// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // TODO(rtenhove) clean up frame buffer size calculations so that we aren't // constantly adding and subtracting header sizes; this is ugly and error- // prone. #include "net/spdy/spdy_framer.h" #include "base/memory/scoped_ptr.h" #include "base/metrics/stats_counters.h" #include "base/third_party/valgrind/memcheck.h" #include "net/spdy/spdy_frame_builder.h" #include "net/spdy/spdy_bitmasks.h" #if defined(USE_SYSTEM_ZLIB) #include #else #include "third_party/zlib/zlib.h" #endif namespace { // The following compression setting are based on Brian Olson's analysis. See // https://groups.google.com/group/spdy-dev/browse_thread/thread/dfaf498542fac792 // for more details. const int kCompressorLevel = 9; const int kCompressorWindowSizeInBits = 11; const int kCompressorMemLevel = 1; // Adler ID for the SPDY header compressor dictionary. uLong dictionary_id = 0; } // namespace namespace spdy { // This is just a hacked dictionary to use for shrinking HTTP-like headers. // TODO(mbelshe): Use a scientific methodology for computing the dictionary. const char SpdyFramer::kDictionary[] = "optionsgetheadpostputdeletetraceacceptaccept-charsetaccept-encodingaccept-" "languageauthorizationexpectfromhostif-modified-sinceif-matchif-none-matchi" "f-rangeif-unmodifiedsincemax-forwardsproxy-authorizationrangerefererteuser" "-agent10010120020120220320420520630030130230330430530630740040140240340440" "5406407408409410411412413414415416417500501502503504505accept-rangesageeta" "glocationproxy-authenticatepublicretry-afterservervarywarningwww-authentic" "ateallowcontent-basecontent-encodingcache-controlconnectiondatetrailertran" "sfer-encodingupgradeviawarningcontent-languagecontent-lengthcontent-locati" "oncontent-md5content-rangecontent-typeetagexpireslast-modifiedset-cookieMo" "ndayTuesdayWednesdayThursdayFridaySaturdaySundayJanFebMarAprMayJunJulAugSe" "pOctNovDecchunkedtext/htmlimage/pngimage/jpgimage/gifapplication/xmlapplic" "ation/xhtmltext/plainpublicmax-agecharset=iso-8859-1utf-8gzipdeflateHTTP/1" ".1statusversionurl"; const int SpdyFramer::kDictionarySize = arraysize(kDictionary); // By default is compression on or off. bool SpdyFramer::compression_default_ = true; int SpdyFramer::spdy_version_ = kSpdyProtocolVersion; // The initial size of the control frame buffer; this is used internally // as we parse through control frames. (It is exposed here for unit test // purposes.) size_t SpdyFramer::kControlFrameBufferInitialSize = 32 * 1024; // The maximum size of the control frame buffer that we support. // TODO(mbelshe): We should make this stream-based so there are no limits. size_t SpdyFramer::kControlFrameBufferMaxSize = 64 * 1024; const SpdyStreamId SpdyFramer::kInvalidStream = -1; const size_t SpdyFramer::kHeaderDataChunkMaxSize = 1024; #ifdef DEBUG_SPDY_STATE_CHANGES #define CHANGE_STATE(newstate) \ { \ do { \ LOG(INFO) << "Changing state from: " \ << StateToString(state_) \ << " to " << StateToString(newstate) << "\n"; \ state_ = newstate; \ } while (false); \ } #else #define CHANGE_STATE(newstate) (state_ = newstate) #endif int DecompressHeaderBlockInZStream(z_stream* decompressor) { int rv = inflate(decompressor, Z_SYNC_FLUSH); if (rv == Z_NEED_DICT) { // Need to try again with the right dictionary. if (decompressor->adler == dictionary_id) { rv = inflateSetDictionary(decompressor, (const Bytef*)SpdyFramer::kDictionary, SpdyFramer::kDictionarySize); if (rv == Z_OK) rv = inflate(decompressor, Z_SYNC_FLUSH); } } return rv; } // Retrieve serialized length of SpdyHeaderBlock. size_t GetSerializedLength(const SpdyHeaderBlock* headers) { size_t total_length = SpdyControlFrame::kNumNameValuePairsSize; SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { // We add space for the length of the name and the length of the value as // well as the length of the name and the length of the value. total_length += SpdyControlFrame::kLengthOfNameSize + it->first.size() + SpdyControlFrame::kLengthOfValueSize + it->second.size(); } return total_length; } // Serializes a SpdyHeaderBlock. void WriteHeaderBlock(SpdyFrameBuilder* frame, const SpdyHeaderBlock* headers) { frame->WriteUInt16(headers->size()); // Number of headers. SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { bool wrote_header; wrote_header = frame->WriteString(it->first); wrote_header &= frame->WriteString(it->second); DCHECK(wrote_header); } } // Creates a FlagsAndLength. FlagsAndLength CreateFlagsAndLength(SpdyControlFlags flags, size_t length) { DCHECK_EQ(0u, length & ~static_cast(kLengthMask)); FlagsAndLength flags_length; flags_length.length_ = htonl(static_cast(length)); DCHECK_EQ(0, flags & ~kControlFlagsMask); flags_length.flags_[0] = flags; return flags_length; } SpdyFramer::SpdyFramer() : state_(SPDY_RESET), error_code_(SPDY_NO_ERROR), remaining_data_(0), remaining_control_payload_(0), remaining_control_header_(0), current_frame_buffer_(NULL), current_frame_len_(0), current_frame_capacity_(0), validate_control_frame_sizes_(true), enable_compression_(compression_default_), visitor_(NULL) { } SpdyFramer::~SpdyFramer() { if (header_compressor_.get()) { deflateEnd(header_compressor_.get()); } if (header_decompressor_.get()) { inflateEnd(header_decompressor_.get()); } CleanupStreamCompressorsAndDecompressors(); delete [] current_frame_buffer_; } const char* SpdyFramer::StatusCodeToString(int status_code) { switch (status_code) { case INVALID: return "INVALID"; case PROTOCOL_ERROR: return "PROTOCOL_ERROR"; case INVALID_STREAM: return "INVALID_STREAM"; case REFUSED_STREAM: return "REFUSED_STREAM"; case UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case CANCEL: return "CANCEL"; case INTERNAL_ERROR: return "INTERNAL_ERROR"; case FLOW_CONTROL_ERROR: return "FLOW_CONTROL_ERROR"; } return "UNKNOWN_STATUS"; } const char* SpdyFramer::ControlTypeToString(SpdyControlType type) { switch (type) { case SYN_STREAM: return "SYN_STREAM"; case SYN_REPLY: return "SYN_REPLY"; case RST_STREAM: return "RST_STREAM"; case SETTINGS: return "SETTINGS"; case NOOP: return "NOOP"; case PING: return "PING"; case GOAWAY: return "GOAWAY"; case HEADERS: return "HEADERS"; case WINDOW_UPDATE: return "WINDOW_UPDATE"; case NUM_CONTROL_FRAME_TYPES: break; } return "UNKNOWN_CONTROL_TYPE"; } size_t SpdyFramer::ProcessInput(const char* data, size_t len) { DCHECK(visitor_); DCHECK(data); size_t original_len = len; while (len != 0) { switch (state_) { case SPDY_ERROR: case SPDY_DONE: goto bottom; case SPDY_AUTO_RESET: case SPDY_RESET: Reset(); CHANGE_STATE(SPDY_READING_COMMON_HEADER); continue; case SPDY_READING_COMMON_HEADER: { size_t bytes_read = ProcessCommonHeader(data, len); len -= bytes_read; data += bytes_read; continue; } // Arguably, this case is not necessary, as no bytes are consumed here. // I felt it was a nice partitioning, however (which probably indicates // that it should be refactored into its own function!) // TODO(hkhalil): Remove -- while loop above prevents proper handling of // zero-length control frames. case SPDY_INTERPRET_CONTROL_FRAME_COMMON_HEADER: ProcessControlFrameHeader(); continue; case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: { // Control frames that contain header blocks (SYN_STREAM, SYN_REPLY, // HEADERS) take a different path through the state machine - they // will go: // 1. SPDY_INTERPRET_CONTROL_FRAME_COMMON HEADER // 2. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // 3. SPDY_CONTROL_FRAME_HEADER_BLOCK // // All other control frames will use the alternate route: // 1. SPDY_INTERPRET_CONTROL_FRAME_COMMON_HEADER // 2. SPDY_CONTROL_FRAME_PAYLOAD int bytes_read = ProcessControlFrameBeforeHeaderBlock(data, len); len -= bytes_read; data += bytes_read; continue; } case SPDY_CONTROL_FRAME_HEADER_BLOCK: { int bytes_read = ProcessControlFrameHeaderBlock(data, len); len -= bytes_read; data += bytes_read; continue; } case SPDY_CONTROL_FRAME_PAYLOAD: { size_t bytes_read = ProcessControlFramePayload(data, len); len -= bytes_read; data += bytes_read; } // intentional fallthrough case SPDY_IGNORE_REMAINING_PAYLOAD: // control frame has too-large payload // intentional fallthrough case SPDY_FORWARD_STREAM_FRAME: { size_t bytes_read = ProcessDataFramePayload(data, len); len -= bytes_read; data += bytes_read; continue; } default: break; } } bottom: return original_len - len; } void SpdyFramer::Reset() { state_ = SPDY_RESET; error_code_ = SPDY_NO_ERROR; remaining_data_ = 0; remaining_control_payload_ = 0; remaining_control_header_ = 0; current_frame_len_ = 0; if (current_frame_capacity_ != kControlFrameBufferInitialSize) { delete [] current_frame_buffer_; current_frame_buffer_ = 0; current_frame_capacity_ = 0; ExpandControlFrameBuffer(kControlFrameBufferInitialSize); } } bool SpdyFramer::ParseHeaderBlock(const SpdyFrame* frame, SpdyHeaderBlock* block) { SpdyControlFrame control_frame(frame->data(), false); uint32 type = control_frame.type(); if (type != SYN_STREAM && type != SYN_REPLY && type != HEADERS) return false; // Find the header data within the control frame. scoped_ptr decompressed_frame(DecompressFrame(*frame)); if (!decompressed_frame.get()) return false; const char *header_data = NULL; int header_length = 0; switch (type) { case SYN_STREAM: { SpdySynStreamControlFrame syn_frame(decompressed_frame->data(), false); header_data = syn_frame.header_block(); header_length = syn_frame.header_block_len(); } break; case SYN_REPLY: { SpdySynReplyControlFrame syn_frame(decompressed_frame->data(), false); header_data = syn_frame.header_block(); header_length = syn_frame.header_block_len(); } break; case HEADERS: { SpdyHeadersControlFrame header_frame(decompressed_frame->data(), false); header_data = header_frame.header_block(); header_length = header_frame.header_block_len(); } break; } SpdyFrameBuilder builder(header_data, header_length); void* iter = NULL; uint16 num_headers; if (builder.ReadUInt16(&iter, &num_headers)) { int index; for (index = 0; index < num_headers; ++index) { std::string name; std::string value; if (!builder.ReadString(&iter, &name)) break; if (!builder.ReadString(&iter, &value)) break; if (!name.size() || !value.size()) return false; if (block->find(name) == block->end()) { (*block)[name] = value; } else { return false; } } return index == num_headers && iter == header_data + header_length; } return false; } size_t SpdyFramer::UpdateCurrentFrameBuffer(const char** data, size_t* len, size_t max_bytes) { size_t bytes_to_read = std::min(*len, max_bytes); DCHECK_GE(current_frame_capacity_, current_frame_len_ + bytes_to_read); memcpy(¤t_frame_buffer_[current_frame_len_], *data, bytes_to_read); current_frame_len_ += bytes_to_read; *data += bytes_to_read; *len -= bytes_to_read; return bytes_to_read; } size_t SpdyFramer::ProcessControlFrameBeforeHeaderBlock(const char* data, size_t len) { DCHECK_EQ(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK, state_); DCHECK_GT(remaining_control_header_, 0u); size_t original_len = len; if (remaining_control_header_) { size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_control_header_); remaining_control_header_ -= bytes_read; if (remaining_control_header_ == 0) { SpdyControlFrame control_frame(current_frame_buffer_, false); DCHECK(control_frame.type() == SYN_STREAM || control_frame.type() == SYN_REPLY || control_frame.type() == HEADERS); visitor_->OnControl(&control_frame); CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); } } return original_len - len; } // Does not buffer the control payload. Instead, either passes directly to the // visitor or decompresses and then passes directly to the visitor, via // IncrementallyDeliverControlFrameHeaderData() or // IncrementallyDecompressControlFrameHeaderData() respectively. size_t SpdyFramer::NewProcessControlFrameHeaderBlock(const char* data, size_t data_len) { DCHECK_EQ(SPDY_CONTROL_FRAME_HEADER_BLOCK, state_); SpdyControlFrame control_frame(current_frame_buffer_, false); bool processed_successfully = true; DCHECK(control_frame.type() == SYN_STREAM || control_frame.type() == SYN_REPLY || control_frame.type() == HEADERS); size_t process_bytes = std::min(data_len, remaining_control_payload_); DCHECK_GT(process_bytes, 0u); if (enable_compression_) { processed_successfully = IncrementallyDecompressControlFrameHeaderData( &control_frame, data, process_bytes); } else { processed_successfully = IncrementallyDeliverControlFrameHeaderData( &control_frame, data, process_bytes); } remaining_control_payload_ -= process_bytes; // Handle the case that there is no futher data in this frame. if (remaining_control_payload_ == 0 && processed_successfully) { // The complete header block has been delivered. We send a zero-length // OnControlFrameHeaderData() to indicate this. visitor_->OnControlFrameHeaderData( GetControlFrameStreamId(&control_frame), NULL, 0); // If this is a FIN, tell the caller. if (control_frame.flags() & CONTROL_FLAG_FIN) { visitor_->OnStreamFrameData(GetControlFrameStreamId(&control_frame), NULL, 0); } CHANGE_STATE(SPDY_RESET); } // Handle error. if (!processed_successfully) { return data_len; } // Return amount processed. return process_bytes; } size_t SpdyFramer::ProcessControlFrameHeaderBlock(const char* data, size_t data_len) { DCHECK_EQ(SPDY_CONTROL_FRAME_HEADER_BLOCK, state_); size_t original_data_len = data_len; SpdyControlFrame control_frame(current_frame_buffer_, false); bool read_successfully = true; DCHECK(control_frame.type() == SYN_STREAM || control_frame.type() == SYN_REPLY || control_frame.type() == HEADERS); if (enable_compression_) { // Note that the header block is held in the frame's payload, and is not // part of the frame's headers. if (remaining_control_payload_ > 0) { size_t bytes_read = UpdateCurrentFrameBuffer( &data, &data_len, remaining_control_payload_); remaining_control_payload_ -= bytes_read; if (remaining_control_payload_ == 0) { read_successfully = IncrementallyDecompressControlFrameHeaderData( &control_frame); } } } else { size_t bytes_to_send = std::min(data_len, remaining_control_payload_); DCHECK_GT(bytes_to_send, 0u); read_successfully = IncrementallyDeliverControlFrameHeaderData( &control_frame, data, bytes_to_send); data_len -= bytes_to_send; remaining_control_payload_ -= bytes_to_send; } if (remaining_control_payload_ == 0 && read_successfully) { // The complete header block has been delivered. visitor_->OnControlFrameHeaderData(GetControlFrameStreamId(&control_frame), NULL, 0); // If this is a FIN, tell the caller. if (control_frame.flags() & CONTROL_FLAG_FIN) { visitor_->OnStreamFrameData(GetControlFrameStreamId(&control_frame), NULL, 0); } CHANGE_STATE(SPDY_RESET); } if (!read_successfully) { return original_data_len; } return original_data_len - data_len; } /* static */ bool SpdyFramer::ParseHeaderBlockInBuffer(const char* header_data, size_t header_length, SpdyHeaderBlock* block) { SpdyFrameBuilder builder(header_data, header_length); void* iter = NULL; uint16 num_headers; if (builder.ReadUInt16(&iter, &num_headers)) { for (int index = 0; index < num_headers; ++index) { std::string name; std::string value; if (!builder.ReadString(&iter, &name)) return false; if (!builder.ReadString(&iter, &value)) return false; if (block->find(name) == block->end()) { (*block)[name] = value; } else { return false; } } return true; } return false; } SpdySynStreamControlFrame* SpdyFramer::CreateSynStream( SpdyStreamId stream_id, SpdyStreamId associated_stream_id, int priority, SpdyControlFlags flags, bool compressed, const SpdyHeaderBlock* headers) { SpdyFrameBuilder frame; DCHECK_GT(stream_id, static_cast(0)); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); DCHECK_EQ(0u, associated_stream_id & ~kStreamIdMask); frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(SYN_STREAM); frame.WriteUInt32(0); // Placeholder for the length and flags frame.WriteUInt32(stream_id); frame.WriteUInt32(associated_stream_id); frame.WriteUInt16(ntohs(priority) << 6); // Priority. frame.WriteUInt16(headers->size()); // Number of headers. SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { bool wrote_header; wrote_header = frame.WriteString(it->first); wrote_header &= frame.WriteString(it->second); DCHECK(wrote_header); } // Write the length and flags. size_t length = frame.length() - SpdyFrame::size(); DCHECK_EQ(0u, length & ~static_cast(kLengthMask)); FlagsAndLength flags_length; flags_length.length_ = htonl(static_cast(length)); DCHECK_EQ(0, flags & ~kControlFlagsMask); flags_length.flags_[0] = flags; frame.WriteBytesToOffset(4, &flags_length, sizeof(flags_length)); scoped_ptr syn_frame( reinterpret_cast(frame.take())); if (compressed) { return reinterpret_cast( CompressControlFrame(*syn_frame.get())); } return syn_frame.release(); } SpdySynReplyControlFrame* SpdyFramer::CreateSynReply(SpdyStreamId stream_id, SpdyControlFlags flags, bool compressed, const SpdyHeaderBlock* headers) { DCHECK_GT(stream_id, 0u); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(SYN_REPLY); frame.WriteUInt32(0); // Placeholder for the length and flags. frame.WriteUInt32(stream_id); frame.WriteUInt16(0); // Unused frame.WriteUInt16(headers->size()); // Number of headers. SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { bool wrote_header; wrote_header = frame.WriteString(it->first); wrote_header &= frame.WriteString(it->second); DCHECK(wrote_header); } // Write the length and flags. size_t length = frame.length() - SpdyFrame::size(); DCHECK_EQ(0u, length & ~static_cast(kLengthMask)); FlagsAndLength flags_length; flags_length.length_ = htonl(static_cast(length)); DCHECK_EQ(0, flags & ~kControlFlagsMask); flags_length.flags_[0] = flags; frame.WriteBytesToOffset(4, &flags_length, sizeof(flags_length)); scoped_ptr reply_frame( reinterpret_cast(frame.take())); if (compressed) { return reinterpret_cast( CompressControlFrame(*reply_frame.get())); } return reply_frame.release(); } /* static */ SpdyRstStreamControlFrame* SpdyFramer::CreateRstStream(SpdyStreamId stream_id, SpdyStatusCodes status) { DCHECK_GT(stream_id, 0u); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); DCHECK_NE(status, INVALID); DCHECK_LT(status, NUM_STATUS_CODES); SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(RST_STREAM); frame.WriteUInt32(8); frame.WriteUInt32(stream_id); frame.WriteUInt32(status); return reinterpret_cast(frame.take()); } /* static */ SpdySettingsControlFrame* SpdyFramer::CreateSettings( const SpdySettings& values) { SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(SETTINGS); size_t settings_size = SpdySettingsControlFrame::size() - SpdyFrame::size() + 8 * values.size(); frame.WriteUInt32(settings_size); frame.WriteUInt32(values.size()); SpdySettings::const_iterator it = values.begin(); while (it != values.end()) { frame.WriteUInt32(it->first.id_); frame.WriteUInt32(it->second); ++it; } return reinterpret_cast(frame.take()); } /* static */ SpdyNoOpControlFrame* SpdyFramer::CreateNopFrame() { SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(NOOP); frame.WriteUInt32(0); return reinterpret_cast(frame.take()); } /* static */ SpdyPingControlFrame* SpdyFramer::CreatePingFrame(uint32 unique_id) { SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | kSpdyProtocolVersion); frame.WriteUInt16(PING); size_t ping_size = SpdyPingControlFrame::size() - SpdyFrame::size(); frame.WriteUInt32(ping_size); frame.WriteUInt32(unique_id); return reinterpret_cast(frame.take()); } /* static */ SpdyGoAwayControlFrame* SpdyFramer::CreateGoAway( SpdyStreamId last_accepted_stream_id) { DCHECK_EQ(0u, last_accepted_stream_id & ~kStreamIdMask); SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(GOAWAY); size_t go_away_size = SpdyGoAwayControlFrame::size() - SpdyFrame::size(); frame.WriteUInt32(go_away_size); frame.WriteUInt32(last_accepted_stream_id); return reinterpret_cast(frame.take()); } SpdyHeadersControlFrame* SpdyFramer::CreateHeaders(SpdyStreamId stream_id, SpdyControlFlags flags, bool compressed, const SpdyHeaderBlock* headers) { // Basically the same as CreateSynReply(). DCHECK_GT(stream_id, 0u); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | kSpdyProtocolVersion); frame.WriteUInt16(HEADERS); frame.WriteUInt32(0); // Placeholder for the length and flags. frame.WriteUInt32(stream_id); frame.WriteUInt16(0); // Unused frame.WriteUInt16(headers->size()); // Number of headers. SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { bool wrote_header; wrote_header = frame.WriteString(it->first); wrote_header &= frame.WriteString(it->second); DCHECK(wrote_header); } // Write the length and flags. size_t length = frame.length() - SpdyFrame::size(); DCHECK_EQ(0u, length & ~static_cast(kLengthMask)); FlagsAndLength flags_length; flags_length.length_ = htonl(static_cast(length)); DCHECK_EQ(0, flags & ~kControlFlagsMask); flags_length.flags_[0] = flags; frame.WriteBytesToOffset(4, &flags_length, sizeof(flags_length)); scoped_ptr headers_frame( reinterpret_cast(frame.take())); if (compressed) { return reinterpret_cast( CompressControlFrame(*headers_frame.get())); } return headers_frame.release(); } /* static */ SpdyWindowUpdateControlFrame* SpdyFramer::CreateWindowUpdate( SpdyStreamId stream_id, uint32 delta_window_size) { DCHECK_GT(stream_id, 0u); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); DCHECK_GT(delta_window_size, 0u); DCHECK_LE(delta_window_size, spdy::kSpdyStreamMaximumWindowSize); SpdyFrameBuilder frame; frame.WriteUInt16(kControlFlagMask | spdy_version_); frame.WriteUInt16(WINDOW_UPDATE); size_t window_update_size = SpdyWindowUpdateControlFrame::size() - SpdyFrame::size(); frame.WriteUInt32(window_update_size); frame.WriteUInt32(stream_id); frame.WriteUInt32(delta_window_size); return reinterpret_cast(frame.take()); } /* static */ bool SpdyFramer::ParseSettings(const SpdySettingsControlFrame* frame, SpdySettings* settings) { DCHECK_EQ(frame->type(), SETTINGS); DCHECK(settings); SpdyFrameBuilder parser(frame->header_block(), frame->header_block_len()); void* iter = NULL; for (size_t index = 0; index < frame->num_entries(); ++index) { uint32 id; uint32 value; if (!parser.ReadUInt32(&iter, &id)) return false; if (!parser.ReadUInt32(&iter, &value)) return false; settings->insert(settings->end(), std::make_pair(id, value)); } return true; } SpdyDataFrame* SpdyFramer::CreateDataFrame(SpdyStreamId stream_id, const char* data, uint32 len, SpdyDataFlags flags) { SpdyFrameBuilder frame; DCHECK_GT(stream_id, 0u); DCHECK_EQ(0u, stream_id & ~kStreamIdMask); frame.WriteUInt32(stream_id); DCHECK_EQ(0u, len & ~static_cast(kLengthMask)); FlagsAndLength flags_length; flags_length.length_ = htonl(len); DCHECK_EQ(0, flags & ~kDataFlagsMask); flags_length.flags_[0] = flags; frame.WriteBytes(&flags_length, sizeof(flags_length)); frame.WriteBytes(data, len); scoped_ptr data_frame(frame.take()); SpdyDataFrame* rv; if (flags & DATA_FLAG_COMPRESSED) { rv = reinterpret_cast(CompressFrame(*data_frame.get())); } else { rv = reinterpret_cast(data_frame.release()); } if (flags & DATA_FLAG_FIN) { CleanupCompressorForStream(stream_id); } return rv; } SpdyFrame* SpdyFramer::CompressFrame(const SpdyFrame& frame) { if (frame.is_control_frame()) { return CompressControlFrame( reinterpret_cast(frame)); } return CompressDataFrame(reinterpret_cast(frame)); } SpdyFrame* SpdyFramer::DecompressFrame(const SpdyFrame& frame) { if (frame.is_control_frame()) { return DecompressControlFrame( reinterpret_cast(frame)); } return DecompressDataFrame(reinterpret_cast(frame)); } SpdyFrame* SpdyFramer::DuplicateFrame(const SpdyFrame& frame) { int size = SpdyFrame::size() + frame.length(); SpdyFrame* new_frame = new SpdyFrame(size); memcpy(new_frame->data(), frame.data(), size); return new_frame; } bool SpdyFramer::IsCompressible(const SpdyFrame& frame) const { // The important frames to compress are those which contain large // amounts of compressible data - namely the headers in the SYN_STREAM // and SYN_REPLY. // TODO(mbelshe): Reconcile this with the spec when the spec is // explicit about which frames compress and which do not. if (frame.is_control_frame()) { const SpdyControlFrame& control_frame = reinterpret_cast(frame); return control_frame.type() == SYN_STREAM || control_frame.type() == SYN_REPLY; } const SpdyDataFrame& data_frame = reinterpret_cast(frame); return (data_frame.flags() & DATA_FLAG_COMPRESSED) != 0; } const char* SpdyFramer::StateToString(int state) { switch (state) { case SPDY_ERROR: return "ERROR"; case SPDY_DONE: return "DONE"; case SPDY_AUTO_RESET: return "AUTO_RESET"; case SPDY_RESET: return "RESET"; case SPDY_READING_COMMON_HEADER: return "READING_COMMON_HEADER"; case SPDY_INTERPRET_CONTROL_FRAME_COMMON_HEADER: return "INTERPRET_CONTROL_FRAME_COMMON_HEADER"; case SPDY_CONTROL_FRAME_PAYLOAD: return "CONTROL_FRAME_PAYLOAD"; case SPDY_IGNORE_REMAINING_PAYLOAD: return "IGNORE_REMAINING_PAYLOAD"; case SPDY_FORWARD_STREAM_FRAME: return "FORWARD_STREAM_FRAME"; case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK"; case SPDY_CONTROL_FRAME_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_HEADER_BLOCK"; } return "UNKNOWN_STATE"; } const char* SpdyFramer::ErrorCodeToString(int error_code) { switch (error_code) { case SPDY_NO_ERROR: return "NO_ERROR"; case SPDY_INVALID_CONTROL_FRAME: return "INVALID_CONTROL_FRAME"; case SPDY_CONTROL_PAYLOAD_TOO_LARGE: return "CONTROL_PAYLOAD_TOO_LARGE"; case SPDY_ZLIB_INIT_FAILURE: return "ZLIB_INIT_FAILURE"; case SPDY_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case SPDY_DECOMPRESS_FAILURE: return "DECOMPRESS_FAILURE"; case SPDY_COMPRESS_FAILURE: return "COMPRESS_FAILURE"; } return "UNKNOWN_ERROR"; } void SpdyFramer::set_enable_compression(bool value) { enable_compression_ = value; } void SpdyFramer::set_enable_compression_default(bool value) { compression_default_ = value; } size_t SpdyFramer::ProcessCommonHeader(const char* data, size_t len) { // This should only be called when we're in the SPDY_READING_COMMON_HEADER // state. DCHECK_EQ(state_, SPDY_READING_COMMON_HEADER); size_t original_len = len; SpdyFrame current_frame(current_frame_buffer_, false); do { if (current_frame_len_ < SpdyFrame::size()) { size_t bytes_desired = SpdyFrame::size() - current_frame_len_; UpdateCurrentFrameBuffer(&data, &len, bytes_desired); // Check for an empty data frame. if (current_frame_len_ == SpdyFrame::size() && !current_frame.is_control_frame() && current_frame.length() == 0) { if (current_frame.flags() & CONTROL_FLAG_FIN) { SpdyDataFrame data_frame(current_frame_buffer_, false); visitor_->OnStreamFrameData(data_frame.stream_id(), NULL, 0); } CHANGE_STATE(SPDY_AUTO_RESET); } break; } remaining_data_ = current_frame.length(); // This is just a sanity check for help debugging early frame errors. if (remaining_data_ > 1000000u) { LOG(WARNING) << "Unexpectedly large frame. Spdy session is likely corrupt."; } // if we're here, then we have the common header all received. if (!current_frame.is_control_frame()) CHANGE_STATE(SPDY_FORWARD_STREAM_FRAME); else CHANGE_STATE(SPDY_INTERPRET_CONTROL_FRAME_COMMON_HEADER); } while (false); return original_len - len; } void SpdyFramer::ProcessControlFrameHeader() { DCHECK_EQ(SPDY_NO_ERROR, error_code_); DCHECK_LE(SpdyFrame::size(), current_frame_len_); SpdyControlFrame current_control_frame(current_frame_buffer_, false); // We check version before we check validity: version can never be 'invalid', // it can only be unsupported. if (current_control_frame.version() != spdy_version_) { set_error(SPDY_UNSUPPORTED_VERSION); return; } // Next up, check to see if we have valid data. This should be after version // checking (otherwise if the the type were out of bounds due to a version // upgrade we would misclassify the error) and before checking the type // (type can definitely be out of bounds) if (!current_control_frame.AppearsToBeAValidControlFrame()) { set_error(SPDY_INVALID_CONTROL_FRAME); return; } // Do some sanity checking on the control frame sizes. switch (current_control_frame.type()) { case SYN_STREAM: if (current_control_frame.length() < SpdySynStreamControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case SYN_REPLY: if (current_control_frame.length() < SpdySynReplyControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case RST_STREAM: if (current_control_frame.length() != SpdyRstStreamControlFrame::size() - SpdyFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case SETTINGS: if (current_control_frame.length() < SpdySettingsControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; // TODO(hkhalil): Remove NOOP. case NOOP: // NOOP. Swallow it. DLOG(INFO) << "Attempted frame size validation for NOOP. Resetting."; CHANGE_STATE(SPDY_AUTO_RESET); return; case GOAWAY: if (current_control_frame.length() != SpdyGoAwayControlFrame::size() - SpdyFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case HEADERS: if (current_control_frame.length() < SpdyHeadersControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case WINDOW_UPDATE: if (current_control_frame.length() != SpdyWindowUpdateControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; case PING: if (current_control_frame.length() != SpdyPingControlFrame::size() - SpdyControlFrame::size()) set_error(SPDY_INVALID_CONTROL_FRAME); break; default: LOG(WARNING) << "Valid spdy control frame with unhandled type: " << current_control_frame.type(); DCHECK(false); set_error(SPDY_INVALID_CONTROL_FRAME); break; } remaining_control_payload_ = current_control_frame.length(); if (remaining_control_payload_ > kControlFrameBufferMaxSize) { set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); return; } ExpandControlFrameBuffer(remaining_control_payload_); CHANGE_STATE(SPDY_CONTROL_FRAME_PAYLOAD); } size_t SpdyFramer::ProcessControlFramePayload(const char* data, size_t len) { size_t original_len = len; do { if (remaining_control_payload_) { size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_control_payload_); remaining_control_payload_ -= bytes_read; remaining_data_ -= bytes_read; if (remaining_control_payload_) break; } SpdyControlFrame control_frame(current_frame_buffer_, false); visitor_->OnControl(&control_frame); // If this is a FIN, tell the caller. if (control_frame.type() == SYN_REPLY && control_frame.flags() & CONTROL_FLAG_FIN) { visitor_->OnStreamFrameData(reinterpret_cast( &control_frame)->stream_id(), NULL, 0); } CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD); } while (false); return original_len - len; } size_t SpdyFramer::ProcessDataFramePayload(const char* data, size_t len) { size_t original_len = len; SpdyDataFrame current_data_frame(current_frame_buffer_, false); if (remaining_data_) { size_t amount_to_forward = std::min(remaining_data_, len); if (amount_to_forward && state_ != SPDY_IGNORE_REMAINING_PAYLOAD) { if (current_data_frame.flags() & DATA_FLAG_COMPRESSED) { z_stream* decompressor = GetStreamDecompressor(current_data_frame.stream_id()); if (!decompressor) return 0; size_t decompressed_max_size = amount_to_forward * 100; scoped_array decompressed(new char[decompressed_max_size]); decompressor->next_in = reinterpret_cast( const_cast(data)); decompressor->avail_in = amount_to_forward; decompressor->next_out = reinterpret_cast(decompressed.get()); decompressor->avail_out = decompressed_max_size; int rv = inflate(decompressor, Z_SYNC_FLUSH); if (rv != Z_OK) { LOG(WARNING) << "inflate failure: " << rv; set_error(SPDY_DECOMPRESS_FAILURE); return 0; } size_t decompressed_size = decompressed_max_size - decompressor->avail_out; // Only inform the visitor if there is data. if (decompressed_size) visitor_->OnStreamFrameData(current_data_frame.stream_id(), decompressed.get(), decompressed_size); amount_to_forward -= decompressor->avail_in; } else { // The data frame was not compressed. // Only inform the visitor if there is data. if (amount_to_forward) visitor_->OnStreamFrameData(current_data_frame.stream_id(), data, amount_to_forward); } } data += amount_to_forward; len -= amount_to_forward; remaining_data_ -= amount_to_forward; // If the FIN flag is set, and there is no more data in this data // frame, inform the visitor of EOF via a 0-length data frame. if (!remaining_data_ && current_data_frame.flags() & DATA_FLAG_FIN) { visitor_->OnStreamFrameData(current_data_frame.stream_id(), NULL, 0); CleanupDecompressorForStream(current_data_frame.stream_id()); } } else { CHANGE_STATE(SPDY_AUTO_RESET); } return original_len - len; } z_stream* SpdyFramer::GetHeaderCompressor() { if (header_compressor_.get()) return header_compressor_.get(); // Already initialized. header_compressor_.reset(new z_stream); memset(header_compressor_.get(), 0, sizeof(z_stream)); int success = deflateInit2(header_compressor_.get(), kCompressorLevel, Z_DEFLATED, kCompressorWindowSizeInBits, kCompressorMemLevel, Z_DEFAULT_STRATEGY); if (success == Z_OK) success = deflateSetDictionary(header_compressor_.get(), reinterpret_cast(kDictionary), kDictionarySize); if (success != Z_OK) { LOG(WARNING) << "deflateSetDictionary failure: " << success; header_compressor_.reset(NULL); return NULL; } return header_compressor_.get(); } z_stream* SpdyFramer::GetHeaderDecompressor() { if (header_decompressor_.get()) return header_decompressor_.get(); // Already initialized. header_decompressor_.reset(new z_stream); memset(header_decompressor_.get(), 0, sizeof(z_stream)); // Compute the id of our dictionary so that we know we're using the // right one when asked for it. if (dictionary_id == 0) { dictionary_id = adler32(0L, Z_NULL, 0); dictionary_id = adler32(dictionary_id, reinterpret_cast(kDictionary), kDictionarySize); } int success = inflateInit(header_decompressor_.get()); if (success != Z_OK) { LOG(WARNING) << "inflateInit failure: " << success; header_decompressor_.reset(NULL); return NULL; } return header_decompressor_.get(); } z_stream* SpdyFramer::GetStreamCompressor(SpdyStreamId stream_id) { CompressorMap::iterator it = stream_compressors_.find(stream_id); if (it != stream_compressors_.end()) return it->second; // Already initialized. scoped_ptr compressor(new z_stream); memset(compressor.get(), 0, sizeof(z_stream)); int success = deflateInit2(compressor.get(), kCompressorLevel, Z_DEFLATED, kCompressorWindowSizeInBits, kCompressorMemLevel, Z_DEFAULT_STRATEGY); if (success != Z_OK) { LOG(WARNING) << "deflateInit failure: " << success; return NULL; } return stream_compressors_[stream_id] = compressor.release(); } z_stream* SpdyFramer::GetStreamDecompressor(SpdyStreamId stream_id) { CompressorMap::iterator it = stream_decompressors_.find(stream_id); if (it != stream_decompressors_.end()) return it->second; // Already initialized. scoped_ptr decompressor(new z_stream); memset(decompressor.get(), 0, sizeof(z_stream)); int success = inflateInit(decompressor.get()); if (success != Z_OK) { LOG(WARNING) << "inflateInit failure: " << success; return NULL; } return stream_decompressors_[stream_id] = decompressor.release(); } SpdyControlFrame* SpdyFramer::CompressControlFrame( const SpdyControlFrame& frame) { z_stream* compressor = GetHeaderCompressor(); if (!compressor) return NULL; return reinterpret_cast( CompressFrameWithZStream(frame, compressor)); } SpdyDataFrame* SpdyFramer::CompressDataFrame(const SpdyDataFrame& frame) { z_stream* compressor = GetStreamCompressor(frame.stream_id()); if (!compressor) return NULL; return reinterpret_cast( CompressFrameWithZStream(frame, compressor)); } SpdyControlFrame* SpdyFramer::DecompressControlFrame( const SpdyControlFrame& frame) { z_stream* decompressor = GetHeaderDecompressor(); if (!decompressor) return NULL; return reinterpret_cast( DecompressFrameWithZStream(frame, decompressor)); } // Incrementally decompress the control frame's header block, feeding the // result to the visitor in chunks. Continue this until the visitor // indicates that it cannot process any more data, or (more commonly) we // run out of data to deliver. bool SpdyFramer::IncrementallyDecompressControlFrameHeaderData( const SpdyControlFrame* control_frame) { z_stream* decomp = GetHeaderDecompressor(); int payload_length; int header_length; const char* payload; bool read_successfully = true; bool more = true; char buffer[kHeaderDataChunkMaxSize]; if (!GetFrameBoundaries( *control_frame, &payload_length, &header_length, &payload)) { DLOG(ERROR) << "Control frame of type " << SpdyFramer::ControlTypeToString(control_frame->type()) <<" doesn't have headers"; return false; } decomp->next_in = reinterpret_cast(const_cast(payload)); decomp->avail_in = payload_length; const SpdyStreamId stream_id = GetControlFrameStreamId(control_frame); DCHECK_LT(0u, stream_id); while (more && read_successfully) { decomp->next_out = reinterpret_cast(buffer); decomp->avail_out = arraysize(buffer); int rv = DecompressHeaderBlockInZStream(decomp); if (rv != Z_OK) { set_error(SPDY_DECOMPRESS_FAILURE); DLOG(WARNING) << "inflate failure: " << rv; more = read_successfully = false; } else { DCHECK_GT(arraysize(buffer), decomp->avail_out); size_t len = arraysize(buffer) - decomp->avail_out; read_successfully = visitor_->OnControlFrameHeaderData(stream_id, buffer, len); if (!read_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } more = decomp->avail_in > 0; } } return read_successfully; } // Incrementally decompress the control frame's header block, feeding the // result to the visitor in chunks. Continue this until the visitor // indicates that it cannot process any more data, or (more commonly) we // run out of data to deliver. bool SpdyFramer::IncrementallyDecompressControlFrameHeaderData( const SpdyControlFrame* control_frame, const char* data, size_t len) { // Get a decompressor or set error. z_stream* decomp = GetHeaderDecompressor(); if (decomp == NULL) { LOG(DFATAL) << "Couldn't get decompressor for handling compressed headers."; set_error(SPDY_DECOMPRESS_FAILURE); return false; } bool processed_successfully = true; char buffer[kHeaderDataChunkMaxSize]; decomp->next_in = reinterpret_cast(const_cast(data)); decomp->avail_in = len; const SpdyStreamId stream_id = GetControlFrameStreamId(control_frame); DCHECK_LT(0u, stream_id); while (decomp->avail_in > 0 && processed_successfully) { decomp->next_out = reinterpret_cast(buffer); decomp->avail_out = arraysize(buffer); int rv = DecompressHeaderBlockInZStream(decomp); if (rv != Z_OK) { set_error(SPDY_DECOMPRESS_FAILURE); DLOG(WARNING) << "inflate failure: " << rv; processed_successfully = false; } else { size_t decompressed_len = arraysize(buffer) - decomp->avail_out; if (decompressed_len > 0) { processed_successfully = visitor_->OnControlFrameHeaderData( stream_id, buffer, decompressed_len); } if (!processed_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } } return processed_successfully; } bool SpdyFramer::IncrementallyDeliverControlFrameHeaderData( const SpdyControlFrame* control_frame, const char* data, size_t len) { bool read_successfully = true; const SpdyStreamId stream_id = GetControlFrameStreamId(control_frame); DCHECK_LT(0u, stream_id); while (read_successfully && len > 0) { size_t bytes_to_deliver = std::min(len, kHeaderDataChunkMaxSize); read_successfully = visitor_->OnControlFrameHeaderData(stream_id, data, bytes_to_deliver); data += bytes_to_deliver; len -= bytes_to_deliver; if (!read_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } return read_successfully; } size_t SpdyFramer::GetMinimumControlFrameSize(SpdyControlType type) { switch (type) { case SYN_STREAM: return SpdySynStreamControlFrame::size(); case SYN_REPLY: return SpdySynReplyControlFrame::size(); case RST_STREAM: return SpdyRstStreamControlFrame::size(); case SETTINGS: return SpdySettingsControlFrame::size(); case NOOP: return SpdyNoOpControlFrame::size(); case PING: return SpdyPingControlFrame::size(); case GOAWAY: return SpdyGoAwayControlFrame::size(); case HEADERS: return SpdyHeadersControlFrame::size(); case WINDOW_UPDATE: return SpdyWindowUpdateControlFrame::size(); case NUM_CONTROL_FRAME_TYPES: break; } LOG(ERROR) << "Unknown SPDY control frame type " << type; return 0x7FFFFFFF; // Max signed 32bit int } /* static */ SpdyStreamId SpdyFramer::GetControlFrameStreamId( const SpdyControlFrame* control_frame) { SpdyStreamId stream_id = kInvalidStream; if (control_frame != NULL) { switch (control_frame->type()) { case SYN_STREAM: stream_id = reinterpret_cast( control_frame)->stream_id(); break; case SYN_REPLY: stream_id = reinterpret_cast( control_frame)->stream_id(); break; case HEADERS: stream_id = reinterpret_cast( control_frame)->stream_id(); break; case RST_STREAM: stream_id = reinterpret_cast( control_frame)->stream_id(); break; case WINDOW_UPDATE: stream_id = reinterpret_cast( control_frame)->stream_id(); break; // All of the following types are not part of a particular stream. // They all fall through to the invalid control frame type case. // (The default case isn't used so that the compile will break if a new // control frame type is added but not included here.) case SETTINGS: case NOOP: case PING: case GOAWAY: case NUM_CONTROL_FRAME_TYPES: // makes compiler happy break; } } return stream_id; } void SpdyFramer::set_validate_control_frame_sizes(bool value) { validate_control_frame_sizes_ = value; } SpdyDataFrame* SpdyFramer::DecompressDataFrame(const SpdyDataFrame& frame) { z_stream* decompressor = GetStreamDecompressor(frame.stream_id()); if (!decompressor) return NULL; return reinterpret_cast( DecompressFrameWithZStream(frame, decompressor)); } SpdyFrame* SpdyFramer::CompressFrameWithZStream(const SpdyFrame& frame, z_stream* compressor) { int payload_length; int header_length; const char* payload; base::StatsCounter compressed_frames("spdy.CompressedFrames"); base::StatsCounter pre_compress_bytes("spdy.PreCompressSize"); base::StatsCounter post_compress_bytes("spdy.PostCompressSize"); if (!enable_compression_) return DuplicateFrame(frame); if (!GetFrameBoundaries(frame, &payload_length, &header_length, &payload)) return NULL; // Create an output frame. int compressed_max_size = deflateBound(compressor, payload_length); int new_frame_size = header_length + compressed_max_size; scoped_ptr new_frame(new SpdyFrame(new_frame_size)); memcpy(new_frame->data(), frame.data(), frame.length() + SpdyFrame::size()); compressor->next_in = reinterpret_cast(const_cast(payload)); compressor->avail_in = payload_length; compressor->next_out = reinterpret_cast(new_frame->data()) + header_length; compressor->avail_out = compressed_max_size; // Data packets have a 'compressed' flag. if (!new_frame->is_control_frame()) { SpdyDataFrame* data_frame = reinterpret_cast(new_frame.get()); data_frame->set_flags(data_frame->flags() | DATA_FLAG_COMPRESSED); } // Make sure that all the data we pass to zlib is defined. // This way, all Valgrind reports on the compressed data are zlib's fault. (void)VALGRIND_CHECK_MEM_IS_DEFINED(compressor->next_in, compressor->avail_in); int rv = deflate(compressor, Z_SYNC_FLUSH); if (rv != Z_OK) { // How can we know that it compressed everything? // This shouldn't happen, right? LOG(WARNING) << "deflate failure: " << rv; return NULL; } int compressed_size = compressed_max_size - compressor->avail_out; // We trust zlib. Also, we can't do anything about it. // See http://www.zlib.net/zlib_faq.html#faq36 (void)VALGRIND_MAKE_MEM_DEFINED(new_frame->data() + header_length, compressed_size); new_frame->set_length(header_length + compressed_size - SpdyFrame::size()); pre_compress_bytes.Add(payload_length); post_compress_bytes.Add(new_frame->length()); compressed_frames.Increment(); return new_frame.release(); } SpdyFrame* SpdyFramer::DecompressFrameWithZStream(const SpdyFrame& frame, z_stream* decompressor) { int payload_length; int header_length; const char* payload; base::StatsCounter decompressed_frames("spdy.DecompressedFrames"); base::StatsCounter pre_decompress_bytes("spdy.PreDeCompressSize"); base::StatsCounter post_decompress_bytes("spdy.PostDeCompressSize"); if (!enable_compression_) return DuplicateFrame(frame); if (!GetFrameBoundaries(frame, &payload_length, &header_length, &payload)) return NULL; if (!frame.is_control_frame()) { const SpdyDataFrame& data_frame = reinterpret_cast(frame); if ((data_frame.flags() & DATA_FLAG_COMPRESSED) == 0) return DuplicateFrame(frame); } // Create an output frame. Assume it does not need to be longer than // the input data. size_t decompressed_max_size = kControlFrameBufferInitialSize; int new_frame_size = header_length + decompressed_max_size; if (frame.length() > decompressed_max_size) return NULL; scoped_ptr new_frame(new SpdyFrame(new_frame_size)); memcpy(new_frame->data(), frame.data(), frame.length() + SpdyFrame::size()); decompressor->next_in = reinterpret_cast(const_cast(payload)); decompressor->avail_in = payload_length; decompressor->next_out = reinterpret_cast(new_frame->data()) + header_length; decompressor->avail_out = decompressed_max_size; int rv = inflate(decompressor, Z_SYNC_FLUSH); if (rv == Z_NEED_DICT) { // Need to try again with the right dictionary. if (decompressor->adler == dictionary_id) { rv = inflateSetDictionary(decompressor, (const Bytef*)kDictionary, kDictionarySize); if (rv == Z_OK) rv = inflate(decompressor, Z_SYNC_FLUSH); } } if (rv != Z_OK) { // How can we know that it decompressed everything? LOG(WARNING) << "inflate failure: " << rv; return NULL; } // Unset the compressed flag for data frames. if (!new_frame->is_control_frame()) { SpdyDataFrame* data_frame = reinterpret_cast(new_frame.get()); data_frame->set_flags(data_frame->flags() & ~DATA_FLAG_COMPRESSED); } int decompressed_size = decompressed_max_size - decompressor->avail_out; new_frame->set_length(header_length + decompressed_size - SpdyFrame::size()); // If there is data left, then the frame didn't fully decompress. This // means that there is stranded data at the end of this frame buffer which // will be ignored. DCHECK_EQ(decompressor->avail_in, 0u); pre_decompress_bytes.Add(frame.length()); post_decompress_bytes.Add(new_frame->length()); decompressed_frames.Increment(); return new_frame.release(); } void SpdyFramer::CleanupCompressorForStream(SpdyStreamId id) { CompressorMap::iterator it = stream_compressors_.find(id); if (it != stream_compressors_.end()) { z_stream* compressor = it->second; deflateEnd(compressor); delete compressor; stream_compressors_.erase(it); } } void SpdyFramer::CleanupDecompressorForStream(SpdyStreamId id) { CompressorMap::iterator it = stream_decompressors_.find(id); if (it != stream_decompressors_.end()) { z_stream* decompressor = it->second; inflateEnd(decompressor); delete decompressor; stream_decompressors_.erase(it); } } void SpdyFramer::CleanupStreamCompressorsAndDecompressors() { CompressorMap::iterator it; it = stream_compressors_.begin(); while (it != stream_compressors_.end()) { z_stream* compressor = it->second; deflateEnd(compressor); delete compressor; ++it; } stream_compressors_.clear(); it = stream_decompressors_.begin(); while (it != stream_decompressors_.end()) { z_stream* decompressor = it->second; inflateEnd(decompressor); delete decompressor; ++it; } stream_decompressors_.clear(); } size_t SpdyFramer::BytesSafeToRead() const { switch (state_) { case SPDY_ERROR: case SPDY_DONE: case SPDY_AUTO_RESET: case SPDY_RESET: return 0; case SPDY_READING_COMMON_HEADER: DCHECK_LT(current_frame_len_, SpdyFrame::size()); return SpdyFrame::size() - current_frame_len_; case SPDY_INTERPRET_CONTROL_FRAME_COMMON_HEADER: return 0; // TODO(rtenneti): Add support for SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // and SPDY_CONTROL_FRAME_HEADER_BLOCK. case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: case SPDY_CONTROL_FRAME_HEADER_BLOCK: return 0; case SPDY_CONTROL_FRAME_PAYLOAD: case SPDY_IGNORE_REMAINING_PAYLOAD: case SPDY_FORWARD_STREAM_FRAME: return remaining_data_; } // We should never get to here. return 0; } void SpdyFramer::set_error(SpdyError error) { DCHECK(visitor_); error_code_ = error; CHANGE_STATE(SPDY_ERROR); visitor_->OnError(this); } void SpdyFramer::ExpandControlFrameBuffer(size_t size) { size_t alloc_size = size + SpdyFrame::size(); DCHECK_LE(alloc_size, kControlFrameBufferMaxSize); if (alloc_size <= current_frame_capacity_) return; char* new_buffer = new char[alloc_size]; memcpy(new_buffer, current_frame_buffer_, current_frame_len_); delete [] current_frame_buffer_; current_frame_capacity_ = alloc_size; current_frame_buffer_ = new_buffer; } bool SpdyFramer::GetFrameBoundaries(const SpdyFrame& frame, int* payload_length, int* header_length, const char** payload) const { size_t frame_size; if (frame.is_control_frame()) { const SpdyControlFrame& control_frame = reinterpret_cast(frame); switch (control_frame.type()) { case SYN_STREAM: { const SpdySynStreamControlFrame& syn_frame = reinterpret_cast(frame); frame_size = SpdySynStreamControlFrame::size(); *payload_length = syn_frame.header_block_len(); *header_length = frame_size; *payload = frame.data() + *header_length; } break; case SYN_REPLY: { const SpdySynReplyControlFrame& syn_frame = reinterpret_cast(frame); frame_size = SpdySynReplyControlFrame::size(); *payload_length = syn_frame.header_block_len(); *header_length = frame_size; *payload = frame.data() + *header_length; } break; case HEADERS: { const SpdyHeadersControlFrame& headers_frame = reinterpret_cast(frame); frame_size = SpdyHeadersControlFrame::size(); *payload_length = headers_frame.header_block_len(); *header_length = frame_size; *payload = frame.data() + *header_length; } break; default: // TODO(mbelshe): set an error? return false; // We can't compress this frame! } } else { frame_size = SpdyFrame::size(); *header_length = frame_size; *payload_length = frame.length(); *payload = frame.data() + SpdyFrame::size(); } return true; } } // namespace spdy