// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/transport_client_socket_pool.h" #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/threading/platform_thread.h" #include "net/base/capturing_net_log.h" #include "net/base/ip_endpoint.h" #include "net/base/load_timing_info.h" #include "net/base/load_timing_info_test_util.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/base/test_completion_callback.h" #include "net/dns/mock_host_resolver.h" #include "net/socket/client_socket_factory.h" #include "net/socket/client_socket_handle.h" #include "net/socket/client_socket_pool_histograms.h" #include "net/socket/socket_test_util.h" #include "net/socket/stream_socket.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { using internal::ClientSocketPoolBaseHelper; namespace { const int kMaxSockets = 32; const int kMaxSocketsPerGroup = 6; const net::RequestPriority kDefaultPriority = LOW; // Make sure |handle| sets load times correctly when it has been assigned a // reused socket. void TestLoadTimingInfoConnectedReused(const ClientSocketHandle& handle) { LoadTimingInfo load_timing_info; // Only pass true in as |is_reused|, as in general, HttpStream types should // have stricter concepts of reuse than socket pools. EXPECT_TRUE(handle.GetLoadTimingInfo(true, &load_timing_info)); EXPECT_TRUE(load_timing_info.socket_reused); EXPECT_NE(NetLog::Source::kInvalidId, load_timing_info.socket_log_id); ExpectConnectTimingHasNoTimes(load_timing_info.connect_timing); ExpectLoadTimingHasOnlyConnectionTimes(load_timing_info); } // Make sure |handle| sets load times correctly when it has been assigned a // fresh socket. Also runs TestLoadTimingInfoConnectedReused, since the owner // of a connection where |is_reused| is false may consider the connection // reused. void TestLoadTimingInfoConnectedNotReused(const ClientSocketHandle& handle) { EXPECT_FALSE(handle.is_reused()); LoadTimingInfo load_timing_info; EXPECT_TRUE(handle.GetLoadTimingInfo(false, &load_timing_info)); EXPECT_FALSE(load_timing_info.socket_reused); EXPECT_NE(NetLog::Source::kInvalidId, load_timing_info.socket_log_id); ExpectConnectTimingHasTimes(load_timing_info.connect_timing, CONNECT_TIMING_HAS_DNS_TIMES); ExpectLoadTimingHasOnlyConnectionTimes(load_timing_info); TestLoadTimingInfoConnectedReused(handle); } void SetIPv4Address(IPEndPoint* address) { IPAddressNumber number; CHECK(ParseIPLiteralToNumber("1.1.1.1", &number)); *address = IPEndPoint(number, 80); } void SetIPv6Address(IPEndPoint* address) { IPAddressNumber number; CHECK(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number)); *address = IPEndPoint(number, 80); } class MockClientSocket : public StreamSocket { public: MockClientSocket(const AddressList& addrlist, net::NetLog* net_log) : connected_(false), addrlist_(addrlist), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_SOCKET)) { } // StreamSocket implementation. virtual int Connect(const CompletionCallback& callback) OVERRIDE { connected_ = true; return OK; } virtual void Disconnect() OVERRIDE { connected_ = false; } virtual bool IsConnected() const OVERRIDE { return connected_; } virtual bool IsConnectedAndIdle() const OVERRIDE { return connected_; } virtual int GetPeerAddress(IPEndPoint* address) const OVERRIDE { return ERR_UNEXPECTED; } virtual int GetLocalAddress(IPEndPoint* address) const OVERRIDE { if (!connected_) return ERR_SOCKET_NOT_CONNECTED; if (addrlist_.front().GetFamily() == ADDRESS_FAMILY_IPV4) SetIPv4Address(address); else SetIPv6Address(address); return OK; } virtual const BoundNetLog& NetLog() const OVERRIDE { return net_log_; } virtual void SetSubresourceSpeculation() OVERRIDE {} virtual void SetOmniboxSpeculation() OVERRIDE {} virtual bool WasEverUsed() const OVERRIDE { return false; } virtual bool UsingTCPFastOpen() const OVERRIDE { return false; } virtual bool WasNpnNegotiated() const OVERRIDE { return false; } virtual NextProto GetNegotiatedProtocol() const OVERRIDE { return kProtoUnknown; } virtual bool GetSSLInfo(SSLInfo* ssl_info) OVERRIDE { return false; } // Socket implementation. virtual int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual bool SetReceiveBufferSize(int32 size) OVERRIDE { return true; } virtual bool SetSendBufferSize(int32 size) OVERRIDE { return true; } private: bool connected_; const AddressList addrlist_; BoundNetLog net_log_; }; class MockFailingClientSocket : public StreamSocket { public: MockFailingClientSocket(const AddressList& addrlist, net::NetLog* net_log) : addrlist_(addrlist), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_SOCKET)) { } // StreamSocket implementation. virtual int Connect(const CompletionCallback& callback) OVERRIDE { return ERR_CONNECTION_FAILED; } virtual void Disconnect() OVERRIDE {} virtual bool IsConnected() const OVERRIDE { return false; } virtual bool IsConnectedAndIdle() const OVERRIDE { return false; } virtual int GetPeerAddress(IPEndPoint* address) const OVERRIDE { return ERR_UNEXPECTED; } virtual int GetLocalAddress(IPEndPoint* address) const OVERRIDE { return ERR_UNEXPECTED; } virtual const BoundNetLog& NetLog() const OVERRIDE { return net_log_; } virtual void SetSubresourceSpeculation() OVERRIDE {} virtual void SetOmniboxSpeculation() OVERRIDE {} virtual bool WasEverUsed() const OVERRIDE { return false; } virtual bool UsingTCPFastOpen() const OVERRIDE { return false; } virtual bool WasNpnNegotiated() const OVERRIDE { return false; } virtual NextProto GetNegotiatedProtocol() const OVERRIDE { return kProtoUnknown; } virtual bool GetSSLInfo(SSLInfo* ssl_info) OVERRIDE { return false; } // Socket implementation. virtual int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual bool SetReceiveBufferSize(int32 size) OVERRIDE { return true; } virtual bool SetSendBufferSize(int32 size) OVERRIDE { return true; } private: const AddressList addrlist_; BoundNetLog net_log_; }; class MockPendingClientSocket : public StreamSocket { public: // |should_connect| indicates whether the socket should successfully complete // or fail. // |should_stall| indicates that this socket should never connect. // |delay_ms| is the delay, in milliseconds, before simulating a connect. MockPendingClientSocket( const AddressList& addrlist, bool should_connect, bool should_stall, base::TimeDelta delay, net::NetLog* net_log) : weak_factory_(this), should_connect_(should_connect), should_stall_(should_stall), delay_(delay), is_connected_(false), addrlist_(addrlist), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_SOCKET)) { } // StreamSocket implementation. virtual int Connect(const CompletionCallback& callback) OVERRIDE { base::MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&MockPendingClientSocket::DoCallback, weak_factory_.GetWeakPtr(), callback), delay_); return ERR_IO_PENDING; } virtual void Disconnect() OVERRIDE {} virtual bool IsConnected() const OVERRIDE { return is_connected_; } virtual bool IsConnectedAndIdle() const OVERRIDE { return is_connected_; } virtual int GetPeerAddress(IPEndPoint* address) const OVERRIDE { return ERR_UNEXPECTED; } virtual int GetLocalAddress(IPEndPoint* address) const OVERRIDE { if (!is_connected_) return ERR_SOCKET_NOT_CONNECTED; if (addrlist_.front().GetFamily() == ADDRESS_FAMILY_IPV4) SetIPv4Address(address); else SetIPv6Address(address); return OK; } virtual const BoundNetLog& NetLog() const OVERRIDE { return net_log_; } virtual void SetSubresourceSpeculation() OVERRIDE {} virtual void SetOmniboxSpeculation() OVERRIDE {} virtual bool WasEverUsed() const OVERRIDE { return false; } virtual bool UsingTCPFastOpen() const OVERRIDE { return false; } virtual bool WasNpnNegotiated() const OVERRIDE { return false; } virtual NextProto GetNegotiatedProtocol() const OVERRIDE { return kProtoUnknown; } virtual bool GetSSLInfo(SSLInfo* ssl_info) OVERRIDE { return false; } // Socket implementation. virtual int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) OVERRIDE { return ERR_FAILED; } virtual bool SetReceiveBufferSize(int32 size) OVERRIDE { return true; } virtual bool SetSendBufferSize(int32 size) OVERRIDE { return true; } private: void DoCallback(const CompletionCallback& callback) { if (should_stall_) return; if (should_connect_) { is_connected_ = true; callback.Run(OK); } else { is_connected_ = false; callback.Run(ERR_CONNECTION_FAILED); } } base::WeakPtrFactory weak_factory_; bool should_connect_; bool should_stall_; base::TimeDelta delay_; bool is_connected_; const AddressList addrlist_; BoundNetLog net_log_; }; class MockClientSocketFactory : public ClientSocketFactory { public: enum ClientSocketType { MOCK_CLIENT_SOCKET, MOCK_FAILING_CLIENT_SOCKET, MOCK_PENDING_CLIENT_SOCKET, MOCK_PENDING_FAILING_CLIENT_SOCKET, // A delayed socket will pause before connecting through the message loop. MOCK_DELAYED_CLIENT_SOCKET, // A stalled socket that never connects at all. MOCK_STALLED_CLIENT_SOCKET, }; explicit MockClientSocketFactory(NetLog* net_log) : net_log_(net_log), allocation_count_(0), client_socket_type_(MOCK_CLIENT_SOCKET), client_socket_types_(NULL), client_socket_index_(0), client_socket_index_max_(0), delay_(base::TimeDelta::FromMilliseconds( ClientSocketPool::kMaxConnectRetryIntervalMs)) {} virtual DatagramClientSocket* CreateDatagramClientSocket( DatagramSocket::BindType bind_type, const RandIntCallback& rand_int_cb, NetLog* net_log, const NetLog::Source& source) OVERRIDE { NOTREACHED(); return NULL; } virtual StreamSocket* CreateTransportClientSocket( const AddressList& addresses, NetLog* /* net_log */, const NetLog::Source& /* source */) OVERRIDE { allocation_count_++; ClientSocketType type = client_socket_type_; if (client_socket_types_ && client_socket_index_ < client_socket_index_max_) { type = client_socket_types_[client_socket_index_++]; } switch (type) { case MOCK_CLIENT_SOCKET: return new MockClientSocket(addresses, net_log_); case MOCK_FAILING_CLIENT_SOCKET: return new MockFailingClientSocket(addresses, net_log_); case MOCK_PENDING_CLIENT_SOCKET: return new MockPendingClientSocket( addresses, true, false, base::TimeDelta(), net_log_); case MOCK_PENDING_FAILING_CLIENT_SOCKET: return new MockPendingClientSocket( addresses, false, false, base::TimeDelta(), net_log_); case MOCK_DELAYED_CLIENT_SOCKET: return new MockPendingClientSocket( addresses, true, false, delay_, net_log_); case MOCK_STALLED_CLIENT_SOCKET: return new MockPendingClientSocket( addresses, true, true, base::TimeDelta(), net_log_); default: NOTREACHED(); return new MockClientSocket(addresses, net_log_); } } virtual SSLClientSocket* CreateSSLClientSocket( ClientSocketHandle* transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config, const SSLClientSocketContext& context) OVERRIDE { NOTIMPLEMENTED(); return NULL; } virtual void ClearSSLSessionCache() OVERRIDE { NOTIMPLEMENTED(); } int allocation_count() const { return allocation_count_; } // Set the default ClientSocketType. void set_client_socket_type(ClientSocketType type) { client_socket_type_ = type; } // Set a list of ClientSocketTypes to be used. void set_client_socket_types(ClientSocketType* type_list, int num_types) { DCHECK_GT(num_types, 0); client_socket_types_ = type_list; client_socket_index_ = 0; client_socket_index_max_ = num_types; } void set_delay(base::TimeDelta delay) { delay_ = delay; } private: NetLog* net_log_; int allocation_count_; ClientSocketType client_socket_type_; ClientSocketType* client_socket_types_; int client_socket_index_; int client_socket_index_max_; base::TimeDelta delay_; }; class TransportClientSocketPoolTest : public testing::Test { protected: TransportClientSocketPoolTest() : connect_backup_jobs_enabled_( ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(true)), params_( new TransportSocketParams(HostPortPair("www.google.com", 80), kDefaultPriority, false, false, OnHostResolutionCallback())), low_params_( new TransportSocketParams(HostPortPair("www.google.com", 80), LOW, false, false, OnHostResolutionCallback())), histograms_(new ClientSocketPoolHistograms("TCPUnitTest")), host_resolver_(new MockHostResolver), client_socket_factory_(&net_log_), pool_(kMaxSockets, kMaxSocketsPerGroup, histograms_.get(), host_resolver_.get(), &client_socket_factory_, NULL) { } virtual ~TransportClientSocketPoolTest() { internal::ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled( connect_backup_jobs_enabled_); } int StartRequest(const std::string& group_name, RequestPriority priority) { scoped_refptr params(new TransportSocketParams( HostPortPair("www.google.com", 80), MEDIUM, false, false, OnHostResolutionCallback())); return test_base_.StartRequestUsingPool( &pool_, group_name, priority, params); } int GetOrderOfRequest(size_t index) { return test_base_.GetOrderOfRequest(index); } bool ReleaseOneConnection(ClientSocketPoolTest::KeepAlive keep_alive) { return test_base_.ReleaseOneConnection(keep_alive); } void ReleaseAllConnections(ClientSocketPoolTest::KeepAlive keep_alive) { test_base_.ReleaseAllConnections(keep_alive); } ScopedVector* requests() { return test_base_.requests(); } size_t completion_count() const { return test_base_.completion_count(); } bool connect_backup_jobs_enabled_; CapturingNetLog net_log_; scoped_refptr params_; scoped_refptr low_params_; scoped_ptr histograms_; scoped_ptr host_resolver_; MockClientSocketFactory client_socket_factory_; TransportClientSocketPool pool_; ClientSocketPoolTest test_base_; }; TEST(TransportConnectJobTest, MakeAddrListStartWithIPv4) { IPAddressNumber ip_number; ASSERT_TRUE(ParseIPLiteralToNumber("192.168.1.1", &ip_number)); IPEndPoint addrlist_v4_1(ip_number, 80); ASSERT_TRUE(ParseIPLiteralToNumber("192.168.1.2", &ip_number)); IPEndPoint addrlist_v4_2(ip_number, 80); ASSERT_TRUE(ParseIPLiteralToNumber("2001:4860:b006::64", &ip_number)); IPEndPoint addrlist_v6_1(ip_number, 80); ASSERT_TRUE(ParseIPLiteralToNumber("2001:4860:b006::66", &ip_number)); IPEndPoint addrlist_v6_2(ip_number, 80); AddressList addrlist; // Test 1: IPv4 only. Expect no change. addrlist.clear(); addrlist.push_back(addrlist_v4_1); addrlist.push_back(addrlist_v4_2); TransportConnectJob::MakeAddressListStartWithIPv4(&addrlist); ASSERT_EQ(2u, addrlist.size()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[0].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[1].GetFamily()); // Test 2: IPv6 only. Expect no change. addrlist.clear(); addrlist.push_back(addrlist_v6_1); addrlist.push_back(addrlist_v6_2); TransportConnectJob::MakeAddressListStartWithIPv4(&addrlist); ASSERT_EQ(2u, addrlist.size()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[0].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[1].GetFamily()); // Test 3: IPv4 then IPv6. Expect no change. addrlist.clear(); addrlist.push_back(addrlist_v4_1); addrlist.push_back(addrlist_v4_2); addrlist.push_back(addrlist_v6_1); addrlist.push_back(addrlist_v6_2); TransportConnectJob::MakeAddressListStartWithIPv4(&addrlist); ASSERT_EQ(4u, addrlist.size()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[0].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[1].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[2].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[3].GetFamily()); // Test 4: IPv6, IPv4, IPv6, IPv4. Expect first IPv6 moved to the end. addrlist.clear(); addrlist.push_back(addrlist_v6_1); addrlist.push_back(addrlist_v4_1); addrlist.push_back(addrlist_v6_2); addrlist.push_back(addrlist_v4_2); TransportConnectJob::MakeAddressListStartWithIPv4(&addrlist); ASSERT_EQ(4u, addrlist.size()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[0].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[1].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[2].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[3].GetFamily()); // Test 5: IPv6, IPv6, IPv4, IPv4. Expect first two IPv6's moved to the end. addrlist.clear(); addrlist.push_back(addrlist_v6_1); addrlist.push_back(addrlist_v6_2); addrlist.push_back(addrlist_v4_1); addrlist.push_back(addrlist_v4_2); TransportConnectJob::MakeAddressListStartWithIPv4(&addrlist); ASSERT_EQ(4u, addrlist.size()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[0].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV4, addrlist[1].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[2].GetFamily()); EXPECT_EQ(ADDRESS_FAMILY_IPV6, addrlist[3].GetFamily()); } TEST_F(TransportClientSocketPoolTest, Basic) { TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); TestLoadTimingInfoConnectedNotReused(handle); } TEST_F(TransportClientSocketPoolTest, InitHostResolutionFailure) { host_resolver_->rules()->AddSimulatedFailure("unresolvable.host.name"); TestCompletionCallback callback; ClientSocketHandle handle; HostPortPair host_port_pair("unresolvable.host.name", 80); scoped_refptr dest(new TransportSocketParams( host_port_pair, kDefaultPriority, false, false, OnHostResolutionCallback())); EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", dest, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); EXPECT_EQ(ERR_NAME_NOT_RESOLVED, callback.WaitForResult()); } TEST_F(TransportClientSocketPoolTest, InitConnectionFailure) { client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET); TestCompletionCallback callback; ClientSocketHandle handle; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult()); // Make the host resolutions complete synchronously this time. host_resolver_->set_synchronous_mode(true); EXPECT_EQ(ERR_CONNECTION_FAILED, handle.Init("a", params_, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); } TEST_F(TransportClientSocketPoolTest, PendingRequests) { // First request finishes asynchronously. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, (*requests())[0]->WaitForResult()); // Make all subsequent host resolutions complete synchronously. host_resolver_->set_synchronous_mode(true); // Rest of them finish synchronously, until we reach the per-group limit. EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); // The rest are pending since we've used all active sockets. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE); EXPECT_EQ(kMaxSocketsPerGroup, client_socket_factory_.allocation_count()); // One initial asynchronous request and then 10 pending requests. EXPECT_EQ(11U, completion_count()); // First part of requests, all with the same priority, finishes in FIFO order. EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); EXPECT_EQ(5, GetOrderOfRequest(5)); EXPECT_EQ(6, GetOrderOfRequest(6)); // Make sure that rest of the requests complete in the order of priority. EXPECT_EQ(7, GetOrderOfRequest(7)); EXPECT_EQ(14, GetOrderOfRequest(8)); EXPECT_EQ(15, GetOrderOfRequest(9)); EXPECT_EQ(10, GetOrderOfRequest(10)); EXPECT_EQ(13, GetOrderOfRequest(11)); EXPECT_EQ(8, GetOrderOfRequest(12)); EXPECT_EQ(16, GetOrderOfRequest(13)); EXPECT_EQ(11, GetOrderOfRequest(14)); EXPECT_EQ(12, GetOrderOfRequest(15)); EXPECT_EQ(9, GetOrderOfRequest(16)); // Make sure we test order of all requests made. EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(17)); } TEST_F(TransportClientSocketPoolTest, PendingRequests_NoKeepAlive) { // First request finishes asynchronously. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, (*requests())[0]->WaitForResult()); // Make all subsequent host resolutions complete synchronously. host_resolver_->set_synchronous_mode(true); // Rest of them finish synchronously, until we reach the per-group limit. EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); // The rest are pending since we've used all active sockets. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); ReleaseAllConnections(ClientSocketPoolTest::NO_KEEP_ALIVE); // The pending requests should finish successfully. EXPECT_EQ(OK, (*requests())[6]->WaitForResult()); EXPECT_EQ(OK, (*requests())[7]->WaitForResult()); EXPECT_EQ(OK, (*requests())[8]->WaitForResult()); EXPECT_EQ(OK, (*requests())[9]->WaitForResult()); EXPECT_EQ(OK, (*requests())[10]->WaitForResult()); EXPECT_EQ(static_cast(requests()->size()), client_socket_factory_.allocation_count()); // First asynchronous request, and then last 5 pending requests. EXPECT_EQ(6U, completion_count()); } // This test will start up a RequestSocket() and then immediately Cancel() it. // The pending host resolution will eventually complete, and destroy the // ClientSocketPool which will crash if the group was not cleared properly. TEST_F(TransportClientSocketPoolTest, CancelRequestClearGroup) { TestCompletionCallback callback; ClientSocketHandle handle; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); handle.Reset(); } TEST_F(TransportClientSocketPoolTest, TwoRequestsCancelOne) { ClientSocketHandle handle; TestCompletionCallback callback; ClientSocketHandle handle2; TestCompletionCallback callback2; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority, callback2.callback(), &pool_, BoundNetLog())); handle.Reset(); EXPECT_EQ(OK, callback2.WaitForResult()); handle2.Reset(); } TEST_F(TransportClientSocketPoolTest, ConnectCancelConnect) { client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET); ClientSocketHandle handle; TestCompletionCallback callback; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, callback.callback(), &pool_, BoundNetLog())); handle.Reset(); TestCompletionCallback callback2; EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority, callback2.callback(), &pool_, BoundNetLog())); host_resolver_->set_synchronous_mode(true); // At this point, handle has two ConnectingSockets out for it. Due to the // setting the mock resolver into synchronous mode, the host resolution for // both will return in the same loop of the MessageLoop. The client socket // is a pending socket, so the Connect() will asynchronously complete on the // next loop of the MessageLoop. That means that the first // ConnectingSocket will enter OnIOComplete, and then the second one will. // If the first one is not cancelled, it will advance the load state, and // then the second one will crash. EXPECT_EQ(OK, callback2.WaitForResult()); EXPECT_FALSE(callback.have_result()); handle.Reset(); } TEST_F(TransportClientSocketPoolTest, CancelRequest) { // First request finishes asynchronously. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, (*requests())[0]->WaitForResult()); // Make all subsequent host resolutions complete synchronously. host_resolver_->set_synchronous_mode(true); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); EXPECT_EQ(OK, StartRequest("a", kDefaultPriority)); // Reached per-group limit, queue up requests. EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST)); // Cancel a request. size_t index_to_cancel = kMaxSocketsPerGroup + 2; EXPECT_FALSE((*requests())[index_to_cancel]->handle()->is_initialized()); (*requests())[index_to_cancel]->handle()->Reset(); ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE); EXPECT_EQ(kMaxSocketsPerGroup, client_socket_factory_.allocation_count()); EXPECT_EQ(requests()->size() - kMaxSocketsPerGroup, completion_count()); EXPECT_EQ(1, GetOrderOfRequest(1)); EXPECT_EQ(2, GetOrderOfRequest(2)); EXPECT_EQ(3, GetOrderOfRequest(3)); EXPECT_EQ(4, GetOrderOfRequest(4)); EXPECT_EQ(5, GetOrderOfRequest(5)); EXPECT_EQ(6, GetOrderOfRequest(6)); EXPECT_EQ(14, GetOrderOfRequest(7)); EXPECT_EQ(7, GetOrderOfRequest(8)); EXPECT_EQ(ClientSocketPoolTest::kRequestNotFound, GetOrderOfRequest(9)); // Canceled request. EXPECT_EQ(9, GetOrderOfRequest(10)); EXPECT_EQ(10, GetOrderOfRequest(11)); EXPECT_EQ(11, GetOrderOfRequest(12)); EXPECT_EQ(8, GetOrderOfRequest(13)); EXPECT_EQ(12, GetOrderOfRequest(14)); EXPECT_EQ(13, GetOrderOfRequest(15)); EXPECT_EQ(15, GetOrderOfRequest(16)); // Make sure we test order of all requests made. EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(17)); } class RequestSocketCallback : public TestCompletionCallbackBase { public: RequestSocketCallback(ClientSocketHandle* handle, TransportClientSocketPool* pool) : handle_(handle), pool_(pool), within_callback_(false), callback_(base::Bind(&RequestSocketCallback::OnComplete, base::Unretained(this))) { } virtual ~RequestSocketCallback() {} const CompletionCallback& callback() const { return callback_; } private: void OnComplete(int result) { SetResult(result); ASSERT_EQ(OK, result); if (!within_callback_) { // Don't allow reuse of the socket. Disconnect it and then release it and // run through the MessageLoop once to get it completely released. handle_->socket()->Disconnect(); handle_->Reset(); { base::MessageLoop::ScopedNestableTaskAllower allow( base::MessageLoop::current()); base::MessageLoop::current()->RunUntilIdle(); } within_callback_ = true; scoped_refptr dest(new TransportSocketParams( HostPortPair("www.google.com", 80), LOWEST, false, false, OnHostResolutionCallback())); int rv = handle_->Init("a", dest, LOWEST, callback(), pool_, BoundNetLog()); EXPECT_EQ(OK, rv); } } ClientSocketHandle* const handle_; TransportClientSocketPool* const pool_; bool within_callback_; CompletionCallback callback_; DISALLOW_COPY_AND_ASSIGN(RequestSocketCallback); }; TEST_F(TransportClientSocketPoolTest, RequestTwice) { ClientSocketHandle handle; RequestSocketCallback callback(&handle, &pool_); scoped_refptr dest(new TransportSocketParams( HostPortPair("www.google.com", 80), LOWEST, false, false, OnHostResolutionCallback())); int rv = handle.Init("a", dest, LOWEST, callback.callback(), &pool_, BoundNetLog()); ASSERT_EQ(ERR_IO_PENDING, rv); // The callback is going to request "www.google.com". We want it to complete // synchronously this time. host_resolver_->set_synchronous_mode(true); EXPECT_EQ(OK, callback.WaitForResult()); handle.Reset(); } // Make sure that pending requests get serviced after active requests get // cancelled. TEST_F(TransportClientSocketPoolTest, CancelActiveRequestWithPendingRequests) { client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET); // Queue up all the requests EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); // Now, kMaxSocketsPerGroup requests should be active. Let's cancel them. ASSERT_LE(kMaxSocketsPerGroup, static_cast(requests()->size())); for (int i = 0; i < kMaxSocketsPerGroup; i++) (*requests())[i]->handle()->Reset(); // Let's wait for the rest to complete now. for (size_t i = kMaxSocketsPerGroup; i < requests()->size(); ++i) { EXPECT_EQ(OK, (*requests())[i]->WaitForResult()); (*requests())[i]->handle()->Reset(); } EXPECT_EQ(requests()->size() - kMaxSocketsPerGroup, completion_count()); } // Make sure that pending requests get serviced after active requests fail. TEST_F(TransportClientSocketPoolTest, FailingActiveRequestWithPendingRequests) { client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_PENDING_FAILING_CLIENT_SOCKET); const int kNumRequests = 2 * kMaxSocketsPerGroup + 1; ASSERT_LE(kNumRequests, kMaxSockets); // Otherwise the test will hang. // Queue up all the requests for (int i = 0; i < kNumRequests; i++) EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority)); for (int i = 0; i < kNumRequests; i++) EXPECT_EQ(ERR_CONNECTION_FAILED, (*requests())[i]->WaitForResult()); } TEST_F(TransportClientSocketPoolTest, IdleSocketLoadTiming) { TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); TestLoadTimingInfoConnectedNotReused(handle); handle.Reset(); // Need to run all pending to release the socket back to the pool. base::MessageLoop::current()->RunUntilIdle(); // Now we should have 1 idle socket. EXPECT_EQ(1, pool_.IdleSocketCount()); rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(OK, rv); EXPECT_EQ(0, pool_.IdleSocketCount()); TestLoadTimingInfoConnectedReused(handle); } TEST_F(TransportClientSocketPoolTest, ResetIdleSocketsOnIPAddressChange) { TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); handle.Reset(); // Need to run all pending to release the socket back to the pool. base::MessageLoop::current()->RunUntilIdle(); // Now we should have 1 idle socket. EXPECT_EQ(1, pool_.IdleSocketCount()); // After an IP address change, we should have 0 idle sockets. NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); base::MessageLoop::current()->RunUntilIdle(); // Notification happens async. EXPECT_EQ(0, pool_.IdleSocketCount()); } TEST_F(TransportClientSocketPoolTest, BackupSocketConnect) { // Case 1 tests the first socket stalling, and the backup connecting. MockClientSocketFactory::ClientSocketType case1_types[] = { // The first socket will not connect. MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET, // The second socket will connect more quickly. MockClientSocketFactory::MOCK_CLIENT_SOCKET }; // Case 2 tests the first socket being slow, so that we start the // second connect, but the second connect stalls, and we still // complete the first. MockClientSocketFactory::ClientSocketType case2_types[] = { // The first socket will connect, although delayed. MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET, // The second socket will not connect. MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET }; MockClientSocketFactory::ClientSocketType* cases[2] = { case1_types, case2_types }; for (size_t index = 0; index < arraysize(cases); ++index) { client_socket_factory_.set_client_socket_types(cases[index], 2); EXPECT_EQ(0, pool_.IdleSocketCount()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("b", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); // Create the first socket, set the timer. base::MessageLoop::current()->RunUntilIdle(); // Wait for the backup socket timer to fire. base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds( ClientSocketPool::kMaxConnectRetryIntervalMs + 50)); // Let the appropriate socket connect. base::MessageLoop::current()->RunUntilIdle(); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); // One socket is stalled, the other is active. EXPECT_EQ(0, pool_.IdleSocketCount()); handle.Reset(); // Close all pending connect jobs and existing sockets. pool_.FlushWithError(ERR_NETWORK_CHANGED); } } // Test the case where a socket took long enough to start the creation // of the backup socket, but then we cancelled the request after that. TEST_F(TransportClientSocketPoolTest, BackupSocketCancel) { client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET); enum { CANCEL_BEFORE_WAIT, CANCEL_AFTER_WAIT }; for (int index = CANCEL_BEFORE_WAIT; index < CANCEL_AFTER_WAIT; ++index) { EXPECT_EQ(0, pool_.IdleSocketCount()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("c", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); // Create the first socket, set the timer. base::MessageLoop::current()->RunUntilIdle(); if (index == CANCEL_AFTER_WAIT) { // Wait for the backup socket timer to fire. base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds( ClientSocketPool::kMaxConnectRetryIntervalMs)); } // Let the appropriate socket connect. base::MessageLoop::current()->RunUntilIdle(); handle.Reset(); EXPECT_FALSE(callback.have_result()); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); // One socket is stalled, the other is active. EXPECT_EQ(0, pool_.IdleSocketCount()); } } // Test the case where a socket took long enough to start the creation // of the backup socket and never completes, and then the backup // connection fails. TEST_F(TransportClientSocketPoolTest, BackupSocketFailAfterStall) { MockClientSocketFactory::ClientSocketType case_types[] = { // The first socket will not connect. MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET, // The second socket will fail immediately. MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET }; client_socket_factory_.set_client_socket_types(case_types, 2); EXPECT_EQ(0, pool_.IdleSocketCount()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("b", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); // Create the first socket, set the timer. base::MessageLoop::current()->RunUntilIdle(); // Wait for the backup socket timer to fire. base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds( ClientSocketPool::kMaxConnectRetryIntervalMs)); // Let the second connect be synchronous. Otherwise, the emulated // host resolution takes an extra trip through the message loop. host_resolver_->set_synchronous_mode(true); // Let the appropriate socket connect. base::MessageLoop::current()->RunUntilIdle(); EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult()); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(0, pool_.IdleSocketCount()); handle.Reset(); // Reset for the next case. host_resolver_->set_synchronous_mode(false); } // Test the case where a socket took long enough to start the creation // of the backup socket and eventually completes, but the backup socket // fails. TEST_F(TransportClientSocketPoolTest, BackupSocketFailAfterDelay) { MockClientSocketFactory::ClientSocketType case_types[] = { // The first socket will connect, although delayed. MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET, // The second socket will not connect. MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET }; client_socket_factory_.set_client_socket_types(case_types, 2); client_socket_factory_.set_delay(base::TimeDelta::FromSeconds(5)); EXPECT_EQ(0, pool_.IdleSocketCount()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("b", low_params_, LOW, callback.callback(), &pool_, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); // Create the first socket, set the timer. base::MessageLoop::current()->RunUntilIdle(); // Wait for the backup socket timer to fire. base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds( ClientSocketPool::kMaxConnectRetryIntervalMs)); // Let the second connect be synchronous. Otherwise, the emulated // host resolution takes an extra trip through the message loop. host_resolver_->set_synchronous_mode(true); // Let the appropriate socket connect. base::MessageLoop::current()->RunUntilIdle(); EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult()); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); handle.Reset(); // Reset for the next case. host_resolver_->set_synchronous_mode(false); } // Test the case of the IPv6 address stalling, and falling back to the IPv4 // socket which finishes first. TEST_F(TransportClientSocketPoolTest, IPv6FallbackSocketIPv4FinishesFirst) { // Create a pool without backup jobs. ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false); TransportClientSocketPool pool(kMaxSockets, kMaxSocketsPerGroup, histograms_.get(), host_resolver_.get(), &client_socket_factory_, NULL); MockClientSocketFactory::ClientSocketType case_types[] = { // This is the IPv6 socket. MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET, // This is the IPv4 socket. MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET }; client_socket_factory_.set_client_socket_types(case_types, 2); // Resolve an AddressList with a IPv6 address first and then a IPv4 address. host_resolver_->rules() ->AddIPLiteralRule("*", "2:abcd::3:4:ff,2.2.2.2", std::string()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); IPEndPoint endpoint; handle.socket()->GetLocalAddress(&endpoint); EXPECT_EQ(kIPv4AddressSize, endpoint.address().size()); EXPECT_EQ(2, client_socket_factory_.allocation_count()); } // Test the case of the IPv6 address being slow, thus falling back to trying to // connect to the IPv4 address, but having the connect to the IPv6 address // finish first. TEST_F(TransportClientSocketPoolTest, IPv6FallbackSocketIPv6FinishesFirst) { // Create a pool without backup jobs. ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false); TransportClientSocketPool pool(kMaxSockets, kMaxSocketsPerGroup, histograms_.get(), host_resolver_.get(), &client_socket_factory_, NULL); MockClientSocketFactory::ClientSocketType case_types[] = { // This is the IPv6 socket. MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET, // This is the IPv4 socket. MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET }; client_socket_factory_.set_client_socket_types(case_types, 2); client_socket_factory_.set_delay(base::TimeDelta::FromMilliseconds( TransportConnectJob::kIPv6FallbackTimerInMs + 50)); // Resolve an AddressList with a IPv6 address first and then a IPv4 address. host_resolver_->rules() ->AddIPLiteralRule("*", "2:abcd::3:4:ff,2.2.2.2", std::string()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); IPEndPoint endpoint; handle.socket()->GetLocalAddress(&endpoint); EXPECT_EQ(kIPv6AddressSize, endpoint.address().size()); EXPECT_EQ(2, client_socket_factory_.allocation_count()); } TEST_F(TransportClientSocketPoolTest, IPv6NoIPv4AddressesToFallbackTo) { // Create a pool without backup jobs. ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false); TransportClientSocketPool pool(kMaxSockets, kMaxSocketsPerGroup, histograms_.get(), host_resolver_.get(), &client_socket_factory_, NULL); client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET); // Resolve an AddressList with only IPv6 addresses. host_resolver_->rules() ->AddIPLiteralRule("*", "2:abcd::3:4:ff,3:abcd::3:4:ff", std::string()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); IPEndPoint endpoint; handle.socket()->GetLocalAddress(&endpoint); EXPECT_EQ(kIPv6AddressSize, endpoint.address().size()); EXPECT_EQ(1, client_socket_factory_.allocation_count()); } TEST_F(TransportClientSocketPoolTest, IPv4HasNoFallback) { // Create a pool without backup jobs. ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false); TransportClientSocketPool pool(kMaxSockets, kMaxSocketsPerGroup, histograms_.get(), host_resolver_.get(), &client_socket_factory_, NULL); client_socket_factory_.set_client_socket_type( MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET); // Resolve an AddressList with only IPv4 addresses. host_resolver_->rules()->AddIPLiteralRule("*", "1.1.1.1", std::string()); TestCompletionCallback callback; ClientSocketHandle handle; int rv = handle.Init("a", low_params_, LOW, callback.callback(), &pool, BoundNetLog()); EXPECT_EQ(ERR_IO_PENDING, rv); EXPECT_FALSE(handle.is_initialized()); EXPECT_FALSE(handle.socket()); EXPECT_EQ(OK, callback.WaitForResult()); EXPECT_TRUE(handle.is_initialized()); EXPECT_TRUE(handle.socket()); IPEndPoint endpoint; handle.socket()->GetLocalAddress(&endpoint); EXPECT_EQ(kIPv4AddressSize, endpoint.address().size()); EXPECT_EQ(1, client_socket_factory_.allocation_count()); } } // namespace } // namespace net