old socket. This is needed because the Python test server can't // service two sockets in parallel. sock1.reset(); // Start a second connection. ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); // No session resumption because the first connection never received a server // Finished message. SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); } // Connect to a server using channel id. It should allow the connection. TEST_F(SSLClientSocketChannelIDTest, SendChannelID) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); EnableChannelID(); SSLConfig ssl_config; ssl_config.channel_id_enabled = true; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->IsConnected()); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_TRUE(ssl_info.channel_id_sent); sock_->Disconnect(); EXPECT_FALSE(sock_->IsConnected()); } // Connect to a server using Channel ID but failing to look up the Channel // ID. It should fail. TEST_F(SSLClientSocketChannelIDTest, FailingChannelID) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); EnableFailingChannelID(); SSLConfig ssl_config; ssl_config.channel_id_enabled = true; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); // TODO(haavardm@opera.com): Due to differences in threading, Linux returns // ERR_UNEXPECTED while Mac and Windows return ERR_PROTOCOL_ERROR. Accept all // error codes for now. // http://crbug.com/373670 EXPECT_NE(OK, rv); EXPECT_FALSE(sock_->IsConnected()); } // Connect to a server using Channel ID but asynchronously failing to look up // the Channel ID. It should fail. TEST_F(SSLClientSocketChannelIDTest, FailingChannelIDAsync) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); EnableAsyncFailingChannelID(); SSLConfig ssl_config; ssl_config.channel_id_enabled = true; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(ERR_UNEXPECTED, rv); EXPECT_FALSE(sock_->IsConnected()); } // Tests that session caches are sharded by whether Channel ID is enabled. TEST_F(SSLClientSocketChannelIDTest, ChannelIDShardSessionCache) { SpawnedTestServer::SSLOptions ssl_options; ASSERT_TRUE(StartTestServer(ssl_options)); EnableChannelID(); // Connect without Channel ID. SSLConfig ssl_config; ssl_config.channel_id_enabled = false; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); SSLInfo ssl_info; EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); EXPECT_FALSE(ssl_info.channel_id_sent); // Enable Channel ID and connect again. This needs a full handshake to assert // Channel ID. ssl_config.channel_id_enabled = true; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type); EXPECT_TRUE(ssl_info.channel_id_sent); } TEST_F(SSLClientSocketTest, NPN) { SpawnedTestServer::SSLOptions server_options; server_options.npn_protocols.push_back(std::string("spdy/3.1")); server_options.npn_protocols.push_back(std::string("h2")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP2); client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP2); client_config.npn_protos.push_back(kProtoHTTP11); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); std::string proto; EXPECT_EQ(SSLClientSocket::kNextProtoNegotiated, sock_->GetNextProto(&proto)); EXPECT_EQ("h2", proto); } // In case of no overlap between client and server list, SSLClientSocket should // fall back to last one on the client list. TEST_F(SSLClientSocketTest, NPNNoOverlap) { SpawnedTestServer::SSLOptions server_options; server_options.npn_protocols.push_back(std::string("http/1.1")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoSPDY31); client_config.alpn_protos.push_back(kProtoHTTP2); #endif client_config.npn_protos.push_back(kProtoSPDY31); client_config.npn_protos.push_back(kProtoHTTP2); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); std::string proto; EXPECT_EQ(SSLClientSocket::kNextProtoNoOverlap, sock_->GetNextProto(&proto)); EXPECT_EQ("h2", proto); } // Server preference should be respected. The list is in decreasing order of // preference. TEST_F(SSLClientSocketTest, NPNServerPreference) { SpawnedTestServer::SSLOptions server_options; server_options.npn_protocols.push_back(std::string("spdy/3.1")); server_options.npn_protocols.push_back(std::string("h2")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP2); client_config.alpn_protos.push_back(kProtoSPDY31); #endif client_config.npn_protos.push_back(kProtoHTTP2); client_config.npn_protos.push_back(kProtoSPDY31); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); std::string proto; EXPECT_EQ(SSLClientSocket::kNextProtoNegotiated, sock_->GetNextProto(&proto)); EXPECT_EQ("spdy/3.1", proto); } // If npn_protos.empty(), then NPN should be disabled, even if // !alpn_protos.empty(). Tlslite does not support ALPN, therefore if NPN is // disabled in the client, no protocol should be negotiated. TEST_F(SSLClientSocketTest, NPNClientDisabled) { SpawnedTestServer::SSLOptions server_options; server_options.npn_protocols.push_back(std::string("http/1.1")); ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; client_config.alpn_protos.push_back(kProtoHTTP11); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); std::string proto; EXPECT_EQ(SSLClientSocket::kNextProtoUnsupported, sock_->GetNextProto(&proto)); } TEST_F(SSLClientSocketTest, NPNServerDisabled) { SpawnedTestServer::SSLOptions server_options; ASSERT_TRUE(StartTestServer(server_options)); SSLConfig client_config; #if !defined(USE_OPENSSL) client_config.alpn_protos.push_back(kProtoHTTP11); #endif client_config.npn_protos.push_back(kProtoHTTP11); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv)); EXPECT_EQ(OK, rv); std::string proto; EXPECT_EQ(SSLClientSocket::kNextProtoUnsupported, sock_->GetNextProto(&proto)); } // Client auth is not supported in NSS ports. #if defined(USE_OPENSSL) namespace { // Loads a PEM-encoded private key file into a SSLPrivateKey object. // |filepath| is the private key file path. // Returns the new SSLPrivateKey. scoped_refptr LoadPrivateKeyOpenSSL( const base::FilePath& filepath) { std::string data; if (!base::ReadFileToString(filepath, &data)) { LOG(ERROR) << "Could not read private key file: " << filepath.value(); return nullptr; } crypto::ScopedBIO bio(BIO_new_mem_buf(const_cast(data.data()), static_cast(data.size()))); if (!bio) { LOG(ERROR) << "Could not allocate BIO for buffer?"; return nullptr; } crypto::ScopedEVP_PKEY result( PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); if (!result) { LOG(ERROR) << "Could not decode private key file: " << filepath.value(); return nullptr; } return WrapOpenSSLPrivateKey(std::move(result)); } } // namespace // Connect to a server requesting client authentication, do not send // any client certificates. It should refuse the connection. TEST_F(SSLClientSocketTest, NoCert) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ASSERT_TRUE(StartTestServer(ssl_options)); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv)); EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv); EXPECT_FALSE(sock_->IsConnected()); } // Connect to a server requesting client authentication, and send it // an empty certificate. TEST_F(SSLClientSocketTest, SendEmptyCert) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ssl_options.client_authorities.push_back( GetTestClientCertsDirectory().AppendASCII("client_1_ca.pem")); ASSERT_TRUE(StartTestServer(ssl_options)); SSLConfig ssl_config; ssl_config.send_client_cert = true; ssl_config.client_cert = nullptr; ssl_config.client_private_key = nullptr; int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->IsConnected()); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_FALSE(ssl_info.client_cert_sent); } // Connect to a server requesting client authentication. Send it a // matching certificate. It should allow the connection. TEST_F(SSLClientSocketTest, SendGoodCert) { SpawnedTestServer::SSLOptions ssl_options; ssl_options.request_client_certificate = true; ssl_options.client_authorities.push_back( GetTestClientCertsDirectory().AppendASCII("client_1_ca.pem")); ASSERT_TRUE(StartTestServer(ssl_options)); base::FilePath certs_dir = GetTestCertsDirectory(); SSLConfig ssl_config; ssl_config.send_client_cert = true; ssl_config.client_cert = ImportCertFromFile(certs_dir, "client_1.pem"); // This is required to ensure that signing works with the client // certificate's private key. ssl_config.client_private_key = LoadPrivateKeyOpenSSL(certs_dir.AppendASCII("client_1.key")); int rv; ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv)); EXPECT_EQ(OK, rv); EXPECT_TRUE(sock_->IsConnected()); SSLInfo ssl_info; ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info)); EXPECT_TRUE(ssl_info.client_cert_sent); sock_->Disconnect(); EXPECT_FALSE(sock_->IsConnected()); } #endif // defined(USE_OPENSSL) } // namespace net