// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/spdy/spdy_framer.h" #include "base/lazy_instance.h" #include "base/memory/scoped_ptr.h" #include "base/third_party/valgrind/memcheck.h" #include "net/spdy/spdy_frame_builder.h" #include "net/spdy/spdy_frame_reader.h" #include "net/spdy/spdy_bitmasks.h" #include "third_party/zlib/zlib.h" using base::StringPiece; using std::string; using std::vector; namespace net { namespace { // Compute the id of our dictionary so that we know we're using the // right one when asked for it. uLong CalculateDictionaryId(const char* dictionary, const size_t dictionary_size) { uLong initial_value = adler32(0L, Z_NULL, 0); return adler32(initial_value, reinterpret_cast(dictionary), dictionary_size); } // Check to see if the name and value of a cookie are both empty. bool IsCookieEmpty(const base::StringPiece& cookie) { if (cookie.size() == 0) { return true; } size_t pos = cookie.find('='); if (pos == base::StringPiece::npos) { return false; } // Ignore leading whitespaces of cookie value. size_t value_start = pos + 1; for (; value_start < cookie.size(); value_start++) { if (!(cookie[value_start] == ' ' || cookie[value_start] == '\t')) { break; } } return (pos == 0) && ((cookie.size() - value_start) == 0); } struct DictionaryIds { DictionaryIds() : v2_dictionary_id(CalculateDictionaryId(kV2Dictionary, kV2DictionarySize)), v3_dictionary_id(CalculateDictionaryId(kV3Dictionary, kV3DictionarySize)) {} const uLong v2_dictionary_id; const uLong v3_dictionary_id; }; // Adler ID for the SPDY header compressor dictionaries. Note that they are // initialized lazily to avoid static initializers. base::LazyInstance::Leaky g_dictionary_ids; // Used to indicate no flags in a SPDY flags field. const uint8 kNoFlags = 0; // Wire sizes of priority payloads. const size_t kPriorityDependencyPayloadSize = 4; const size_t kPriorityWeightPayloadSize = 1; // Wire size of pad length field. const size_t kPadLengthFieldSize = 1; } // namespace const SpdyStreamId SpdyFramer::kInvalidStream = static_cast(-1); const size_t SpdyFramer::kHeaderDataChunkMaxSize = 1024; // We fragment sent control frames at smaller payload boundaries. const size_t SpdyFramer::kMaxControlFrameSize = 1024; // The size of the control frame buffer. Must be >= the minimum size of the // largest control frame, which is SYN_STREAM. See GetSynStreamMinimumSize() for // calculation details. const size_t SpdyFramer::kControlFrameBufferSize = 19; #ifdef DEBUG_SPDY_STATE_CHANGES #define CHANGE_STATE(newstate) \ do { \ DVLOG(1) << "Changing state from: " \ << StateToString(state_) \ << " to " << StateToString(newstate) << "\n"; \ DCHECK(state_ != SPDY_ERROR); \ DCHECK_EQ(previous_state_, state_); \ previous_state_ = state_; \ state_ = newstate; \ } while (false) #else #define CHANGE_STATE(newstate) \ do { \ DCHECK(state_ != SPDY_ERROR); \ DCHECK_EQ(previous_state_, state_); \ previous_state_ = state_; \ state_ = newstate; \ } while (false) #endif SettingsFlagsAndId SettingsFlagsAndId::FromWireFormat( SpdyMajorVersion version, uint32 wire) { if (version < SPDY3) { ConvertFlagsAndIdForSpdy2(&wire); } return SettingsFlagsAndId(ntohl(wire) >> 24, ntohl(wire) & 0x00ffffff); } SettingsFlagsAndId::SettingsFlagsAndId(uint8 flags, uint32 id) : flags_(flags), id_(id & 0x00ffffff) { LOG_IF(DFATAL, id > (1u << 24)) << "SPDY setting ID too large: " << id; } uint32 SettingsFlagsAndId::GetWireFormat(SpdyMajorVersion version) const { uint32 wire = htonl(id_ & 0x00ffffff) | htonl(flags_ << 24); if (version < SPDY3) { ConvertFlagsAndIdForSpdy2(&wire); } return wire; } // SPDY 2 had a bug in it with respect to byte ordering of id/flags field. // This method is used to preserve buggy behavior and works on both // little-endian and big-endian hosts. // This method is also bidirectional (can be used to translate SPDY 2 to SPDY 3 // as well as vice versa). void SettingsFlagsAndId::ConvertFlagsAndIdForSpdy2(uint32* val) { uint8* wire_array = reinterpret_cast(val); std::swap(wire_array[0], wire_array[3]); std::swap(wire_array[1], wire_array[2]); } SpdyAltSvcScratch::SpdyAltSvcScratch() { Reset(); } SpdyAltSvcScratch::~SpdyAltSvcScratch() {} bool SpdyFramerVisitorInterface::OnGoAwayFrameData(const char* goaway_data, size_t len) { return true; } bool SpdyFramerVisitorInterface::OnRstStreamFrameData( const char* rst_stream_data, size_t len) { return true; } SpdyFramer::SpdyFramer(SpdyMajorVersion version) : current_frame_buffer_(new char[kControlFrameBufferSize]), enable_compression_(true), visitor_(NULL), debug_visitor_(NULL), display_protocol_("SPDY"), protocol_version_(version), syn_frame_processed_(false), probable_http_response_(false), expect_continuation_(0), end_stream_when_done_(false) { DCHECK_GE(protocol_version_, SPDY_MIN_VERSION); DCHECK_LE(protocol_version_, SPDY_MAX_VERSION); DCHECK_LE(kMaxControlFrameSize, SpdyConstants::GetFrameMaximumSize(protocol_version_) + SpdyConstants::GetControlFrameHeaderSize(protocol_version_)); Reset(); } SpdyFramer::~SpdyFramer() { if (header_compressor_.get()) { deflateEnd(header_compressor_.get()); } if (header_decompressor_.get()) { inflateEnd(header_decompressor_.get()); } } void SpdyFramer::Reset() { state_ = SPDY_RESET; previous_state_ = SPDY_RESET; error_code_ = SPDY_NO_ERROR; remaining_data_length_ = 0; remaining_control_header_ = 0; current_frame_buffer_length_ = 0; current_frame_type_ = DATA; current_frame_flags_ = 0; current_frame_length_ = 0; current_frame_stream_id_ = kInvalidStream; settings_scratch_.Reset(); altsvc_scratch_.Reset(); remaining_padding_payload_length_ = 0; } size_t SpdyFramer::GetDataFrameMinimumSize() const { return SpdyConstants::GetDataFrameMinimumSize(protocol_version()); } // Size, in bytes, of the control frame header. size_t SpdyFramer::GetControlFrameHeaderSize() const { return SpdyConstants::GetControlFrameHeaderSize(protocol_version()); } size_t SpdyFramer::GetSynStreamMinimumSize() const { // Size, in bytes, of a SYN_STREAM frame not including the variable-length // name-value block. if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 2 * 4 (stream IDs) + 1 (priority) // + 1 (unused, was credential slot) return GetControlFrameHeaderSize() + 10; } else { return GetControlFrameHeaderSize() + kPriorityDependencyPayloadSize + kPriorityWeightPayloadSize; } } size_t SpdyFramer::GetSynReplyMinimumSize() const { // Size, in bytes, of a SYN_REPLY frame not including the variable-length // name-value block. size_t size = GetControlFrameHeaderSize(); if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 4 (stream IDs) size += 4; } // In SPDY 2, there were 2 unused bytes before payload. if (protocol_version() < SPDY3) { size += 2; } return size; } size_t SpdyFramer::GetRstStreamMinimumSize() const { // Size, in bytes, of a RST_STREAM frame. if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 4 (stream id) + 4 (status code) return GetControlFrameHeaderSize() + 8; } else { // Calculated as: // frame prefix + 4 (status code) return GetControlFrameHeaderSize() + 4; } } size_t SpdyFramer::GetSettingsMinimumSize() const { // Size, in bytes, of a SETTINGS frame not including the IDs and values // from the variable-length value block. Calculated as: // control frame header + 4 (number of ID/value pairs) if (protocol_version() <= SPDY3) { return GetControlFrameHeaderSize() + 4; } else { return GetControlFrameHeaderSize(); } } size_t SpdyFramer::GetPingSize() const { // Size, in bytes, of this PING frame. if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 4 (id) return GetControlFrameHeaderSize() + 4; } else { // Calculated as: // control frame header + 8 (id) return GetControlFrameHeaderSize() + 8; } } size_t SpdyFramer::GetGoAwayMinimumSize() const { // Size, in bytes, of this GOAWAY frame. Calculated as: // 1. Control frame header size size_t size = GetControlFrameHeaderSize(); // 2. Last good stream id (4 bytes) size += 4; // 3. SPDY 3+ GOAWAY frames also contain a status (4 bytes) if (protocol_version() >= SPDY3) { size += 4; } return size; } size_t SpdyFramer::GetHeadersMinimumSize() const { // Size, in bytes, of a HEADERS frame not including the variable-length // name-value block. size_t size = GetControlFrameHeaderSize(); if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 4 (stream IDs) size += 4; } // In SPDY 2, there were 2 unused bytes before payload. if (protocol_version() <= SPDY2) { size += 2; } return size; } size_t SpdyFramer::GetWindowUpdateSize() const { // Size, in bytes, of a WINDOW_UPDATE frame. if (protocol_version() <= SPDY3) { // Calculated as: // control frame header + 4 (stream id) + 4 (delta) return GetControlFrameHeaderSize() + 8; } else { // Calculated as: // frame prefix + 4 (delta) return GetControlFrameHeaderSize() + 4; } } size_t SpdyFramer::GetBlockedSize() const { DCHECK_LT(SPDY3, protocol_version()); // Size, in bytes, of a BLOCKED frame. // The BLOCKED frame has no payload beyond the control frame header. return GetControlFrameHeaderSize(); } size_t SpdyFramer::GetPushPromiseMinimumSize() const { DCHECK_LT(SPDY3, protocol_version()); // Size, in bytes, of a PUSH_PROMISE frame, sans the embedded header block. // Calculated as frame prefix + 4 (promised stream id). return GetControlFrameHeaderSize() + 4; } size_t SpdyFramer::GetContinuationMinimumSize() const { // Size, in bytes, of a CONTINUATION frame not including the variable-length // headers fragments. return GetControlFrameHeaderSize(); } size_t SpdyFramer::GetAltSvcMinimumSize() const { // Size, in bytes, of an ALTSVC frame not including the Protocol-ID, Host, and // (optional) Origin fields, all of which can vary in length. // Note that this gives a lower bound on the frame size rather than a true // minimum; the actual frame should always be larger than this. // Calculated as frame prefix + 4 (max-age) + 2 (port) + 1 (reserved byte) // + 1 (pid_len) + 1 (host_len). return GetControlFrameHeaderSize() + 9; } size_t SpdyFramer::GetPrioritySize() const { // Size, in bytes, of a PRIORITY frame. return GetControlFrameHeaderSize() + kPriorityDependencyPayloadSize + kPriorityWeightPayloadSize; } size_t SpdyFramer::GetFrameMinimumSize() const { return std::min(GetDataFrameMinimumSize(), GetControlFrameHeaderSize()); } size_t SpdyFramer::GetFrameMaximumSize() const { return SpdyConstants::GetFrameMaximumSize(protocol_version()); } size_t SpdyFramer::GetDataFrameMaximumPayload() const { return GetFrameMaximumSize() - GetDataFrameMinimumSize(); } size_t SpdyFramer::GetPrefixLength(SpdyFrameType type) const { return SpdyConstants::GetPrefixLength(type, protocol_version()); } const char* SpdyFramer::StateToString(int state) { switch (state) { case SPDY_ERROR: return "ERROR"; case SPDY_AUTO_RESET: return "AUTO_RESET"; case SPDY_RESET: return "RESET"; case SPDY_READING_COMMON_HEADER: return "READING_COMMON_HEADER"; case SPDY_CONTROL_FRAME_PAYLOAD: return "CONTROL_FRAME_PAYLOAD"; case SPDY_READ_DATA_FRAME_PADDING_LENGTH: return "SPDY_READ_DATA_FRAME_PADDING_LENGTH"; case SPDY_CONSUME_PADDING: return "SPDY_CONSUME_PADDING"; case SPDY_IGNORE_REMAINING_PAYLOAD: return "IGNORE_REMAINING_PAYLOAD"; case SPDY_FORWARD_STREAM_FRAME: return "FORWARD_STREAM_FRAME"; case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK"; case SPDY_CONTROL_FRAME_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_HEADER_BLOCK"; case SPDY_GOAWAY_FRAME_PAYLOAD: return "SPDY_GOAWAY_FRAME_PAYLOAD"; case SPDY_RST_STREAM_FRAME_PAYLOAD: return "SPDY_RST_STREAM_FRAME_PAYLOAD"; case SPDY_SETTINGS_FRAME_PAYLOAD: return "SPDY_SETTINGS_FRAME_PAYLOAD"; case SPDY_ALTSVC_FRAME_PAYLOAD: return "SPDY_ALTSVC_FRAME_PAYLOAD"; } return "UNKNOWN_STATE"; } void SpdyFramer::set_error(SpdyError error) { DCHECK(visitor_); error_code_ = error; // These values will usually get reset once we come to the end // of a header block, but if we run into an error that // might not happen, so reset them here. expect_continuation_ = 0; end_stream_when_done_ = false; CHANGE_STATE(SPDY_ERROR); visitor_->OnError(this); } const char* SpdyFramer::ErrorCodeToString(int error_code) { switch (error_code) { case SPDY_NO_ERROR: return "NO_ERROR"; case SPDY_INVALID_CONTROL_FRAME: return "INVALID_CONTROL_FRAME"; case SPDY_CONTROL_PAYLOAD_TOO_LARGE: return "CONTROL_PAYLOAD_TOO_LARGE"; case SPDY_ZLIB_INIT_FAILURE: return "ZLIB_INIT_FAILURE"; case SPDY_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case SPDY_DECOMPRESS_FAILURE: return "DECOMPRESS_FAILURE"; case SPDY_COMPRESS_FAILURE: return "COMPRESS_FAILURE"; case SPDY_INVALID_DATA_FRAME_FLAGS: return "SPDY_INVALID_DATA_FRAME_FLAGS"; case SPDY_INVALID_CONTROL_FRAME_FLAGS: return "SPDY_INVALID_CONTROL_FRAME_FLAGS"; case SPDY_UNEXPECTED_FRAME: return "UNEXPECTED_FRAME"; } return "UNKNOWN_ERROR"; } const char* SpdyFramer::StatusCodeToString(int status_code) { switch (status_code) { case RST_STREAM_INVALID: return "INVALID"; case RST_STREAM_PROTOCOL_ERROR: return "PROTOCOL_ERROR"; case RST_STREAM_INVALID_STREAM: return "INVALID_STREAM"; case RST_STREAM_REFUSED_STREAM: return "REFUSED_STREAM"; case RST_STREAM_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case RST_STREAM_CANCEL: return "CANCEL"; case RST_STREAM_INTERNAL_ERROR: return "INTERNAL_ERROR"; case RST_STREAM_FLOW_CONTROL_ERROR: return "FLOW_CONTROL_ERROR"; case RST_STREAM_STREAM_IN_USE: return "STREAM_IN_USE"; case RST_STREAM_STREAM_ALREADY_CLOSED: return "STREAM_ALREADY_CLOSED"; case RST_STREAM_INVALID_CREDENTIALS: return "INVALID_CREDENTIALS"; case RST_STREAM_FRAME_TOO_LARGE: return "FRAME_TOO_LARGE"; case RST_STREAM_CONNECT_ERROR: return "CONNECT_ERROR"; case RST_STREAM_ENHANCE_YOUR_CALM: return "ENHANCE_YOUR_CALM"; case RST_STREAM_INADEQUATE_SECURITY: return "INADEQUATE_SECURITY"; case RST_STREAM_HTTP_1_1_REQUIRED: return "HTTP_1_1_REQUIRED"; } return "UNKNOWN_STATUS"; } const char* SpdyFramer::FrameTypeToString(SpdyFrameType type) { switch (type) { case DATA: return "DATA"; case SYN_STREAM: return "SYN_STREAM"; case SYN_REPLY: return "SYN_REPLY"; case RST_STREAM: return "RST_STREAM"; case SETTINGS: return "SETTINGS"; case PING: return "PING"; case GOAWAY: return "GOAWAY"; case HEADERS: return "HEADERS"; case WINDOW_UPDATE: return "WINDOW_UPDATE"; case CREDENTIAL: return "CREDENTIAL"; case PUSH_PROMISE: return "PUSH_PROMISE"; case CONTINUATION: return "CONTINUATION"; case PRIORITY: return "PRIORITY"; case ALTSVC: return "ALTSVC"; case BLOCKED: return "BLOCKED"; } return "UNKNOWN_CONTROL_TYPE"; } size_t SpdyFramer::ProcessInput(const char* data, size_t len) { DCHECK(visitor_); DCHECK(data); size_t original_len = len; do { previous_state_ = state_; switch (state_) { case SPDY_ERROR: goto bottom; case SPDY_AUTO_RESET: case SPDY_RESET: Reset(); if (len > 0) { CHANGE_STATE(SPDY_READING_COMMON_HEADER); } break; case SPDY_READING_COMMON_HEADER: { size_t bytes_read = ProcessCommonHeader(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: { // Control frames that contain header blocks // (SYN_STREAM, SYN_REPLY, HEADERS, PUSH_PROMISE, CONTINUATION) // take a different path through the state machine - they // will go: // 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // 2. SPDY_CONTROL_FRAME_HEADER_BLOCK // // SETTINGS frames take a slightly modified route: // 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // 2. SPDY_SETTINGS_FRAME_PAYLOAD // // All other control frames will use the alternate route directly to // SPDY_CONTROL_FRAME_PAYLOAD int bytes_read = ProcessControlFrameBeforeHeaderBlock(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_SETTINGS_FRAME_PAYLOAD: { int bytes_read = ProcessSettingsFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_HEADER_BLOCK: { int bytes_read = ProcessControlFrameHeaderBlock( data, len, protocol_version() > SPDY3); len -= bytes_read; data += bytes_read; break; } case SPDY_RST_STREAM_FRAME_PAYLOAD: { size_t bytes_read = ProcessRstStreamFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_GOAWAY_FRAME_PAYLOAD: { size_t bytes_read = ProcessGoAwayFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_ALTSVC_FRAME_PAYLOAD: { size_t bytes_read = ProcessAltSvcFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_PAYLOAD: { size_t bytes_read = ProcessControlFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_READ_DATA_FRAME_PADDING_LENGTH: { size_t bytes_read = ProcessDataFramePaddingLength(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONSUME_PADDING: { size_t bytes_read = ProcessFramePadding(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_IGNORE_REMAINING_PAYLOAD: { size_t bytes_read = ProcessIgnoredControlFramePayload(/*data,*/ len); len -= bytes_read; data += bytes_read; break; } case SPDY_FORWARD_STREAM_FRAME: { size_t bytes_read = ProcessDataFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } default: LOG(DFATAL) << "Invalid value for " << display_protocol_ << " framer state: " << state_; // This ensures that we don't infinite-loop if state_ gets an // invalid value somehow, such as due to a SpdyFramer getting deleted // from a callback it calls. goto bottom; } } while (state_ != previous_state_); bottom: DCHECK(len == 0 || state_ == SPDY_ERROR); if (current_frame_buffer_length_ == 0 && remaining_data_length_ == 0 && remaining_control_header_ == 0) { DCHECK(state_ == SPDY_RESET || state_ == SPDY_ERROR) << "State: " << StateToString(state_); } return original_len - len; } size_t SpdyFramer::ProcessCommonHeader(const char* data, size_t len) { // This should only be called when we're in the SPDY_READING_COMMON_HEADER // state. DCHECK_EQ(state_, SPDY_READING_COMMON_HEADER); size_t original_len = len; // Update current frame buffer as needed. if (current_frame_buffer_length_ < GetControlFrameHeaderSize()) { size_t bytes_desired = GetControlFrameHeaderSize() - current_frame_buffer_length_; UpdateCurrentFrameBuffer(&data, &len, bytes_desired); } if (current_frame_buffer_length_ < GetControlFrameHeaderSize()) { // Not enough information to do anything meaningful. return original_len - len; } // Using a scoped_ptr here since we may need to create a new SpdyFrameReader // when processing DATA frames below. scoped_ptr reader( new SpdyFrameReader(current_frame_buffer_.get(), current_frame_buffer_length_)); bool is_control_frame = false; int control_frame_type_field = SpdyConstants::DataFrameType(protocol_version()); // ProcessControlFrameHeader() will set current_frame_type_ to the // correct value if this is a valid control frame. current_frame_type_ = DATA; if (protocol_version() <= SPDY3) { uint16 version = 0; bool successful_read = reader->ReadUInt16(&version); DCHECK(successful_read); is_control_frame = (version & kControlFlagMask) != 0; version &= ~kControlFlagMask; // Only valid for control frames. if (is_control_frame) { // We check version before we check validity: version can never be // 'invalid', it can only be unsupported. if (version < SpdyConstants::SerializeMajorVersion(SPDY_MIN_VERSION) || version > SpdyConstants::SerializeMajorVersion(SPDY_MAX_VERSION) || SpdyConstants::ParseMajorVersion(version) != protocol_version()) { // Version does not match the version the framer was initialized with. DVLOG(1) << "Unsupported SPDY version " << version << " (expected " << protocol_version() << ")"; set_error(SPDY_UNSUPPORTED_VERSION); return 0; } // We check control_frame_type_field's validity in // ProcessControlFrameHeader(). uint16 control_frame_type_field_uint16; successful_read = reader->ReadUInt16(&control_frame_type_field_uint16); control_frame_type_field = control_frame_type_field_uint16; } else { reader->Rewind(); successful_read = reader->ReadUInt31(¤t_frame_stream_id_); } DCHECK(successful_read); successful_read = reader->ReadUInt8(¤t_frame_flags_); DCHECK(successful_read); uint32 length_field = 0; successful_read = reader->ReadUInt24(&length_field); DCHECK(successful_read); remaining_data_length_ = length_field; current_frame_length_ = remaining_data_length_ + reader->GetBytesConsumed(); } else { uint32 length_field = 0; bool successful_read = reader->ReadUInt24(&length_field); DCHECK(successful_read); uint8 control_frame_type_field_uint8; successful_read = reader->ReadUInt8(&control_frame_type_field_uint8); DCHECK(successful_read); // We check control_frame_type_field's validity in // ProcessControlFrameHeader(). control_frame_type_field = control_frame_type_field_uint8; is_control_frame = control_frame_type_field != SpdyConstants::SerializeFrameType(protocol_version(), DATA); if (is_control_frame) { current_frame_length_ = length_field + GetControlFrameHeaderSize(); } else { current_frame_length_ = length_field + GetDataFrameMinimumSize(); } successful_read = reader->ReadUInt8(¤t_frame_flags_); DCHECK(successful_read); successful_read = reader->ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); remaining_data_length_ = current_frame_length_ - reader->GetBytesConsumed(); // Before we accept a DATA frame, we need to make sure we're not in the // middle of processing a header block. const bool is_continuation_frame = (control_frame_type_field == SpdyConstants::SerializeFrameType(protocol_version(), CONTINUATION)); if ((expect_continuation_ != 0) != is_continuation_frame) { if (expect_continuation_ != 0) { DLOG(ERROR) << "The framer was expecting to receive a CONTINUATION " << "frame, but instead received frame type " << control_frame_type_field; } else { DLOG(ERROR) << "The framer received an unexpected CONTINUATION frame."; } set_error(SPDY_UNEXPECTED_FRAME); return original_len - len; } } DCHECK_EQ(is_control_frame ? GetControlFrameHeaderSize() : GetDataFrameMinimumSize(), reader->GetBytesConsumed()); DCHECK_EQ(current_frame_length_, remaining_data_length_ + reader->GetBytesConsumed()); // This is just a sanity check for help debugging early frame errors. if (remaining_data_length_ > 1000000u) { // The strncmp for 5 is safe because we only hit this point if we // have kMinCommonHeader (8) bytes if (!syn_frame_processed_ && strncmp(current_frame_buffer_.get(), "HTTP/", 5) == 0) { LOG(WARNING) << "Unexpected HTTP response to " << display_protocol_ << " request"; probable_http_response_ = true; } else { LOG(WARNING) << "Unexpectedly large frame. " << display_protocol_ << " session is likely corrupt."; } } // if we're here, then we have the common header all received. if (!is_control_frame) { if (protocol_version() > SPDY3) { // Catch bogus tests sending oversized DATA frames. DCHECK_GE(GetFrameMaximumSize(), current_frame_length_) << "DATA frame too large for SPDY >= 4."; } uint8 valid_data_flags = 0; if (protocol_version() > SPDY3) { valid_data_flags = DATA_FLAG_FIN | DATA_FLAG_END_SEGMENT | DATA_FLAG_PADDED; } else { valid_data_flags = DATA_FLAG_FIN; } if (current_frame_flags_ & ~valid_data_flags) { set_error(SPDY_INVALID_DATA_FRAME_FLAGS); } else { visitor_->OnDataFrameHeader(current_frame_stream_id_, remaining_data_length_, current_frame_flags_ & DATA_FLAG_FIN); if (remaining_data_length_ > 0) { CHANGE_STATE(SPDY_READ_DATA_FRAME_PADDING_LENGTH); } else { // Empty data frame. if (current_frame_flags_ & DATA_FLAG_FIN) { visitor_->OnStreamFrameData( current_frame_stream_id_, NULL, 0, true); } CHANGE_STATE(SPDY_AUTO_RESET); } } } else { ProcessControlFrameHeader(control_frame_type_field); } return original_len - len; } void SpdyFramer::ProcessControlFrameHeader(int control_frame_type_field) { DCHECK_EQ(SPDY_NO_ERROR, error_code_); DCHECK_LE(GetControlFrameHeaderSize(), current_frame_buffer_length_); // TODO(mlavan): Either remove credential frames from the code entirely, // or add them to parsing + serialization methods for SPDY3. // Early detection of deprecated frames that we ignore. if (protocol_version() <= SPDY3) { if (control_frame_type_field == CREDENTIAL) { current_frame_type_ = CREDENTIAL; DCHECK_EQ(SPDY3, protocol_version()); DVLOG(1) << "CREDENTIAL control frame found. Ignoring."; CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD); return; } } if (!SpdyConstants::IsValidFrameType(protocol_version(), control_frame_type_field)) { if (protocol_version() <= SPDY3) { DLOG(WARNING) << "Invalid control frame type " << control_frame_type_field << " (protocol version: " << protocol_version() << ")"; set_error(SPDY_INVALID_CONTROL_FRAME); return; } else { // In HTTP2 we ignore unknown frame types for extensibility, as long as // the rest of the control frame header is valid. // We rely on the visitor to check validity of current_frame_stream_id_. bool valid_stream = visitor_->OnUnknownFrame(current_frame_stream_id_, control_frame_type_field); if (valid_stream) { DVLOG(1) << "Ignoring unknown frame type."; CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD); } else { // Report an invalid frame error and close the stream if the // stream_id is not valid. DLOG(WARNING) << "Unknown control frame type " << control_frame_type_field << " received on invalid stream " << current_frame_stream_id_; set_error(SPDY_INVALID_CONTROL_FRAME); } return; } } current_frame_type_ = SpdyConstants::ParseFrameType(protocol_version(), control_frame_type_field); // Do some sanity checking on the control frame sizes and flags. switch (current_frame_type_) { case SYN_STREAM: if (current_frame_length_ < GetSynStreamMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~(CONTROL_FLAG_FIN | CONTROL_FLAG_UNIDIRECTIONAL)) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case SYN_REPLY: if (current_frame_length_ < GetSynReplyMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~CONTROL_FLAG_FIN) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case RST_STREAM: // For SPDY versions < 4, the header has a fixed length. // For SPDY version 4 and up, the RST_STREAM frame may include optional // opaque data, so we only have a lower limit on the frame size. if ((current_frame_length_ != GetRstStreamMinimumSize() && protocol_version() <= SPDY3) || (current_frame_length_ < GetRstStreamMinimumSize() && protocol_version() > SPDY3)) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case SETTINGS: { // Make sure that we have an integral number of 8-byte key/value pairs, // plus a 4-byte length field in SPDY3 and below. size_t values_prefix_size = (protocol_version() <= SPDY3 ? 4 : 0); // Size of each key/value pair in bytes. size_t setting_size = SpdyConstants::GetSettingSize(protocol_version()); if (current_frame_length_ < GetSettingsMinimumSize() || (current_frame_length_ - GetControlFrameHeaderSize()) % setting_size != values_prefix_size) { DLOG(WARNING) << "Invalid length for SETTINGS frame: " << current_frame_length_; set_error(SPDY_INVALID_CONTROL_FRAME); } else if (protocol_version() <= SPDY3 && current_frame_flags_ & ~SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } else if (protocol_version() > SPDY3 && current_frame_flags_ & ~SETTINGS_FLAG_ACK) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } else if (protocol_version() > SPDY3 && current_frame_flags_ & SETTINGS_FLAG_ACK && current_frame_length_ > GetSettingsMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } break; } case PING: if (current_frame_length_ != GetPingSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if ((protocol_version() <= SPDY3 && current_frame_flags_ != 0) || (current_frame_flags_ & ~PING_FLAG_ACK)) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case GOAWAY: { // For SPDY version < 4, there are only mandatory fields and the header // has a fixed length. For SPDY version >= 4, optional opaque data may // be appended to the GOAWAY frame, thus there is only a minimal length // restriction. if ((current_frame_length_ != GetGoAwayMinimumSize() && protocol_version() <= SPDY3) || (current_frame_length_ < GetGoAwayMinimumSize() && protocol_version() > SPDY3)) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; } case HEADERS: { size_t min_size = GetHeadersMinimumSize(); if (protocol_version() > SPDY3 && (current_frame_flags_ & HEADERS_FLAG_PRIORITY)) { min_size += 4; } if (current_frame_length_ < min_size) { // TODO(mlavan): check here for HEADERS with no payload? // (not allowed in SPDY4) set_error(SPDY_INVALID_CONTROL_FRAME); } else if (protocol_version() <= SPDY3 && current_frame_flags_ & ~CONTROL_FLAG_FIN) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } else if (protocol_version() > SPDY3 && current_frame_flags_ & ~(CONTROL_FLAG_FIN | HEADERS_FLAG_PRIORITY | HEADERS_FLAG_END_HEADERS | HEADERS_FLAG_END_SEGMENT | HEADERS_FLAG_PADDED)) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } } break; case WINDOW_UPDATE: if (current_frame_length_ != GetWindowUpdateSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case BLOCKED: if (current_frame_length_ != GetBlockedSize() || protocol_version() <= SPDY3) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case PUSH_PROMISE: if (current_frame_length_ < GetPushPromiseMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (protocol_version() <= SPDY3 && current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } else if (protocol_version() > SPDY3 && current_frame_flags_ & ~(PUSH_PROMISE_FLAG_END_PUSH_PROMISE | HEADERS_FLAG_PADDED)) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case CONTINUATION: if (current_frame_length_ < GetContinuationMinimumSize() || protocol_version() <= SPDY3) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~HEADERS_FLAG_END_HEADERS) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case ALTSVC: if (current_frame_length_ <= GetAltSvcMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case PRIORITY: if (current_frame_length_ != GetPrioritySize() || protocol_version() <= SPDY3) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; default: LOG(WARNING) << "Valid " << display_protocol_ << " control frame with unhandled type: " << current_frame_type_; // This branch should be unreachable because of the frame type bounds // check above. However, we DLOG(FATAL) here in an effort to painfully // club the head of the developer who failed to keep this file in sync // with spdy_protocol.h. DLOG(FATAL); set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (state_ == SPDY_ERROR) { return; } if (current_frame_length_ > SpdyConstants::GetFrameMaximumSize(protocol_version()) + SpdyConstants::GetControlFrameHeaderSize(protocol_version())) { DLOG(WARNING) << "Received control frame of type " << current_frame_type_ << " with way too big of a payload: " << current_frame_length_; set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); return; } if (current_frame_type_ == GOAWAY) { CHANGE_STATE(SPDY_GOAWAY_FRAME_PAYLOAD); return; } if (current_frame_type_ == RST_STREAM) { CHANGE_STATE(SPDY_RST_STREAM_FRAME_PAYLOAD); return; } if (current_frame_type_ == ALTSVC) { CHANGE_STATE(SPDY_ALTSVC_FRAME_PAYLOAD); return; } // Determine the frame size without variable-length data. int32 frame_size_without_variable_data; switch (current_frame_type_) { case SYN_STREAM: syn_frame_processed_ = true; frame_size_without_variable_data = GetSynStreamMinimumSize(); break; case SYN_REPLY: syn_frame_processed_ = true; frame_size_without_variable_data = GetSynReplyMinimumSize(); break; case SETTINGS: frame_size_without_variable_data = GetSettingsMinimumSize(); break; case HEADERS: frame_size_without_variable_data = GetHeadersMinimumSize(); if (protocol_version() > SPDY3) { if (current_frame_flags_ & HEADERS_FLAG_PADDED) { frame_size_without_variable_data += kPadLengthFieldSize; } if (current_frame_flags_ & HEADERS_FLAG_PRIORITY) { frame_size_without_variable_data += kPriorityDependencyPayloadSize + kPriorityWeightPayloadSize; } } break; case PUSH_PROMISE: frame_size_without_variable_data = GetPushPromiseMinimumSize(); if (protocol_version() > SPDY3 && current_frame_flags_ & PUSH_PROMISE_FLAG_PADDED) { frame_size_without_variable_data += kPadLengthFieldSize; } break; case CONTINUATION: frame_size_without_variable_data = GetContinuationMinimumSize(); break; default: frame_size_without_variable_data = -1; break; } if ((frame_size_without_variable_data == -1) && (current_frame_length_ > kControlFrameBufferSize)) { // We should already be in an error state. Double-check. DCHECK_EQ(SPDY_ERROR, state_); if (state_ != SPDY_ERROR) { LOG(DFATAL) << display_protocol_ << " control frame buffer too small for fixed-length frame."; set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } return; } if (frame_size_without_variable_data > 0) { // We have a control frame with a header block. We need to parse the // remainder of the control frame's header before we can parse the header // block. The start of the header block varies with the control type. DCHECK_GE(frame_size_without_variable_data, static_cast(current_frame_buffer_length_)); remaining_control_header_ = frame_size_without_variable_data - current_frame_buffer_length_; CHANGE_STATE(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK); return; } CHANGE_STATE(SPDY_CONTROL_FRAME_PAYLOAD); } size_t SpdyFramer::UpdateCurrentFrameBuffer(const char** data, size_t* len, size_t max_bytes) { size_t bytes_to_read = std::min(*len, max_bytes); if (bytes_to_read > 0) { DCHECK_GE(kControlFrameBufferSize, current_frame_buffer_length_ + bytes_to_read); memcpy(current_frame_buffer_.get() + current_frame_buffer_length_, *data, bytes_to_read); current_frame_buffer_length_ += bytes_to_read; *data += bytes_to_read; *len -= bytes_to_read; } return bytes_to_read; } size_t SpdyFramer::GetSerializedLength( const SpdyMajorVersion spdy_version, const SpdyHeaderBlock* headers) { const size_t num_name_value_pairs_size = (spdy_version < SPDY3) ? sizeof(uint16) : sizeof(uint32); const size_t length_of_name_size = num_name_value_pairs_size; const size_t length_of_value_size = num_name_value_pairs_size; size_t total_length = num_name_value_pairs_size; for (SpdyHeaderBlock::const_iterator it = headers->begin(); it != headers->end(); ++it) { // We add space for the length of the name and the length of the value as // well as the length of the name and the length of the value. total_length += length_of_name_size + it->first.size() + length_of_value_size + it->second.size(); } return total_length; } void SpdyFramer::WriteHeaderBlock(SpdyFrameBuilder* frame, const SpdyMajorVersion spdy_version, const SpdyHeaderBlock* headers) { if (spdy_version < SPDY3) { frame->WriteUInt16(static_cast(headers->size())); } else { frame->WriteUInt32(headers->size()); } SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { if (spdy_version < SPDY3) { frame->WriteString(it->first); frame->WriteString(it->second); } else { frame->WriteStringPiece32(it->first); frame->WriteStringPiece32(it->second); } } } // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if !defined(USE_SYSTEM_ZLIB) // These constants are used by zlib to differentiate between normal data and // cookie data. Cookie data is handled specially by zlib when compressing. enum ZDataClass { // kZStandardData is compressed normally, save that it will never match // against any other class of data in the window. kZStandardData = Z_CLASS_STANDARD, // kZCookieData is compressed in its own Huffman blocks and only matches in // its entirety and only against other kZCookieData blocks. Any matches must // be preceeded by a kZStandardData byte, or a semicolon to prevent matching // a suffix. It's assumed that kZCookieData ends in a semicolon to prevent // prefix matches. kZCookieData = Z_CLASS_COOKIE, // kZHuffmanOnlyData is only Huffman compressed - no matches are performed // against the window. kZHuffmanOnlyData = Z_CLASS_HUFFMAN_ONLY, }; // WriteZ writes |data| to the deflate context |out|. WriteZ will flush as // needed when switching between classes of data. static void WriteZ(const base::StringPiece& data, ZDataClass clas, z_stream* out) { int rv; // If we are switching from standard to non-standard data then we need to end // the current Huffman context to avoid it leaking between them. if (out->clas == kZStandardData && clas != kZStandardData) { out->avail_in = 0; rv = deflate(out, Z_PARTIAL_FLUSH); DCHECK_EQ(Z_OK, rv); DCHECK_EQ(0u, out->avail_in); DCHECK_LT(0u, out->avail_out); } out->next_in = reinterpret_cast(const_cast(data.data())); out->avail_in = data.size(); out->clas = clas; if (clas == kZStandardData) { rv = deflate(out, Z_NO_FLUSH); } else { rv = deflate(out, Z_PARTIAL_FLUSH); } if (!data.empty()) { // If we didn't provide any data then zlib will return Z_BUF_ERROR. DCHECK_EQ(Z_OK, rv); } DCHECK_EQ(0u, out->avail_in); DCHECK_LT(0u, out->avail_out); } // WriteLengthZ writes |n| as a |length|-byte, big-endian number to |out|. static void WriteLengthZ(size_t n, unsigned length, ZDataClass clas, z_stream* out) { char buf[4]; DCHECK_LE(length, sizeof(buf)); for (unsigned i = 1; i <= length; i++) { buf[length - i] = static_cast(n); n >>= 8; } WriteZ(base::StringPiece(buf, length), clas, out); } // WriteHeaderBlockToZ serialises |headers| to the deflate context |z| in a // manner that resists the length of the compressed data from compromising // cookie data. void SpdyFramer::WriteHeaderBlockToZ(const SpdyHeaderBlock* headers, z_stream* z) const { unsigned length_length = 4; if (protocol_version() < 3) length_length = 2; WriteLengthZ(headers->size(), length_length, kZStandardData, z); std::map::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { WriteLengthZ(it->first.size(), length_length, kZStandardData, z); WriteZ(it->first, kZStandardData, z); if (it->first == "cookie") { // We require the cookie values (save for the last) to end with a // semicolon and (save for the first) to start with a space. This is // typically the format that we are given them in but we reserialize them // to be sure. std::vector cookie_values; size_t cookie_length = 0; base::StringPiece cookie_data(it->second); for (;;) { while (!cookie_data.empty() && (cookie_data[0] == ' ' || cookie_data[0] == '\t')) { cookie_data.remove_prefix(1); } if (cookie_data.empty()) break; size_t i; for (i = 0; i < cookie_data.size(); i++) { if (cookie_data[i] == ';') break; } if (i < cookie_data.size()) { if (!IsCookieEmpty(cookie_data.substr(0, i))) { cookie_values.push_back(cookie_data.substr(0, i)); cookie_length += i + 2 /* semicolon and space */; } cookie_data.remove_prefix(i + 1); } else { if (!IsCookieEmpty(cookie_data)) { cookie_values.push_back(cookie_data); cookie_length += cookie_data.size(); } else if (cookie_length > 2) { cookie_length -= 2 /* compensate for previously added length */; } cookie_data.remove_prefix(i); } } WriteLengthZ(cookie_length, length_length, kZStandardData, z); for (size_t i = 0; i < cookie_values.size(); i++) { std::string cookie; // Since zlib will only back-reference complete cookies, a cookie that // is currently last (and so doesn't have a trailing semicolon) won't // match if it's later in a non-final position. The same is true of // the first cookie. if (i == 0 && cookie_values.size() == 1) { cookie = cookie_values[i].as_string(); } else if (i == 0) { cookie = cookie_values[i].as_string() + ";"; } else if (i < cookie_values.size() - 1) { cookie = " " + cookie_values[i].as_string() + ";"; } else { cookie = " " + cookie_values[i].as_string(); } WriteZ(cookie, kZCookieData, z); } } else if (it->first == "accept" || it->first == "accept-charset" || it->first == "accept-encoding" || it->first == "accept-language" || it->first == "host" || it->first == "version" || it->first == "method" || it->first == "scheme" || it->first == ":host" || it->first == ":version" || it->first == ":method" || it->first == ":scheme" || it->first == "user-agent") { WriteLengthZ(it->second.size(), length_length, kZStandardData, z); WriteZ(it->second, kZStandardData, z); } else { // Non-whitelisted headers are Huffman compressed in their own block, but // don't match against the window. WriteLengthZ(it->second.size(), length_length, kZStandardData, z); WriteZ(it->second, kZHuffmanOnlyData, z); } } z->avail_in = 0; int rv = deflate(z, Z_SYNC_FLUSH); DCHECK_EQ(Z_OK, rv); z->clas = kZStandardData; } #endif // !defined(USE_SYSTEM_ZLIB) size_t SpdyFramer::ProcessControlFrameBeforeHeaderBlock(const char* data, size_t len) { DCHECK_EQ(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK, state_); const size_t original_len = len; if (remaining_control_header_ > 0) { size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_control_header_); remaining_control_header_ -= bytes_read; remaining_data_length_ -= bytes_read; } if (remaining_control_header_ == 0) { SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Seek past frame header. switch (current_frame_type_) { case SYN_STREAM: { DCHECK_GE(SPDY3, protocol_version()); bool successful_read = true; successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } SpdyStreamId associated_to_stream_id = kInvalidStream; successful_read = reader.ReadUInt31(&associated_to_stream_id); DCHECK(successful_read); SpdyPriority priority = 0; successful_read = reader.ReadUInt8(&priority); DCHECK(successful_read); if (protocol_version() <= SPDY2) { priority = priority >> 6; } else { priority = priority >> 5; } // Seek past unused byte; used to be credential slot in SPDY 3. reader.Seek(1); DCHECK(reader.IsDoneReading()); if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } visitor_->OnSynStream( current_frame_stream_id_, associated_to_stream_id, priority, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0, (current_frame_flags_ & CONTROL_FLAG_UNIDIRECTIONAL) != 0); } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; case SETTINGS: if (protocol_version() > SPDY3 && current_frame_flags_ & SETTINGS_FLAG_ACK) { visitor_->OnSettingsAck(); CHANGE_STATE(SPDY_AUTO_RESET); } else { visitor_->OnSettings(current_frame_flags_ & SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS); CHANGE_STATE(SPDY_SETTINGS_FRAME_PAYLOAD); } break; case SYN_REPLY: case HEADERS: // SYN_REPLY and HEADERS are the same, save for the visitor call. { if (protocol_version() > SPDY3) { DCHECK_EQ(HEADERS, current_frame_type_); } bool successful_read = true; if (protocol_version() <= SPDY3) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (protocol_version() <= SPDY2) { // SPDY 2 had two unused bytes here. Seek past them. reader.Seek(2); } if (protocol_version() > SPDY3 && !(current_frame_flags_ & HEADERS_FLAG_END_HEADERS) && current_frame_type_ == HEADERS) { expect_continuation_ = current_frame_stream_id_; end_stream_when_done_ = current_frame_flags_ & CONTROL_FLAG_FIN; } if (protocol_version() > SPDY3 && current_frame_flags_ & HEADERS_FLAG_PADDED) { uint8 pad_payload_len = 0; DCHECK_EQ(remaining_padding_payload_length_, 0u); successful_read = reader.ReadUInt8(&pad_payload_len); DCHECK(successful_read); remaining_padding_payload_length_ = pad_payload_len; } const bool has_priority = (current_frame_flags_ & HEADERS_FLAG_PRIORITY) != 0; SpdyPriority priority = 0; if (protocol_version() > SPDY3 && has_priority) { // TODO(jgraettinger): Process dependency rather than ignoring it. reader.Seek(kPriorityDependencyPayloadSize); uint8 weight = 0; successful_read = reader.ReadUInt8(&weight); if (successful_read) { priority = MapWeightToPriority(weight); } } DCHECK(reader.IsDoneReading()); if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } if (current_frame_type_ == SYN_REPLY) { visitor_->OnSynReply( current_frame_stream_id_, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0); } else { visitor_->OnHeaders( current_frame_stream_id_, (current_frame_flags_ & HEADERS_FLAG_PRIORITY) != 0, priority, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0, expect_continuation_ == 0); } } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; case PUSH_PROMISE: { DCHECK_LT(SPDY3, protocol_version()); if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } bool successful_read = true; if (protocol_version() > SPDY3 && current_frame_flags_ & PUSH_PROMISE_FLAG_PADDED) { DCHECK_EQ(remaining_padding_payload_length_, 0u); uint8 pad_payload_len = 0; successful_read = reader.ReadUInt8(&pad_payload_len); DCHECK(successful_read); remaining_padding_payload_length_ = pad_payload_len; } } { SpdyStreamId promised_stream_id = kInvalidStream; bool successful_read = reader.ReadUInt31(&promised_stream_id); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); if (promised_stream_id == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (!(current_frame_flags_ & PUSH_PROMISE_FLAG_END_PUSH_PROMISE)) { expect_continuation_ = current_frame_stream_id_; } if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } visitor_->OnPushPromise(current_frame_stream_id_, promised_stream_id, (current_frame_flags_ & PUSH_PROMISE_FLAG_END_PUSH_PROMISE) != 0); } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; case CONTINUATION: { // Check to make sure the stream id of the current frame is // the same as that of the preceding frame. // If we're at this point we should already know that // expect_continuation_ != 0, so this doubles as a check // that current_frame_stream_id != 0. if (current_frame_stream_id_ != expect_continuation_) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (current_frame_flags_ & HEADERS_FLAG_END_HEADERS) { expect_continuation_ = 0; } if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } visitor_->OnContinuation(current_frame_stream_id_, (current_frame_flags_ & HEADERS_FLAG_END_HEADERS) != 0); } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; default: DCHECK(false); } } return original_len - len; } // Does not buffer the control payload. Instead, either passes directly to the // visitor or decompresses and then passes directly to the visitor, via // IncrementallyDeliverControlFrameHeaderData() or // IncrementallyDecompressControlFrameHeaderData() respectively. size_t SpdyFramer::ProcessControlFrameHeaderBlock(const char* data, size_t data_len, bool is_hpack_header_block) { DCHECK_EQ(SPDY_CONTROL_FRAME_HEADER_BLOCK, state_); bool processed_successfully = true; if (current_frame_type_ != SYN_STREAM && current_frame_type_ != SYN_REPLY && current_frame_type_ != HEADERS && current_frame_type_ != PUSH_PROMISE && current_frame_type_ != CONTINUATION) { LOG(DFATAL) << "Unhandled frame type in ProcessControlFrameHeaderBlock."; } size_t process_bytes = std::min( data_len, remaining_data_length_ - remaining_padding_payload_length_); if (is_hpack_header_block) { if (!GetHpackDecoder()->HandleControlFrameHeadersData( current_frame_stream_id_, data, process_bytes)) { // TODO(jgraettinger): Finer-grained HPACK error codes. set_error(SPDY_DECOMPRESS_FAILURE); processed_successfully = false; } } else if (process_bytes > 0) { if (enable_compression_ && protocol_version() <= SPDY3) { processed_successfully = IncrementallyDecompressControlFrameHeaderData( current_frame_stream_id_, data, process_bytes); } else { processed_successfully = IncrementallyDeliverControlFrameHeaderData( current_frame_stream_id_, data, process_bytes); } } remaining_data_length_ -= process_bytes; // Handle the case that there is no futher data in this frame. if (remaining_data_length_ == remaining_padding_payload_length_ && processed_successfully) { if (expect_continuation_ == 0) { if (is_hpack_header_block) { if (!GetHpackDecoder()->HandleControlFrameHeadersComplete( current_frame_stream_id_)) { set_error(SPDY_DECOMPRESS_FAILURE); processed_successfully = false; } else { // TODO(jgraettinger): To be removed with migration to // SpdyHeadersHandlerInterface. Serializes the HPACK block as a SPDY3 // block, delivered via reentrant call to // ProcessControlFrameHeaderBlock(). DeliverHpackBlockAsSpdy3Block(); return process_bytes; } } else { // The complete header block has been delivered. We send a zero-length // OnControlFrameHeaderData() to indicate this. visitor_->OnControlFrameHeaderData(current_frame_stream_id_, NULL, 0); } } if (processed_successfully) { CHANGE_STATE(SPDY_CONSUME_PADDING); } } // Handle error. if (!processed_successfully) { return data_len; } // Return amount processed. return process_bytes; } size_t SpdyFramer::ProcessSettingsFramePayload(const char* data, size_t data_len) { DCHECK_EQ(SPDY_SETTINGS_FRAME_PAYLOAD, state_); DCHECK_EQ(SETTINGS, current_frame_type_); size_t unprocessed_bytes = std::min(data_len, remaining_data_length_); size_t processed_bytes = 0; size_t setting_size = SpdyConstants::GetSettingSize(protocol_version()); // Loop over our incoming data. while (unprocessed_bytes > 0) { // Process up to one setting at a time. size_t processing = std::min( unprocessed_bytes, static_cast(setting_size - settings_scratch_.setting_buf_len)); // Check if we have a complete setting in our input. if (processing == setting_size) { // Parse the setting directly out of the input without buffering. if (!ProcessSetting(data + processed_bytes)) { set_error(SPDY_INVALID_CONTROL_FRAME); return processed_bytes; } } else { // Continue updating settings_scratch_.setting_buf. memcpy(settings_scratch_.setting_buf + settings_scratch_.setting_buf_len, data + processed_bytes, processing); settings_scratch_.setting_buf_len += processing; // Check if we have a complete setting buffered. if (settings_scratch_.setting_buf_len == setting_size) { if (!ProcessSetting(settings_scratch_.setting_buf)) { set_error(SPDY_INVALID_CONTROL_FRAME); return processed_bytes; } // Reset settings_scratch_.setting_buf for our next setting. settings_scratch_.setting_buf_len = 0; } } // Iterate. unprocessed_bytes -= processing; processed_bytes += processing; } // Check if we're done handling this SETTINGS frame. remaining_data_length_ -= processed_bytes; if (remaining_data_length_ == 0) { visitor_->OnSettingsEnd(); CHANGE_STATE(SPDY_AUTO_RESET); } return processed_bytes; } void SpdyFramer::DeliverHpackBlockAsSpdy3Block() { DCHECK_LT(SPDY3, protocol_version()); DCHECK_EQ(remaining_padding_payload_length_, remaining_data_length_); const SpdyNameValueBlock& block = GetHpackDecoder()->decoded_block(); if (block.empty()) { // Special-case this to make tests happy. ProcessControlFrameHeaderBlock(NULL, 0, false); return; } SpdyFrameBuilder builder( GetSerializedLength(protocol_version(), &block), SPDY3); SerializeNameValueBlockWithoutCompression(&builder, block); scoped_ptr frame(builder.take()); // Preserve padding length, and reset it after the re-entrant call. size_t remaining_padding = remaining_padding_payload_length_; remaining_padding_payload_length_ = 0; remaining_data_length_ = frame->size(); ProcessControlFrameHeaderBlock(frame->data(), frame->size(), false); remaining_padding_payload_length_ = remaining_padding; remaining_data_length_ = remaining_padding; } bool SpdyFramer::ProcessSetting(const char* data) { int id_field; SpdySettingsIds id; uint8 flags = 0; uint32 value; // Extract fields. // Maintain behavior of old SPDY 2 bug with byte ordering of flags/id. if (protocol_version() <= SPDY3) { const uint32 id_and_flags_wire = *(reinterpret_cast(data)); SettingsFlagsAndId id_and_flags = SettingsFlagsAndId::FromWireFormat(protocol_version(), id_and_flags_wire); id_field = id_and_flags.id(); flags = id_and_flags.flags(); value = ntohl(*(reinterpret_cast(data + 4))); } else { id_field = ntohs(*(reinterpret_cast(data))); value = ntohl(*(reinterpret_cast(data + 2))); } // Validate id. if (!SpdyConstants::IsValidSettingId(protocol_version(), id_field)) { DLOG(WARNING) << "Unknown SETTINGS ID: " << id_field; if (protocol_version() <= SPDY3) { return false; } else { // In HTTP2 we ignore unknown settings for extensibility. return true; } } id = SpdyConstants::ParseSettingId(protocol_version(), id_field); if (protocol_version() <= SPDY3) { // Detect duplicates. if (id <= settings_scratch_.last_setting_id) { DLOG(WARNING) << "Duplicate entry or invalid ordering for id " << id << " in " << display_protocol_ << " SETTINGS frame " << "(last setting id was " << settings_scratch_.last_setting_id << ")."; return false; } settings_scratch_.last_setting_id = id; // Validate flags. uint8 kFlagsMask = SETTINGS_FLAG_PLEASE_PERSIST | SETTINGS_FLAG_PERSISTED; if ((flags & ~(kFlagsMask)) != 0) { DLOG(WARNING) << "Unknown SETTINGS flags provided for id " << id << ": " << flags; return false; } } // Validation succeeded. Pass on to visitor. visitor_->OnSetting(id, flags, value); return true; } size_t SpdyFramer::ProcessControlFramePayload(const char* data, size_t len) { size_t original_len = len; size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_data_length_); remaining_data_length_ -= bytes_read; if (remaining_data_length_ == 0) { SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Skip frame header. // Use frame-specific handlers. switch (current_frame_type_) { case PING: { SpdyPingId id = 0; bool is_ack = protocol_version() > SPDY3 && (current_frame_flags_ & PING_FLAG_ACK); bool successful_read = true; if (protocol_version() <= SPDY3) { uint32 id32 = 0; successful_read = reader.ReadUInt32(&id32); id = id32; } else { successful_read = reader.ReadUInt64(&id); } DCHECK(successful_read); DCHECK(reader.IsDoneReading()); visitor_->OnPing(id, is_ack); } break; case WINDOW_UPDATE: { uint32 delta_window_size = 0; bool successful_read = true; if (protocol_version() <= SPDY3) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } successful_read = reader.ReadUInt32(&delta_window_size); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); visitor_->OnWindowUpdate(current_frame_stream_id_, delta_window_size); } break; case BLOCKED: { DCHECK_LT(SPDY3, protocol_version()); DCHECK(reader.IsDoneReading()); visitor_->OnBlocked(current_frame_stream_id_); } break; case PRIORITY: { DCHECK_LT(SPDY3, protocol_version()); uint32 parent_stream_id; uint8 weight; bool exclusive; bool successful_read = true; successful_read = reader.ReadUInt32(&parent_stream_id); DCHECK(successful_read); // Exclusivity is indicated by a single bit flag. exclusive = (parent_stream_id >> 31) != 0; // Zero out the highest-order bit to get the parent stream id. parent_stream_id &= 0x7fffffff; successful_read = reader.ReadUInt8(&weight); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); visitor_->OnPriority( current_frame_stream_id_, parent_stream_id, weight, exclusive); } break; default: // Unreachable. LOG(FATAL) << "Unhandled control frame " << current_frame_type_; } CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD); } return original_len - len; } size_t SpdyFramer::ProcessGoAwayFramePayload(const char* data, size_t len) { if (len == 0) { return 0; } // Clamp to the actual remaining payload. if (len > remaining_data_length_) { len = remaining_data_length_; } size_t original_len = len; // Check if we had already read enough bytes to parse the GOAWAY header. const size_t header_size = GetGoAwayMinimumSize(); size_t unread_header_bytes = header_size - current_frame_buffer_length_; bool already_parsed_header = (unread_header_bytes == 0); if (!already_parsed_header) { // Buffer the new GOAWAY header bytes we got. UpdateCurrentFrameBuffer(&data, &len, unread_header_bytes); // Do we have enough to parse the constant size GOAWAY header? if (current_frame_buffer_length_ == header_size) { // Parse out the last good stream id. SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Seek past frame header. bool successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); // In SPDYv3 and up, frames also specify a status code - parse it out. SpdyGoAwayStatus status = GOAWAY_OK; if (protocol_version() >= SPDY3) { uint32 status_raw = GOAWAY_OK; successful_read = reader.ReadUInt32(&status_raw); DCHECK(successful_read); if (SpdyConstants::IsValidGoAwayStatus(protocol_version(), status_raw)) { status = SpdyConstants::ParseGoAwayStatus(protocol_version(), status_raw); } else { if (protocol_version() > SPDY3) { // Treat unrecognized status codes as INTERNAL_ERROR as // recommended by the HTTP/2 spec. status = GOAWAY_INTERNAL_ERROR; } } } // Finished parsing the GOAWAY header, call frame handler. visitor_->OnGoAway(current_frame_stream_id_, status); } } // Handle remaining data as opaque. bool processed_successfully = true; if (len > 0) { processed_successfully = visitor_->OnGoAwayFrameData(data, len); } remaining_data_length_ -= original_len; if (!processed_successfully) { set_error(SPDY_GOAWAY_FRAME_CORRUPT); } else if (remaining_data_length_ == 0) { // Signal that there is not more opaque data. visitor_->OnGoAwayFrameData(NULL, 0); CHANGE_STATE(SPDY_AUTO_RESET); } return original_len; } size_t SpdyFramer::ProcessRstStreamFramePayload(const char* data, size_t len) { if (len == 0) { return 0; } // Clamp to the actual remaining payload. if (len > remaining_data_length_) { len = remaining_data_length_; } size_t original_len = len; // Check if we had already read enough bytes to parse the fixed-length portion // of the RST_STREAM frame. const size_t header_size = GetRstStreamMinimumSize(); size_t unread_header_bytes = header_size - current_frame_buffer_length_; bool already_parsed_header = (unread_header_bytes == 0); if (!already_parsed_header) { // Buffer the new RST_STREAM header bytes we got. UpdateCurrentFrameBuffer(&data, &len, unread_header_bytes); // Do we have enough to parse the constant size RST_STREAM header? if (current_frame_buffer_length_ == header_size) { // Parse out the last good stream id. SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Seek past frame header. if (protocol_version() <= SPDY3) { bool successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } SpdyRstStreamStatus status = RST_STREAM_INVALID; uint32 status_raw = status; bool successful_read = reader.ReadUInt32(&status_raw); DCHECK(successful_read); if (SpdyConstants::IsValidRstStreamStatus(protocol_version(), status_raw)) { status = SpdyConstants::ParseRstStreamStatus(protocol_version(), status_raw); } else { if (protocol_version() > SPDY3) { // Treat unrecognized status codes as INTERNAL_ERROR as // recommended by the HTTP/2 spec. status = RST_STREAM_INTERNAL_ERROR; } } // Finished parsing the RST_STREAM header, call frame handler. visitor_->OnRstStream(current_frame_stream_id_, status); } } // Handle remaining data as opaque. bool processed_successfully = true; if (len > 0) { processed_successfully = visitor_->OnRstStreamFrameData(data, len); } remaining_data_length_ -= original_len; if (!processed_successfully) { set_error(SPDY_RST_STREAM_FRAME_CORRUPT); } else if (remaining_data_length_ == 0) { // Signal that there is not more opaque data. visitor_->OnRstStreamFrameData(NULL, 0); CHANGE_STATE(SPDY_AUTO_RESET); } return original_len; } size_t SpdyFramer::ProcessAltSvcFramePayload(const char* data, size_t len) { if (len == 0) { return 0; } // Clamp to the actual remaining payload. len = std::min(len, remaining_data_length_); size_t processed_bytes = 0; size_t processing = 0; size_t bytes_remaining; char* buffer; size_t* buffer_len; while (len > 0) { if (altsvc_scratch_.pid_len == 0) { // The size of the frame up to the PID_LEN field. size_t fixed_len_portion = GetAltSvcMinimumSize() - 1; bytes_remaining = fixed_len_portion - current_frame_buffer_length_; processing = std::min(len, bytes_remaining); // Buffer the new ALTSVC bytes we got. UpdateCurrentFrameBuffer(&data, &len, processing); // Do we have enough to parse the length of the protocol id? if (current_frame_buffer_length_ == fixed_len_portion) { // Parse out the max age, port, and pid_len. SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Seek past frame header. bool successful_read = reader.ReadUInt32(&altsvc_scratch_.max_age); reader.ReadUInt16(&altsvc_scratch_.port); reader.Seek(1); // Reserved byte. successful_read = successful_read && reader.ReadUInt8(&altsvc_scratch_.pid_len); DCHECK(successful_read); // Sanity check length value. if (GetAltSvcMinimumSize() + altsvc_scratch_.pid_len >= current_frame_length_) { set_error(SPDY_INVALID_CONTROL_FRAME); return 0; } altsvc_scratch_.protocol_id.reset( new char[size_t(altsvc_scratch_.pid_len)]); } processed_bytes += processing; continue; } else if (altsvc_scratch_.pid_buf_len < altsvc_scratch_.pid_len) { // Buffer protocol id field as in comes in. buffer = altsvc_scratch_.protocol_id.get(); buffer_len = &altsvc_scratch_.pid_buf_len; bytes_remaining = altsvc_scratch_.pid_len - altsvc_scratch_.pid_buf_len; } else if (altsvc_scratch_.host_len == 0) { // Parse out the host length. processing = 1; altsvc_scratch_.host_len = *reinterpret_cast(data); // Sanity check length value. if (GetAltSvcMinimumSize() + altsvc_scratch_.pid_len + altsvc_scratch_.host_len > current_frame_length_) { set_error(SPDY_INVALID_CONTROL_FRAME); return 0; } altsvc_scratch_.host.reset(new char[altsvc_scratch_.host_len]); // Once we have host length, we can also determine the origin length // by process of elimination. altsvc_scratch_.origin_len = current_frame_length_ - GetAltSvcMinimumSize() - altsvc_scratch_.pid_len - altsvc_scratch_.host_len; if (altsvc_scratch_.origin_len > 0) { altsvc_scratch_.origin.reset(new char[altsvc_scratch_.origin_len]); } data += processing; processed_bytes += processing; len -= processing; continue; } else if (altsvc_scratch_.host_buf_len < altsvc_scratch_.host_len) { // Buffer host field as it comes in. // TODO(mlavan): check formatting for host and origin buffer = altsvc_scratch_.host.get(); buffer_len = &altsvc_scratch_.host_buf_len; bytes_remaining = altsvc_scratch_.host_len - altsvc_scratch_.host_buf_len; } else { // Buffer (optional) origin field as it comes in. if (altsvc_scratch_.origin_len <= 0) { set_error(SPDY_INVALID_CONTROL_FRAME); return 0; } buffer = altsvc_scratch_.origin.get(); buffer_len = &altsvc_scratch_.origin_buf_len; bytes_remaining = remaining_data_length_ - processed_bytes - altsvc_scratch_.origin_buf_len; if (len > bytes_remaining) { // This is our last field; there shouldn't be any more bytes. set_error(SPDY_INVALID_CONTROL_FRAME); return 0; } } // Copy data bytes into the appropriate field. processing = std::min(len, bytes_remaining); memcpy(buffer + *buffer_len, data, processing); *buffer_len += processing; data += processing; processed_bytes += processing; len -= processing; } remaining_data_length_ -= processed_bytes; if (remaining_data_length_ == 0) { visitor_->OnAltSvc(current_frame_stream_id_, altsvc_scratch_.max_age, altsvc_scratch_.port, StringPiece(altsvc_scratch_.protocol_id.get(), altsvc_scratch_.pid_len), StringPiece(altsvc_scratch_.host.get(), altsvc_scratch_.host_len), StringPiece(altsvc_scratch_.origin.get(), altsvc_scratch_.origin_len)); CHANGE_STATE(SPDY_AUTO_RESET); } return processed_bytes; } size_t SpdyFramer::ProcessDataFramePaddingLength(const char* data, size_t len) { DCHECK_EQ(SPDY_READ_DATA_FRAME_PADDING_LENGTH, state_); DCHECK_EQ(0u, remaining_padding_payload_length_); DCHECK_EQ(DATA, current_frame_type_); size_t original_len = len; if (current_frame_flags_ & DATA_FLAG_PADDED) { if (len != 0) { if (remaining_data_length_ < kPadLengthFieldSize) { set_error(SPDY_INVALID_DATA_FRAME_FLAGS); return 0; } static_assert(kPadLengthFieldSize == 1, "Unexpected pad length field size."); remaining_padding_payload_length_ = *reinterpret_cast(data); ++data; --len; --remaining_data_length_; visitor_->OnStreamPadding(current_frame_stream_id_, kPadLengthFieldSize); } else { // We don't have the data available for parsing the pad length field. Keep // waiting. return 0; } } if (remaining_padding_payload_length_ > remaining_data_length_) { set_error(SPDY_INVALID_DATA_FRAME_FLAGS); return 0; } CHANGE_STATE(SPDY_FORWARD_STREAM_FRAME); return original_len - len; } size_t SpdyFramer::ProcessFramePadding(const char* data, size_t len) { DCHECK_EQ(SPDY_CONSUME_PADDING, state_); size_t original_len = len; if (remaining_padding_payload_length_ > 0) { DCHECK_EQ(remaining_padding_payload_length_, remaining_data_length_); size_t amount_to_discard = std::min(remaining_padding_payload_length_, len); if (current_frame_type_ == DATA && amount_to_discard > 0) { DCHECK_LE(SPDY4, protocol_version()); visitor_->OnStreamPadding(current_frame_stream_id_, amount_to_discard); } data += amount_to_discard; len -= amount_to_discard; remaining_padding_payload_length_ -= amount_to_discard; remaining_data_length_ -= amount_to_discard; } if (remaining_data_length_ == 0) { // If the FIN flag is set, or this ends a header block which set FIN, // inform the visitor of EOF via a 0-length data frame. if (expect_continuation_ == 0 && ((current_frame_flags_ & CONTROL_FLAG_FIN) != 0 || end_stream_when_done_)) { end_stream_when_done_ = false; visitor_->OnStreamFrameData(current_frame_stream_id_, NULL, 0, true); } CHANGE_STATE(SPDY_AUTO_RESET); } return original_len - len; } size_t SpdyFramer::ProcessDataFramePayload(const char* data, size_t len) { size_t original_len = len; if (remaining_data_length_ - remaining_padding_payload_length_ > 0) { size_t amount_to_forward = std::min( remaining_data_length_ - remaining_padding_payload_length_, len); if (amount_to_forward && state_ != SPDY_IGNORE_REMAINING_PAYLOAD) { // Only inform the visitor if there is data. if (amount_to_forward) { visitor_->OnStreamFrameData( current_frame_stream_id_, data, amount_to_forward, false); } } data += amount_to_forward; len -= amount_to_forward; remaining_data_length_ -= amount_to_forward; } if (remaining_data_length_ == remaining_padding_payload_length_) { CHANGE_STATE(SPDY_CONSUME_PADDING); } return original_len - len; } size_t SpdyFramer::ProcessIgnoredControlFramePayload(/*const char* data,*/ size_t len) { size_t original_len = len; if (remaining_data_length_ > 0) { size_t amount_to_ignore = std::min(remaining_data_length_, len); len -= amount_to_ignore; remaining_data_length_ -= amount_to_ignore; } if (remaining_data_length_ == 0) { CHANGE_STATE(SPDY_AUTO_RESET); } return original_len - len; } size_t SpdyFramer::ParseHeaderBlockInBuffer(const char* header_data, size_t header_length, SpdyHeaderBlock* block) const { SpdyFrameReader reader(header_data, header_length); // Read number of headers. uint32 num_headers; if (protocol_version() <= SPDY2) { uint16 temp; if (!reader.ReadUInt16(&temp)) { DVLOG(1) << "Unable to read number of headers."; return 0; } num_headers = temp; } else { if (!reader.ReadUInt32(&num_headers)) { DVLOG(1) << "Unable to read number of headers."; return 0; } } // Read each header. for (uint32 index = 0; index < num_headers; ++index) { base::StringPiece temp; // Read header name. if ((protocol_version() <= SPDY2) ? !reader.ReadStringPiece16(&temp) : !reader.ReadStringPiece32(&temp)) { DVLOG(1) << "Unable to read header name (" << index + 1 << " of " << num_headers << ")."; return 0; } std::string name = temp.as_string(); // Read header value. if ((protocol_version() <= SPDY2) ? !reader.ReadStringPiece16(&temp) : !reader.ReadStringPiece32(&temp)) { DVLOG(1) << "Unable to read header value (" << index + 1 << " of " << num_headers << ")."; return 0; } std::string value = temp.as_string(); // Ensure no duplicates. if (block->find(name) != block->end()) { DVLOG(1) << "Duplicate header '" << name << "' (" << index + 1 << " of " << num_headers << ")."; return 0; } // Store header. (*block)[name] = value; } return reader.GetBytesConsumed(); } SpdySerializedFrame* SpdyFramer::SerializeData( const SpdyDataIR& data_ir) const { uint8 flags = DATA_FLAG_NONE; if (data_ir.fin()) { flags = DATA_FLAG_FIN; } if (protocol_version() > SPDY3) { int num_padding_fields = 0; if (data_ir.padded()) { flags |= DATA_FLAG_PADDED; ++num_padding_fields; } const size_t size_with_padding = num_padding_fields + data_ir.data().length() + data_ir.padding_payload_len() + GetDataFrameMinimumSize(); SpdyFrameBuilder builder(size_with_padding, protocol_version()); builder.WriteDataFrameHeader(*this, data_ir.stream_id(), flags); if (data_ir.padded()) { builder.WriteUInt8(data_ir.padding_payload_len() & 0xff); } builder.WriteBytes(data_ir.data().data(), data_ir.data().length()); if (data_ir.padding_payload_len() > 0) { string padding(data_ir.padding_payload_len(), 0); builder.WriteBytes(padding.data(), padding.length()); } DCHECK_EQ(size_with_padding, builder.length()); return builder.take(); } else { const size_t size = GetDataFrameMinimumSize() + data_ir.data().length(); SpdyFrameBuilder builder(size, protocol_version()); builder.WriteDataFrameHeader(*this, data_ir.stream_id(), flags); builder.WriteBytes(data_ir.data().data(), data_ir.data().length()); DCHECK_EQ(size, builder.length()); return builder.take(); } } SpdySerializedFrame* SpdyFramer::SerializeDataFrameHeaderWithPaddingLengthField( const SpdyDataIR& data_ir) const { uint8 flags = DATA_FLAG_NONE; if (data_ir.fin()) { flags = DATA_FLAG_FIN; } size_t frame_size = GetDataFrameMinimumSize(); size_t num_padding_fields = 0; if (protocol_version() > SPDY3) { if (data_ir.padded()) { flags |= DATA_FLAG_PADDED; ++num_padding_fields; } frame_size += num_padding_fields; } SpdyFrameBuilder builder(frame_size, protocol_version()); builder.WriteDataFrameHeader(*this, data_ir.stream_id(), flags); if (protocol_version() > SPDY3) { if (data_ir.padded()) { builder.WriteUInt8(data_ir.padding_payload_len() & 0xff); } builder.OverwriteLength(*this, num_padding_fields + data_ir.data().length() + data_ir.padding_payload_len()); } else { builder.OverwriteLength(*this, data_ir.data().length()); } DCHECK_EQ(frame_size, builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeSynStream( const SpdySynStreamIR& syn_stream) { DCHECK_GE(SPDY3, protocol_version()); uint8 flags = 0; if (syn_stream.fin()) { flags |= CONTROL_FLAG_FIN; } if (syn_stream.unidirectional()) { // TODO(hkhalil): invalid for HTTP2. flags |= CONTROL_FLAG_UNIDIRECTIONAL; } // Sanitize priority. uint8 priority = syn_stream.priority(); if (priority > GetLowestPriority()) { DLOG(DFATAL) << "Priority out-of-bounds."; priority = GetLowestPriority(); } // The size of this frame, including variable-length name-value block. size_t size = GetSynStreamMinimumSize() + GetSerializedLength(syn_stream.name_value_block()); SpdyFrameBuilder builder(size, protocol_version()); builder.WriteControlFrameHeader(*this, SYN_STREAM, flags); builder.WriteUInt32(syn_stream.stream_id()); builder.WriteUInt32(syn_stream.associated_to_stream_id()); builder.WriteUInt8(priority << ((protocol_version() <= SPDY2) ? 6 : 5)); builder.WriteUInt8(0); // Unused byte where credential slot used to be. DCHECK_EQ(GetSynStreamMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, syn_stream); if (debug_visitor_) { const size_t payload_len = GetSerializedLength(protocol_version(), &(syn_stream.name_value_block())); debug_visitor_->OnSendCompressedFrame(syn_stream.stream_id(), SYN_STREAM, payload_len, builder.length()); } return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeSynReply( const SpdySynReplyIR& syn_reply) { DCHECK_GE(SPDY3, protocol_version()); uint8 flags = 0; if (syn_reply.fin()) { flags |= CONTROL_FLAG_FIN; } // The size of this frame, including variable-length name-value block. const size_t size = GetSynReplyMinimumSize() + GetSerializedLength(syn_reply.name_value_block()); SpdyFrameBuilder builder(size, protocol_version()); if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, SYN_REPLY, flags); builder.WriteUInt32(syn_reply.stream_id()); } else { builder.BeginNewFrame(*this, HEADERS, flags, syn_reply.stream_id()); } if (protocol_version() < SPDY3) { builder.WriteUInt16(0); // Unused. } DCHECK_EQ(GetSynReplyMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, syn_reply); if (debug_visitor_) { const size_t payload_len = GetSerializedLength( protocol_version(), &(syn_reply.name_value_block())); debug_visitor_->OnSendCompressedFrame(syn_reply.stream_id(), SYN_REPLY, payload_len, builder.length()); } return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeRstStream( const SpdyRstStreamIR& rst_stream) const { // TODO(jgraettinger): For now, Chromium will support parsing RST_STREAM // payloads, but will not emit them. SPDY4 is used for draft HTTP/2, // which doesn't currently include RST_STREAM payloads. GFE flags have been // commented but left in place to simplify future patching. // Compute the output buffer size, taking opaque data into account. size_t expected_length = GetRstStreamMinimumSize(); if (protocol_version() > SPDY3) { expected_length += rst_stream.description().size(); } SpdyFrameBuilder builder(expected_length, protocol_version()); // Serialize the RST_STREAM frame. if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, RST_STREAM, 0); builder.WriteUInt32(rst_stream.stream_id()); } else { builder.BeginNewFrame(*this, RST_STREAM, 0, rst_stream.stream_id()); } builder.WriteUInt32(SpdyConstants::SerializeRstStreamStatus( protocol_version(), rst_stream.status())); // In SPDY4 and up, RST_STREAM frames may also specify opaque data. if (protocol_version() > SPDY3 && rst_stream.description().size() > 0) { builder.WriteBytes(rst_stream.description().data(), rst_stream.description().size()); } DCHECK_EQ(expected_length, builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeSettings( const SpdySettingsIR& settings) const { uint8 flags = 0; if (protocol_version() <= SPDY3) { if (settings.clear_settings()) { flags |= SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS; } } else { if (settings.is_ack()) { flags |= SETTINGS_FLAG_ACK; } } const SpdySettingsIR::ValueMap* values = &(settings.values()); size_t setting_size = SpdyConstants::GetSettingSize(protocol_version()); // Size, in bytes, of this SETTINGS frame. const size_t size = GetSettingsMinimumSize() + (values->size() * setting_size); SpdyFrameBuilder builder(size, protocol_version()); if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, SETTINGS, flags); } else { builder.BeginNewFrame(*this, SETTINGS, flags, 0); } // If this is an ACK, payload should be empty. if (protocol_version() > SPDY3 && settings.is_ack()) { return builder.take(); } if (protocol_version() <= SPDY3) { builder.WriteUInt32(values->size()); } DCHECK_EQ(GetSettingsMinimumSize(), builder.length()); for (SpdySettingsIR::ValueMap::const_iterator it = values->begin(); it != values->end(); ++it) { int setting_id = SpdyConstants::SerializeSettingId(protocol_version(), it->first); DCHECK_GE(setting_id, 0); if (protocol_version() <= SPDY3) { uint8 setting_flags = 0; if (it->second.persist_value) { setting_flags |= SETTINGS_FLAG_PLEASE_PERSIST; } if (it->second.persisted) { setting_flags |= SETTINGS_FLAG_PERSISTED; } SettingsFlagsAndId flags_and_id(setting_flags, setting_id); uint32 id_and_flags_wire = flags_and_id.GetWireFormat(protocol_version()); builder.WriteBytes(&id_and_flags_wire, 4); } else { builder.WriteUInt16(static_cast(setting_id)); } builder.WriteUInt32(it->second.value); } DCHECK_EQ(size, builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializePing(const SpdyPingIR& ping) const { SpdyFrameBuilder builder(GetPingSize(), protocol_version()); if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, PING, kNoFlags); builder.WriteUInt32(static_cast(ping.id())); } else { uint8 flags = 0; if (ping.is_ack()) { flags |= PING_FLAG_ACK; } builder.BeginNewFrame(*this, PING, flags, 0); builder.WriteUInt64(ping.id()); } DCHECK_EQ(GetPingSize(), builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeGoAway( const SpdyGoAwayIR& goaway) const { // Compute the output buffer size, take opaque data into account. size_t expected_length = GetGoAwayMinimumSize(); if (protocol_version() > SPDY3) { expected_length += goaway.description().size(); } SpdyFrameBuilder builder(expected_length, protocol_version()); // Serialize the GOAWAY frame. if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, GOAWAY, kNoFlags); } else { builder.BeginNewFrame(*this, GOAWAY, 0, 0); } // GOAWAY frames specify the last good stream id for all SPDY versions. builder.WriteUInt32(goaway.last_good_stream_id()); // In SPDY3 and up, GOAWAY frames also specify the error status code. if (protocol_version() >= SPDY3) { // TODO(jgraettinger): Merge back to server-side. builder.WriteUInt32(SpdyConstants::SerializeGoAwayStatus(protocol_version(), goaway.status())); } // In SPDY4 and up, GOAWAY frames may also specify opaque data. if ((protocol_version() > SPDY3) && (goaway.description().size() > 0)) { builder.WriteBytes(goaway.description().data(), goaway.description().size()); } DCHECK_EQ(expected_length, builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeHeaders( const SpdyHeadersIR& headers) { uint8 flags = 0; if (headers.fin()) { flags |= CONTROL_FLAG_FIN; } if (protocol_version() > SPDY3) { // This will get overwritten if we overflow into a CONTINUATION frame. flags |= HEADERS_FLAG_END_HEADERS; if (headers.has_priority()) { flags |= HEADERS_FLAG_PRIORITY; } if (headers.padded()) { flags |= HEADERS_FLAG_PADDED; } } // The size of this frame, including padding (if there is any) // and variable-length name-value block. size_t size = GetHeadersMinimumSize(); if (protocol_version() > SPDY3 && headers.padded()) { size += kPadLengthFieldSize; size += headers.padding_payload_len(); } SpdyPriority priority = static_cast(headers.priority()); if (headers.has_priority()) { if (headers.priority() > GetLowestPriority()) { DLOG(DFATAL) << "Priority out-of-bounds."; priority = GetLowestPriority(); } size += 5; } string hpack_encoding; if (protocol_version() > SPDY3) { if (enable_compression_) { GetHpackEncoder()->EncodeHeaderSet( headers.name_value_block(), &hpack_encoding); } else { GetHpackEncoder()->EncodeHeaderSetWithoutCompression( headers.name_value_block(), &hpack_encoding); } size += hpack_encoding.size(); if (size > kMaxControlFrameSize) { size += GetNumberRequiredContinuationFrames(size) * GetContinuationMinimumSize(); flags &= ~HEADERS_FLAG_END_HEADERS; } } else { size += GetSerializedLength(headers.name_value_block()); } SpdyFrameBuilder builder(size, protocol_version()); if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, HEADERS, flags); builder.WriteUInt32(headers.stream_id()); } else { builder.BeginNewFrame(*this, HEADERS, flags, headers.stream_id()); } if (protocol_version() <= SPDY2) { builder.WriteUInt16(0); // Unused. } DCHECK_EQ(GetHeadersMinimumSize(), builder.length()); if (protocol_version() > SPDY3) { int padding_payload_len = 0; if (headers.padded()) { builder.WriteUInt8(headers.padding_payload_len()); padding_payload_len = headers.padding_payload_len(); } if (headers.has_priority()) { // TODO(jgraettinger): Plumb priorities and stream dependencies. builder.WriteUInt32(0); // Non-exclusive bit and root stream ID. builder.WriteUInt8(MapPriorityToWeight(priority)); } WritePayloadWithContinuation(&builder, hpack_encoding, headers.stream_id(), HEADERS, padding_payload_len); } else { SerializeNameValueBlock(&builder, headers); } if (debug_visitor_) { // SPDY4 uses HPACK for header compression. However, continue to // use GetSerializedLength() for an apples-to-apples comparision of // compression performance between HPACK and SPDY w/ deflate. const size_t payload_len = GetSerializedLength(protocol_version(), &(headers.name_value_block())); debug_visitor_->OnSendCompressedFrame(headers.stream_id(), HEADERS, payload_len, builder.length()); } return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeWindowUpdate( const SpdyWindowUpdateIR& window_update) const { SpdyFrameBuilder builder(GetWindowUpdateSize(), protocol_version()); if (protocol_version() <= SPDY3) { builder.WriteControlFrameHeader(*this, WINDOW_UPDATE, kNoFlags); builder.WriteUInt32(window_update.stream_id()); } else { builder.BeginNewFrame(*this, WINDOW_UPDATE, kNoFlags, window_update.stream_id()); } builder.WriteUInt32(window_update.delta()); DCHECK_EQ(GetWindowUpdateSize(), builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::SerializeBlocked(const SpdyBlockedIR& blocked) const { DCHECK_LT(SPDY3, protocol_version()); SpdyFrameBuilder builder(GetBlockedSize(), protocol_version()); builder.BeginNewFrame(*this, BLOCKED, kNoFlags, blocked.stream_id()); return builder.take(); } SpdyFrame* SpdyFramer::SerializePushPromise( const SpdyPushPromiseIR& push_promise) { DCHECK_LT(SPDY3, protocol_version()); uint8 flags = 0; // This will get overwritten if we overflow into a CONTINUATION frame. flags |= PUSH_PROMISE_FLAG_END_PUSH_PROMISE; // The size of this frame, including variable-length name-value block. size_t size = GetPushPromiseMinimumSize(); if (push_promise.padded()) { flags |= PUSH_PROMISE_FLAG_PADDED; size += kPadLengthFieldSize; size += push_promise.padding_payload_len(); } string hpack_encoding; if (enable_compression_) { GetHpackEncoder()->EncodeHeaderSet( push_promise.name_value_block(), &hpack_encoding); } else { GetHpackEncoder()->EncodeHeaderSetWithoutCompression( push_promise.name_value_block(), &hpack_encoding); } size += hpack_encoding.size(); if (size > kMaxControlFrameSize) { size += GetNumberRequiredContinuationFrames(size) * GetContinuationMinimumSize(); flags &= ~PUSH_PROMISE_FLAG_END_PUSH_PROMISE; } SpdyFrameBuilder builder(size, protocol_version()); builder.BeginNewFrame(*this, PUSH_PROMISE, flags, push_promise.stream_id()); int padding_payload_len = 0; if (push_promise.padded()) { builder.WriteUInt8(push_promise.padding_payload_len()); builder.WriteUInt32(push_promise.promised_stream_id()); DCHECK_EQ(GetPushPromiseMinimumSize() + kPadLengthFieldSize, builder.length()); padding_payload_len = push_promise.padding_payload_len(); } else { builder.WriteUInt32(push_promise.promised_stream_id()); DCHECK_EQ(GetPushPromiseMinimumSize(), builder.length()); } WritePayloadWithContinuation(&builder, hpack_encoding, push_promise.stream_id(), PUSH_PROMISE, padding_payload_len); if (debug_visitor_) { // SPDY4 uses HPACK for header compression. However, continue to // use GetSerializedLength() for an apples-to-apples comparision of // compression performance between HPACK and SPDY w/ deflate. const size_t payload_len = GetSerializedLength(protocol_version(), &(push_promise.name_value_block())); debug_visitor_->OnSendCompressedFrame(push_promise.stream_id(), PUSH_PROMISE, payload_len, builder.length()); } return builder.take(); } // TODO(jgraettinger): This implementation is incorrect. The continuation // frame continues a previously-begun HPACK encoding; it doesn't begin a // new one. Figure out whether it makes sense to keep SerializeContinuation(). SpdyFrame* SpdyFramer::SerializeContinuation( const SpdyContinuationIR& continuation) { CHECK_LT(SPDY3, protocol_version()); uint8 flags = 0; if (continuation.end_headers()) { flags |= HEADERS_FLAG_END_HEADERS; } // The size of this frame, including variable-length name-value block. size_t size = GetContinuationMinimumSize(); string hpack_encoding; if (enable_compression_) { GetHpackEncoder()->EncodeHeaderSet( continuation.name_value_block(), &hpack_encoding); } else { GetHpackEncoder()->EncodeHeaderSetWithoutCompression( continuation.name_value_block(), &hpack_encoding); } size += hpack_encoding.size(); SpdyFrameBuilder builder(size, protocol_version()); builder.BeginNewFrame(*this, CONTINUATION, flags, continuation.stream_id()); DCHECK_EQ(GetContinuationMinimumSize(), builder.length()); builder.WriteBytes(&hpack_encoding[0], hpack_encoding.size()); return builder.take(); } SpdyFrame* SpdyFramer::SerializeAltSvc(const SpdyAltSvcIR& altsvc) { DCHECK_LT(SPDY3, protocol_version()); size_t size = GetAltSvcMinimumSize(); size += altsvc.protocol_id().length(); size += altsvc.host().length(); size += altsvc.origin().length(); SpdyFrameBuilder builder(size, protocol_version()); builder.BeginNewFrame(*this, ALTSVC, kNoFlags, altsvc.stream_id()); // TODO(bnc): http://crbug.com/438263 // Update the binary format here to the new text-based payload format. builder.WriteUInt32(altsvc.max_age()); builder.WriteUInt16(altsvc.port()); builder.WriteUInt8(0); // Reserved. builder.WriteUInt8(static_cast(altsvc.protocol_id().length())); builder.WriteBytes(altsvc.protocol_id().data(), altsvc.protocol_id().length()); builder.WriteUInt8(static_cast(altsvc.host().length())); builder.WriteBytes(altsvc.host().data(), altsvc.host().length()); builder.WriteBytes(altsvc.origin().data(), altsvc.origin().length()); DCHECK_LT(GetAltSvcMinimumSize(), builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::SerializePriority(const SpdyPriorityIR& priority) const { DCHECK_LT(SPDY3, protocol_version()); size_t size = GetPrioritySize(); SpdyFrameBuilder builder(size, protocol_version()); builder.BeginNewFrame(*this, PRIORITY, kNoFlags, priority.stream_id()); // Make sure the highest-order bit in the parent stream id is zeroed out. uint32 parent_stream_id = priority.parent_stream_id() & 0x7fffffff; uint32 exclusive = priority.exclusive() ? 0x80000000 : 0; // Set the one-bit exclusivity flag. uint32 flag_and_parent_id = parent_stream_id | exclusive; builder.WriteUInt32(flag_and_parent_id); builder.WriteUInt8(priority.weight()); DCHECK_EQ(GetPrioritySize(), builder.length()); return builder.take(); } namespace { class FrameSerializationVisitor : public SpdyFrameVisitor { public: explicit FrameSerializationVisitor(SpdyFramer* framer) : framer_(framer) {} ~FrameSerializationVisitor() override {} SpdySerializedFrame* ReleaseSerializedFrame() { return frame_.release(); } void VisitData(const SpdyDataIR& data) override { frame_.reset(framer_->SerializeData(data)); } void VisitSynStream(const SpdySynStreamIR& syn_stream) override { frame_.reset(framer_->SerializeSynStream(syn_stream)); } void VisitSynReply(const SpdySynReplyIR& syn_reply) override { frame_.reset(framer_->SerializeSynReply(syn_reply)); } void VisitRstStream(const SpdyRstStreamIR& rst_stream) override { frame_.reset(framer_->SerializeRstStream(rst_stream)); } void VisitSettings(const SpdySettingsIR& settings) override { frame_.reset(framer_->SerializeSettings(settings)); } void VisitPing(const SpdyPingIR& ping) override { frame_.reset(framer_->SerializePing(ping)); } void VisitGoAway(const SpdyGoAwayIR& goaway) override { frame_.reset(framer_->SerializeGoAway(goaway)); } void VisitHeaders(const SpdyHeadersIR& headers) override { frame_.reset(framer_->SerializeHeaders(headers)); } void VisitWindowUpdate(const SpdyWindowUpdateIR& window_update) override { frame_.reset(framer_->SerializeWindowUpdate(window_update)); } void VisitBlocked(const SpdyBlockedIR& blocked) override { frame_.reset(framer_->SerializeBlocked(blocked)); } void VisitPushPromise(const SpdyPushPromiseIR& push_promise) override { frame_.reset(framer_->SerializePushPromise(push_promise)); } void VisitContinuation(const SpdyContinuationIR& continuation) override { frame_.reset(framer_->SerializeContinuation(continuation)); } void VisitAltSvc(const SpdyAltSvcIR& altsvc) override { frame_.reset(framer_->SerializeAltSvc(altsvc)); } void VisitPriority(const SpdyPriorityIR& priority) override { frame_.reset(framer_->SerializePriority(priority)); } private: SpdyFramer* framer_; scoped_ptr frame_; }; } // namespace SpdySerializedFrame* SpdyFramer::SerializeFrame(const SpdyFrameIR& frame) { FrameSerializationVisitor visitor(this); frame.Visit(&visitor); return visitor.ReleaseSerializedFrame(); } size_t SpdyFramer::GetSerializedLength(const SpdyHeaderBlock& headers) { CHECK_GE(SPDY3, protocol_version()); const size_t uncompressed_length = GetSerializedLength(protocol_version(), &headers); if (!enable_compression_) { return uncompressed_length; } z_stream* compressor = GetHeaderCompressor(); // Since we'll be performing lots of flushes when compressing the data, // zlib's lower bounds may be insufficient. return 2 * deflateBound(compressor, uncompressed_length); } size_t SpdyFramer::GetNumberRequiredContinuationFrames(size_t size) { DCHECK_GT(protocol_version(), SPDY3); DCHECK_GT(size, kMaxControlFrameSize); size_t overflow = size - kMaxControlFrameSize; return overflow / (kMaxControlFrameSize - GetContinuationMinimumSize()) + 1; } void SpdyFramer::WritePayloadWithContinuation(SpdyFrameBuilder* builder, const string& hpack_encoding, SpdyStreamId stream_id, SpdyFrameType type, int padding_payload_len) { uint8 end_flag = 0; uint8 flags = 0; if (type == HEADERS) { end_flag = HEADERS_FLAG_END_HEADERS; } else if (type == PUSH_PROMISE) { end_flag = PUSH_PROMISE_FLAG_END_PUSH_PROMISE; } else { DLOG(FATAL) << "CONTINUATION frames cannot be used with frame type " << FrameTypeToString(type); } // Write all the padding payload and as much of the data payload as possible // into the initial frame. size_t bytes_remaining = 0; bytes_remaining = hpack_encoding.size() - std::min(hpack_encoding.size(), kMaxControlFrameSize - builder->length() - padding_payload_len); builder->WriteBytes(&hpack_encoding[0], hpack_encoding.size() - bytes_remaining); if (padding_payload_len > 0) { string padding = string(padding_payload_len, 0); builder->WriteBytes(padding.data(), padding.length()); } if (bytes_remaining > 0) { builder->OverwriteLength( *this, kMaxControlFrameSize - GetControlFrameHeaderSize()); } // Tack on CONTINUATION frames for the overflow. while (bytes_remaining > 0) { size_t bytes_to_write = std::min( bytes_remaining, kMaxControlFrameSize - GetContinuationMinimumSize()); // Write CONTINUATION frame prefix. if (bytes_remaining == bytes_to_write) { flags |= end_flag; } builder->BeginNewFrame(*this, CONTINUATION, flags, stream_id); // Write payload fragment. builder->WriteBytes( &hpack_encoding[hpack_encoding.size() - bytes_remaining], bytes_to_write); bytes_remaining -= bytes_to_write; } } // The following compression setting are based on Brian Olson's analysis. See // https://groups.google.com/group/spdy-dev/browse_thread/thread/dfaf498542fac792 // for more details. #if defined(USE_SYSTEM_ZLIB) // System zlib is not expected to have workaround for http://crbug.com/139744, // so disable compression in that case. // TODO(phajdan.jr): Remove the special case when it's no longer necessary. static const int kCompressorLevel = 0; #else // !defined(USE_SYSTEM_ZLIB) static const int kCompressorLevel = 9; #endif // !defined(USE_SYSTEM_ZLIB) static const int kCompressorWindowSizeInBits = 11; static const int kCompressorMemLevel = 1; z_stream* SpdyFramer::GetHeaderCompressor() { if (header_compressor_.get()) return header_compressor_.get(); // Already initialized. header_compressor_.reset(new z_stream); memset(header_compressor_.get(), 0, sizeof(z_stream)); int success = deflateInit2(header_compressor_.get(), kCompressorLevel, Z_DEFLATED, kCompressorWindowSizeInBits, kCompressorMemLevel, Z_DEFAULT_STRATEGY); if (success == Z_OK) { const char* dictionary = (protocol_version() <= SPDY2) ? kV2Dictionary : kV3Dictionary; const int dictionary_size = (protocol_version() <= SPDY2) ? kV2DictionarySize : kV3DictionarySize; success = deflateSetDictionary(header_compressor_.get(), reinterpret_cast(dictionary), dictionary_size); } if (success != Z_OK) { LOG(WARNING) << "deflateSetDictionary failure: " << success; header_compressor_.reset(NULL); return NULL; } return header_compressor_.get(); } z_stream* SpdyFramer::GetHeaderDecompressor() { if (header_decompressor_.get()) return header_decompressor_.get(); // Already initialized. header_decompressor_.reset(new z_stream); memset(header_decompressor_.get(), 0, sizeof(z_stream)); int success = inflateInit(header_decompressor_.get()); if (success != Z_OK) { LOG(WARNING) << "inflateInit failure: " << success; header_decompressor_.reset(NULL); return NULL; } return header_decompressor_.get(); } HpackEncoder* SpdyFramer::GetHpackEncoder() { DCHECK_LT(SPDY3, protocol_version()); if (hpack_encoder_.get() == nullptr) { hpack_encoder_.reset(new HpackEncoder(ObtainHpackHuffmanTable())); } return hpack_encoder_.get(); } HpackDecoder* SpdyFramer::GetHpackDecoder() { DCHECK_LT(SPDY3, protocol_version()); if (hpack_decoder_.get() == nullptr) { hpack_decoder_.reset(new HpackDecoder(ObtainHpackHuffmanTable())); } return hpack_decoder_.get(); } uint8 SpdyFramer::MapPriorityToWeight(SpdyPriority priority) { const float kSteps = 255.9f / 7.f; return static_cast(kSteps * (7.f - priority)); } SpdyPriority SpdyFramer::MapWeightToPriority(uint8 weight) { const float kSteps = 255.9f / 7.f; return static_cast(7.f - weight / kSteps); } // Incrementally decompress the control frame's header block, feeding the // result to the visitor in chunks. Continue this until the visitor // indicates that it cannot process any more data, or (more commonly) we // run out of data to deliver. bool SpdyFramer::IncrementallyDecompressControlFrameHeaderData( SpdyStreamId stream_id, const char* data, size_t len) { // Get a decompressor or set error. z_stream* decomp = GetHeaderDecompressor(); if (decomp == NULL) { LOG(DFATAL) << "Couldn't get decompressor for handling compressed headers."; set_error(SPDY_DECOMPRESS_FAILURE); return false; } bool processed_successfully = true; char buffer[kHeaderDataChunkMaxSize]; decomp->next_in = reinterpret_cast(const_cast(data)); decomp->avail_in = len; // If we get a SYN_STREAM/SYN_REPLY/HEADERS frame with stream ID zero, we // signal an error back in ProcessControlFrameBeforeHeaderBlock. So if we've // reached this method successfully, stream_id should be nonzero. DCHECK_LT(0u, stream_id); while (decomp->avail_in > 0 && processed_successfully) { decomp->next_out = reinterpret_cast(buffer); decomp->avail_out = arraysize(buffer); int rv = inflate(decomp, Z_SYNC_FLUSH); if (rv == Z_NEED_DICT) { const char* dictionary = (protocol_version() <= SPDY2) ? kV2Dictionary : kV3Dictionary; const int dictionary_size = (protocol_version() <= SPDY2) ? kV2DictionarySize : kV3DictionarySize; const DictionaryIds& ids = g_dictionary_ids.Get(); const uLong dictionary_id = (protocol_version() <= SPDY2) ? ids.v2_dictionary_id : ids.v3_dictionary_id; // Need to try again with the right dictionary. if (decomp->adler == dictionary_id) { rv = inflateSetDictionary(decomp, reinterpret_cast(dictionary), dictionary_size); if (rv == Z_OK) rv = inflate(decomp, Z_SYNC_FLUSH); } } // Inflate will generate a Z_BUF_ERROR if it runs out of input // without producing any output. The input is consumed and // buffered internally by zlib so we can detect this condition by // checking if avail_in is 0 after the call to inflate. bool input_exhausted = ((rv == Z_BUF_ERROR) && (decomp->avail_in == 0)); if ((rv == Z_OK) || input_exhausted) { size_t decompressed_len = arraysize(buffer) - decomp->avail_out; if (decompressed_len > 0) { processed_successfully = visitor_->OnControlFrameHeaderData( stream_id, buffer, decompressed_len); } if (!processed_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } else { DLOG(WARNING) << "inflate failure: " << rv << " " << len; set_error(SPDY_DECOMPRESS_FAILURE); processed_successfully = false; } } return processed_successfully; } bool SpdyFramer::IncrementallyDeliverControlFrameHeaderData( SpdyStreamId stream_id, const char* data, size_t len) { bool read_successfully = true; while (read_successfully && len > 0) { size_t bytes_to_deliver = std::min(len, kHeaderDataChunkMaxSize); read_successfully = visitor_->OnControlFrameHeaderData(stream_id, data, bytes_to_deliver); data += bytes_to_deliver; len -= bytes_to_deliver; if (!read_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } return read_successfully; } void SpdyFramer::SerializeNameValueBlockWithoutCompression( SpdyFrameBuilder* builder, const SpdyNameValueBlock& name_value_block) const { // Serialize number of headers. if (protocol_version() <= SPDY2) { builder->WriteUInt16(static_cast(name_value_block.size())); } else { builder->WriteUInt32(name_value_block.size()); } // Serialize each header. for (SpdyHeaderBlock::const_iterator it = name_value_block.begin(); it != name_value_block.end(); ++it) { if (protocol_version() <= SPDY2) { builder->WriteString(it->first); builder->WriteString(it->second); } else { builder->WriteStringPiece32(it->first); builder->WriteStringPiece32(it->second); } } } void SpdyFramer::SerializeNameValueBlock( SpdyFrameBuilder* builder, const SpdyFrameWithNameValueBlockIR& frame) { CHECK_GE(SPDY3, protocol_version()); if (!enable_compression_) { return SerializeNameValueBlockWithoutCompression(builder, frame.name_value_block()); } // First build an uncompressed version to be fed into the compressor. const size_t uncompressed_len = GetSerializedLength( protocol_version(), &(frame.name_value_block())); SpdyFrameBuilder uncompressed_builder(uncompressed_len, protocol_version()); SerializeNameValueBlockWithoutCompression(&uncompressed_builder, frame.name_value_block()); scoped_ptr uncompressed_payload(uncompressed_builder.take()); z_stream* compressor = GetHeaderCompressor(); if (!compressor) { LOG(DFATAL) << "Could not obtain compressor."; return; } // Create an output frame. // Since we'll be performing lots of flushes when compressing the data, // zlib's lower bounds may be insufficient. // // TODO(akalin): Avoid the duplicate calculation with // GetSerializedLength(const SpdyHeaderBlock&). const int compressed_max_size = 2 * deflateBound(compressor, uncompressed_len); // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if defined(USE_SYSTEM_ZLIB) compressor->next_in = reinterpret_cast(uncompressed_payload->data()); compressor->avail_in = uncompressed_len; #endif // defined(USE_SYSTEM_ZLIB) compressor->next_out = reinterpret_cast( builder->GetWritableBuffer(compressed_max_size)); compressor->avail_out = compressed_max_size; // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if defined(USE_SYSTEM_ZLIB) int rv = deflate(compressor, Z_SYNC_FLUSH); if (rv != Z_OK) { // How can we know that it compressed everything? // This shouldn't happen, right? LOG(WARNING) << "deflate failure: " << rv; // TODO(akalin): Upstream this return. return; } #else WriteHeaderBlockToZ(&frame.name_value_block(), compressor); #endif // defined(USE_SYSTEM_ZLIB) int compressed_size = compressed_max_size - compressor->avail_out; builder->Seek(compressed_size); builder->RewriteLength(*this); } } // namespace net