// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/tcp_client_socket_win.h" #include #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/memory/memory_debug.h" #include "base/metrics/stats_counters.h" #include "base/string_util.h" #include "base/sys_info.h" #include "base/win/object_watcher.h" #include "net/base/address_list_net_log_param.h" #include "net/base/connection_type_histograms.h" #include "net/base/io_buffer.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/net_util.h" #include "net/base/network_change_notifier.h" #include "net/base/sys_addrinfo.h" #include "net/base/winsock_init.h" #include "net/base/winsock_util.h" namespace net { namespace { int MapConnectError(int os_error) { switch (os_error) { // connect fails with WSAEACCES when Windows Firewall blocks the // connection. case WSAEACCES: return ERR_NETWORK_ACCESS_DENIED; case WSAETIMEDOUT: return ERR_CONNECTION_TIMED_OUT; default: { int net_error = MapSystemError(os_error); if (net_error == ERR_FAILED) return ERR_CONNECTION_FAILED; // More specific than ERR_FAILED. // Give a more specific error when the user is offline. if (net_error == ERR_ADDRESS_UNREACHABLE && NetworkChangeNotifier::IsOffline()) { return ERR_INTERNET_DISCONNECTED; } return net_error; } } } } // namespace //----------------------------------------------------------------------------- // This class encapsulates all the state that has to be preserved as long as // there is a network IO operation in progress. If the owner TCPClientSocketWin // is destroyed while an operation is in progress, the Core is detached and it // lives until the operation completes and the OS doesn't reference any resource // declared on this class anymore. class TCPClientSocketWin::Core : public base::RefCounted { public: explicit Core(TCPClientSocketWin* socket); // Start watching for the end of a read or write operation. void WatchForRead(); void WatchForWrite(); // The TCPClientSocketWin is going away. void Detach() { socket_ = NULL; } // The separate OVERLAPPED variables for asynchronous operation. // |read_overlapped_| is used for both Connect() and Read(). // |write_overlapped_| is only used for Write(); OVERLAPPED read_overlapped_; OVERLAPPED write_overlapped_; // The buffers used in Read() and Write(). WSABUF read_buffer_; WSABUF write_buffer_; scoped_refptr read_iobuffer_; scoped_refptr write_iobuffer_; int write_buffer_length_; // Throttle the read size based on our current slow start state. // Returns the throttled read size. int ThrottleReadSize(int size) { if (slow_start_throttle_ < kMaxSlowStartThrottle) { size = std::min(size, slow_start_throttle_); slow_start_throttle_ *= 2; } return size; } private: friend class base::RefCounted; class ReadDelegate : public base::win::ObjectWatcher::Delegate { public: explicit ReadDelegate(Core* core) : core_(core) {} virtual ~ReadDelegate() {} // base::ObjectWatcher::Delegate methods: virtual void OnObjectSignaled(HANDLE object); private: Core* const core_; }; class WriteDelegate : public base::win::ObjectWatcher::Delegate { public: explicit WriteDelegate(Core* core) : core_(core) {} virtual ~WriteDelegate() {} // base::ObjectWatcher::Delegate methods: virtual void OnObjectSignaled(HANDLE object); private: Core* const core_; }; ~Core(); // The socket that created this object. TCPClientSocketWin* socket_; // |reader_| handles the signals from |read_watcher_|. ReadDelegate reader_; // |writer_| handles the signals from |write_watcher_|. WriteDelegate writer_; // |read_watcher_| watches for events from Connect() and Read(). base::win::ObjectWatcher read_watcher_; // |write_watcher_| watches for events from Write(); base::win::ObjectWatcher write_watcher_; // When doing reads from the socket, we try to mirror TCP's slow start. // We do this because otherwise the async IO subsystem artifically delays // returning data to the application. static const int kInitialSlowStartThrottle = 1 * 1024; static const int kMaxSlowStartThrottle = 32 * kInitialSlowStartThrottle; int slow_start_throttle_; DISALLOW_COPY_AND_ASSIGN(Core); }; TCPClientSocketWin::Core::Core( TCPClientSocketWin* socket) : write_buffer_length_(0), socket_(socket), ALLOW_THIS_IN_INITIALIZER_LIST(reader_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(writer_(this)), slow_start_throttle_(kInitialSlowStartThrottle) { memset(&read_overlapped_, 0, sizeof(read_overlapped_)); memset(&write_overlapped_, 0, sizeof(write_overlapped_)); } TCPClientSocketWin::Core::~Core() { // Make sure the message loop is not watching this object anymore. read_watcher_.StopWatching(); write_watcher_.StopWatching(); WSACloseEvent(read_overlapped_.hEvent); memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_)); WSACloseEvent(write_overlapped_.hEvent); memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_)); } void TCPClientSocketWin::Core::WatchForRead() { // We grab an extra reference because there is an IO operation in progress. // Balanced in ReadDelegate::OnObjectSignaled(). AddRef(); read_watcher_.StartWatching(read_overlapped_.hEvent, &reader_); } void TCPClientSocketWin::Core::WatchForWrite() { // We grab an extra reference because there is an IO operation in progress. // Balanced in WriteDelegate::OnObjectSignaled(). AddRef(); write_watcher_.StartWatching(write_overlapped_.hEvent, &writer_); } void TCPClientSocketWin::Core::ReadDelegate::OnObjectSignaled( HANDLE object) { DCHECK_EQ(object, core_->read_overlapped_.hEvent); if (core_->socket_) { if (core_->socket_->waiting_connect()) { core_->socket_->DidCompleteConnect(); } else { core_->socket_->DidCompleteRead(); } } core_->Release(); } void TCPClientSocketWin::Core::WriteDelegate::OnObjectSignaled( HANDLE object) { DCHECK_EQ(object, core_->write_overlapped_.hEvent); if (core_->socket_) core_->socket_->DidCompleteWrite(); core_->Release(); } //----------------------------------------------------------------------------- TCPClientSocketWin::TCPClientSocketWin(const AddressList& addresses, net::NetLog* net_log, const net::NetLog::Source& source) : socket_(INVALID_SOCKET), addresses_(addresses), current_ai_(NULL), waiting_read_(false), waiting_write_(false), read_callback_(NULL), write_callback_(NULL), next_connect_state_(CONNECT_STATE_NONE), connect_os_error_(0), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_SOCKET)), previously_disconnected_(false) { scoped_refptr params; if (source.is_valid()) params = new NetLogSourceParameter("source_dependency", source); net_log_.BeginEvent(NetLog::TYPE_SOCKET_ALIVE, params); EnsureWinsockInit(); } TCPClientSocketWin::~TCPClientSocketWin() { Disconnect(); net_log_.EndEvent(NetLog::TYPE_SOCKET_ALIVE, NULL); } void TCPClientSocketWin::AdoptSocket(SOCKET socket) { DCHECK_EQ(socket_, INVALID_SOCKET); socket_ = socket; int error = SetupSocket(); DCHECK_EQ(0, error); core_ = new Core(this); current_ai_ = addresses_.head(); use_history_.set_was_ever_connected(); } int TCPClientSocketWin::Connect(CompletionCallback* callback) { DCHECK(CalledOnValidThread()); // If already connected, then just return OK. if (socket_ != INVALID_SOCKET) return OK; base::StatsCounter connects("tcp.connect"); connects.Increment(); net_log_.BeginEvent(NetLog::TYPE_TCP_CONNECT, new AddressListNetLogParam(addresses_)); // We will try to connect to each address in addresses_. Start with the // first one in the list. next_connect_state_ = CONNECT_STATE_CONNECT; current_ai_ = addresses_.head(); int rv = DoConnectLoop(OK); if (rv == ERR_IO_PENDING) { // Synchronous operation not supported. DCHECK(callback); read_callback_ = callback; } else { LogConnectCompletion(rv); } return rv; } int TCPClientSocketWin::DoConnectLoop(int result) { DCHECK_NE(next_connect_state_, CONNECT_STATE_NONE); int rv = result; do { ConnectState state = next_connect_state_; next_connect_state_ = CONNECT_STATE_NONE; switch (state) { case CONNECT_STATE_CONNECT: DCHECK_EQ(OK, rv); rv = DoConnect(); break; case CONNECT_STATE_CONNECT_COMPLETE: rv = DoConnectComplete(rv); break; default: LOG(DFATAL) << "bad state " << state; rv = ERR_UNEXPECTED; break; } } while (rv != ERR_IO_PENDING && next_connect_state_ != CONNECT_STATE_NONE); return rv; } int TCPClientSocketWin::DoConnect() { const struct addrinfo* ai = current_ai_; DCHECK(ai); DCHECK_EQ(0, connect_os_error_); if (previously_disconnected_) { use_history_.Reset(); previously_disconnected_ = false; } net_log_.BeginEvent(NetLog::TYPE_TCP_CONNECT_ATTEMPT, new NetLogStringParameter( "address", NetAddressToStringWithPort(current_ai_))); next_connect_state_ = CONNECT_STATE_CONNECT_COMPLETE; connect_os_error_ = CreateSocket(ai); if (connect_os_error_ != 0) return MapSystemError(connect_os_error_); DCHECK(!core_); core_ = new Core(this); // WSACreateEvent creates a manual-reset event object. core_->read_overlapped_.hEvent = WSACreateEvent(); // WSAEventSelect sets the socket to non-blocking mode as a side effect. // Our connect() and recv() calls require that the socket be non-blocking. WSAEventSelect(socket_, core_->read_overlapped_.hEvent, FD_CONNECT); core_->write_overlapped_.hEvent = WSACreateEvent(); if (!connect(socket_, ai->ai_addr, static_cast(ai->ai_addrlen))) { // Connected without waiting! // // The MSDN page for connect says: // With a nonblocking socket, the connection attempt cannot be completed // immediately. In this case, connect will return SOCKET_ERROR, and // WSAGetLastError will return WSAEWOULDBLOCK. // which implies that for a nonblocking socket, connect never returns 0. // It's not documented whether the event object will be signaled or not // if connect does return 0. So the code below is essentially dead code // and we don't know if it's correct. NOTREACHED(); if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) return OK; } else { int os_error = WSAGetLastError(); if (os_error != WSAEWOULDBLOCK) { LOG(ERROR) << "connect failed: " << os_error; connect_os_error_ = os_error; return MapConnectError(os_error); } } core_->WatchForRead(); return ERR_IO_PENDING; } int TCPClientSocketWin::DoConnectComplete(int result) { // Log the end of this attempt (and any OS error it threw). int os_error = connect_os_error_; connect_os_error_ = 0; scoped_refptr params; if (result != OK) params = new NetLogIntegerParameter("os_error", os_error); net_log_.EndEvent(NetLog::TYPE_TCP_CONNECT_ATTEMPT, params); if (result == OK) { use_history_.set_was_ever_connected(); return OK; // Done! } // Close whatever partially connected socket we currently have. DoDisconnect(); // Try to fall back to the next address in the list. if (current_ai_->ai_next) { next_connect_state_ = CONNECT_STATE_CONNECT; current_ai_ = current_ai_->ai_next; return OK; } // Otherwise there is nothing to fall back to, so give up. return result; } void TCPClientSocketWin::Disconnect() { DoDisconnect(); current_ai_ = NULL; } void TCPClientSocketWin::DoDisconnect() { DCHECK(CalledOnValidThread()); if (socket_ == INVALID_SOCKET) return; // Note: don't use CancelIo to cancel pending IO because it doesn't work // when there is a Winsock layered service provider. // In most socket implementations, closing a socket results in a graceful // connection shutdown, but in Winsock we have to call shutdown explicitly. // See the MSDN page "Graceful Shutdown, Linger Options, and Socket Closure" // at http://msdn.microsoft.com/en-us/library/ms738547.aspx shutdown(socket_, SD_SEND); // This cancels any pending IO. closesocket(socket_); socket_ = INVALID_SOCKET; if (waiting_connect()) { // We closed the socket, so this notification will never come. // From MSDN' WSAEventSelect documentation: // "Closing a socket with closesocket also cancels the association and // selection of network events specified in WSAEventSelect for the socket". core_->Release(); } waiting_read_ = false; waiting_write_ = false; core_->Detach(); core_ = NULL; previously_disconnected_ = true; } bool TCPClientSocketWin::IsConnected() const { DCHECK(CalledOnValidThread()); if (socket_ == INVALID_SOCKET || waiting_connect()) return false; // Check if connection is alive. char c; int rv = recv(socket_, &c, 1, MSG_PEEK); if (rv == 0) return false; if (rv == SOCKET_ERROR && WSAGetLastError() != WSAEWOULDBLOCK) return false; return true; } bool TCPClientSocketWin::IsConnectedAndIdle() const { DCHECK(CalledOnValidThread()); if (socket_ == INVALID_SOCKET || waiting_connect()) return false; // Check if connection is alive and we haven't received any data // unexpectedly. char c; int rv = recv(socket_, &c, 1, MSG_PEEK); if (rv >= 0) return false; if (WSAGetLastError() != WSAEWOULDBLOCK) return false; return true; } int TCPClientSocketWin::GetPeerAddress(AddressList* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; *address = AddressList::CreateByCopyingFirstAddress(current_ai_); return OK; } int TCPClientSocketWin::GetLocalAddress(IPEndPoint* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; struct sockaddr_storage addr_storage; socklen_t addr_len = sizeof(addr_storage); struct sockaddr* addr = reinterpret_cast(&addr_storage); if (getsockname(socket_, addr, &addr_len)) return MapSystemError(WSAGetLastError()); if (!address->FromSockAddr(addr, addr_len)) return ERR_FAILED; return OK; } void TCPClientSocketWin::SetSubresourceSpeculation() { use_history_.set_subresource_speculation(); } void TCPClientSocketWin::SetOmniboxSpeculation() { use_history_.set_omnibox_speculation(); } bool TCPClientSocketWin::WasEverUsed() const { return use_history_.was_used_to_convey_data(); } bool TCPClientSocketWin::UsingTCPFastOpen() const { // Not supported on windows. return false; } int TCPClientSocketWin::Read(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(!waiting_read_); DCHECK(!read_callback_); DCHECK(!core_->read_iobuffer_); buf_len = core_->ThrottleReadSize(buf_len); core_->read_buffer_.len = buf_len; core_->read_buffer_.buf = buf->data(); // TODO(wtc): Remove the assertion after enough testing. AssertEventNotSignaled(core_->read_overlapped_.hEvent); DWORD num, flags = 0; int rv = WSARecv(socket_, &core_->read_buffer_, 1, &num, &flags, &core_->read_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) { // Because of how WSARecv fills memory when used asynchronously, Purify // isn't able to detect that it's been initialized, so it scans for 0xcd // in the buffer and reports UMRs (uninitialized memory reads) for those // individual bytes. We override that in PURIFY builds to avoid the // false error reports. // See bug 5297. base::MemoryDebug::MarkAsInitialized(core_->read_buffer_.buf, num); base::StatsCounter read_bytes("tcp.read_bytes"); read_bytes.Add(num); if (num > 0) use_history_.set_was_used_to_convey_data(); LogByteTransfer(net_log_, NetLog::TYPE_SOCKET_BYTES_RECEIVED, num, core_->read_buffer_.buf); return static_cast(num); } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) return MapSystemError(os_error); } core_->WatchForRead(); waiting_read_ = true; read_callback_ = callback; core_->read_iobuffer_ = buf; return ERR_IO_PENDING; } int TCPClientSocketWin::Write(IOBuffer* buf, int buf_len, CompletionCallback* callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(!waiting_write_); DCHECK(!write_callback_); DCHECK_GT(buf_len, 0); DCHECK(!core_->write_iobuffer_); base::StatsCounter writes("tcp.writes"); writes.Increment(); core_->write_buffer_.len = buf_len; core_->write_buffer_.buf = buf->data(); core_->write_buffer_length_ = buf_len; // TODO(wtc): Remove the assertion after enough testing. AssertEventNotSignaled(core_->write_overlapped_.hEvent); DWORD num; int rv = WSASend(socket_, &core_->write_buffer_, 1, &num, 0, &core_->write_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) { rv = static_cast(num); if (rv > buf_len || rv < 0) { // It seems that some winsock interceptors report that more was written // than was available. Treat this as an error. http://crbug.com/27870 LOG(ERROR) << "Detected broken LSP: Asked to write " << buf_len << " bytes, but " << rv << " bytes reported."; return ERR_WINSOCK_UNEXPECTED_WRITTEN_BYTES; } base::StatsCounter write_bytes("tcp.write_bytes"); write_bytes.Add(rv); if (rv > 0) use_history_.set_was_used_to_convey_data(); LogByteTransfer(net_log_, NetLog::TYPE_SOCKET_BYTES_SENT, rv, core_->write_buffer_.buf); return rv; } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) return MapSystemError(os_error); } core_->WatchForWrite(); waiting_write_ = true; write_callback_ = callback; core_->write_iobuffer_ = buf; return ERR_IO_PENDING; } bool TCPClientSocketWin::SetReceiveBufferSize(int32 size) { DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&size), sizeof(size)); DCHECK(!rv) << "Could not set socket receive buffer size: " << GetLastError(); return rv == 0; } bool TCPClientSocketWin::SetSendBufferSize(int32 size) { DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&size), sizeof(size)); DCHECK(!rv) << "Could not set socket send buffer size: " << GetLastError(); return rv == 0; } int TCPClientSocketWin::CreateSocket(const struct addrinfo* ai) { socket_ = WSASocket(ai->ai_family, ai->ai_socktype, ai->ai_protocol, NULL, 0, WSA_FLAG_OVERLAPPED); if (socket_ == INVALID_SOCKET) { int os_error = WSAGetLastError(); LOG(ERROR) << "WSASocket failed: " << os_error; return os_error; } return SetupSocket(); } int TCPClientSocketWin::SetupSocket() { // Increase the socket buffer sizes from the default sizes for WinXP. In // performance testing, there is substantial benefit by increasing from 8KB // to 64KB. // See also: // http://support.microsoft.com/kb/823764/EN-US // On Vista, if we manually set these sizes, Vista turns off its receive // window auto-tuning feature. // http://blogs.msdn.com/wndp/archive/2006/05/05/Winhec-blog-tcpip-2.aspx // Since Vista's auto-tune is better than any static value we can could set, // only change these on pre-vista machines. int32 major_version, minor_version, fix_version; base::SysInfo::OperatingSystemVersionNumbers(&major_version, &minor_version, &fix_version); if (major_version < 6) { const int32 kSocketBufferSize = 64 * 1024; SetReceiveBufferSize(kSocketBufferSize); SetSendBufferSize(kSocketBufferSize); } // Disable Nagle. // The Nagle implementation on windows is governed by RFC 896. The idea // behind Nagle is to reduce small packets on the network. When Nagle is // enabled, if a partial packet has been sent, the TCP stack will disallow // further *partial* packets until an ACK has been received from the other // side. Good applications should always strive to send as much data as // possible and avoid partial-packet sends. However, in most real world // applications, there are edge cases where this does not happen, and two // partil packets may be sent back to back. For a browser, it is NEVER // a benefit to delay for an RTT before the second packet is sent. // // As a practical example in Chromium today, consider the case of a small // POST. I have verified this: // Client writes 649 bytes of header (partial packet #1) // Client writes 50 bytes of POST data (partial packet #2) // In the above example, with Nagle, a RTT delay is inserted between these // two sends due to nagle. RTTs can easily be 100ms or more. The best // fix is to make sure that for POSTing data, we write as much data as // possible and minimize partial packets. We will fix that. But disabling // Nagle also ensure we don't run into this delay in other edge cases. // See also: // http://technet.microsoft.com/en-us/library/bb726981.aspx const BOOL kDisableNagle = TRUE; int rv = setsockopt(socket_, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&kDisableNagle), sizeof(kDisableNagle)); DCHECK(!rv) << "Could not disable nagle"; // Enable TCP Keep-Alive to prevent NAT routers from timing out TCP // connections. See http://crbug.com/27400 for details. struct tcp_keepalive keepalive_vals = { 1, // TCP keep-alive on. 45000, // Wait 45s until sending first TCP keep-alive packet. 45000, // Wait 45s between sending TCP keep-alive packets. }; DWORD bytes_returned = 0xABAB; rv = WSAIoctl(socket_, SIO_KEEPALIVE_VALS, &keepalive_vals, sizeof(keepalive_vals), NULL, 0, &bytes_returned, NULL, NULL); DCHECK(!rv) << "Could not enable TCP Keep-Alive for socket: " << socket_ << " [error: " << WSAGetLastError() << "]."; // Disregard any failure in disabling nagle or enabling TCP Keep-Alive. return 0; } void TCPClientSocketWin::LogConnectCompletion(int net_error) { if (net_error == OK) UpdateConnectionTypeHistograms(CONNECTION_ANY); if (net_error != OK) { net_log_.EndEventWithNetErrorCode(NetLog::TYPE_TCP_CONNECT, net_error); return; } struct sockaddr_storage source_address; socklen_t addrlen = sizeof(source_address); int rv = getsockname( socket_, reinterpret_cast(&source_address), &addrlen); if (rv != 0) { LOG(ERROR) << "getsockname() [rv: " << rv << "] error: " << WSAGetLastError(); NOTREACHED(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_TCP_CONNECT, rv); return; } const std::string source_address_str = NetAddressToStringWithPort( reinterpret_cast(&source_address), sizeof(source_address)); net_log_.EndEvent(NetLog::TYPE_TCP_CONNECT, make_scoped_refptr(new NetLogStringParameter( "source address", source_address_str))); } void TCPClientSocketWin::DoReadCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(read_callback_); // since Run may result in Read being called, clear read_callback_ up front. CompletionCallback* c = read_callback_; read_callback_ = NULL; c->Run(rv); } void TCPClientSocketWin::DoWriteCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(write_callback_); // since Run may result in Write being called, clear write_callback_ up front. CompletionCallback* c = write_callback_; write_callback_ = NULL; c->Run(rv); } void TCPClientSocketWin::DidCompleteConnect() { DCHECK_EQ(next_connect_state_, CONNECT_STATE_CONNECT_COMPLETE); int result; WSANETWORKEVENTS events; int rv = WSAEnumNetworkEvents(socket_, core_->read_overlapped_.hEvent, &events); int os_error = 0; if (rv == SOCKET_ERROR) { NOTREACHED(); os_error = WSAGetLastError(); result = MapSystemError(os_error); } else if (events.lNetworkEvents & FD_CONNECT) { os_error = events.iErrorCode[FD_CONNECT_BIT]; result = MapConnectError(os_error); } else { NOTREACHED(); result = ERR_UNEXPECTED; } connect_os_error_ = os_error; rv = DoConnectLoop(result); if (rv != ERR_IO_PENDING) { LogConnectCompletion(rv); DoReadCallback(rv); } } void TCPClientSocketWin::DidCompleteRead() { DCHECK(waiting_read_); DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->read_overlapped_.hEvent); waiting_read_ = false; core_->read_iobuffer_ = NULL; if (ok) { base::StatsCounter read_bytes("tcp.read_bytes"); read_bytes.Add(num_bytes); if (num_bytes > 0) use_history_.set_was_used_to_convey_data(); LogByteTransfer(net_log_, NetLog::TYPE_SOCKET_BYTES_RECEIVED, num_bytes, core_->read_buffer_.buf); } DoReadCallback(ok ? num_bytes : MapSystemError(WSAGetLastError())); } void TCPClientSocketWin::DidCompleteWrite() { DCHECK(waiting_write_); DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->write_overlapped_.hEvent); waiting_write_ = false; int rv; if (!ok) { rv = MapSystemError(WSAGetLastError()); } else { rv = static_cast(num_bytes); if (rv > core_->write_buffer_length_ || rv < 0) { // It seems that some winsock interceptors report that more was written // than was available. Treat this as an error. http://crbug.com/27870 LOG(ERROR) << "Detected broken LSP: Asked to write " << core_->write_buffer_length_ << " bytes, but " << rv << " bytes reported."; rv = ERR_WINSOCK_UNEXPECTED_WRITTEN_BYTES; } else { base::StatsCounter write_bytes("tcp.write_bytes"); write_bytes.Add(num_bytes); if (num_bytes > 0) use_history_.set_was_used_to_convey_data(); LogByteTransfer(net_log_, NetLog::TYPE_SOCKET_BYTES_SENT, num_bytes, core_->write_buffer_.buf); } } core_->write_iobuffer_ = NULL; DoWriteCallback(rv); } } // namespace net