// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_SPDY_SPDY_PRIORITY_TREE_H_ #define NET_SPDY_SPDY_PRIORITY_TREE_H_ #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/containers/hash_tables.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/stl_util.h" namespace net { // This data structure implements the HTTP/2 stream priority tree defined in // section 5.3 of RFC 7540: // http://tools.ietf.org/html/rfc7540#section-5.3 // // Nodes can be added and removed, and dependencies between them defined. // Nodes constitute a tree rooted at node ID 0: each node has a single parent // node, and 0 or more child nodes. Individual nodes can be marked as ready to // read/write, and then the whole structure can be queried to pick the next // node to read/write out of those that are ready. // // The NodeId type must be a POD that supports comparison (most // likely, it will be a number). namespace test { template class SpdyPriorityTreePeer; } const int kRootNodeId = 0; const int kDefaultWeight = 16; const int kMinWeight = 1; const int kMaxWeight = 256; template class SpdyPriorityTree { public: typedef std::pair PriorityNode; typedef std::vector PriorityList; SpdyPriorityTree(); // Orders in descending order of priority. struct NodePriorityComparator { bool operator ()(const std::pair& lhs, const std::pair& rhs); }; friend class test::SpdyPriorityTreePeer; // Return the number of nodes currently in the tree. int num_nodes() const; // Return true if the tree contains a node with the given ID. bool NodeExists(NodeId node_id) const; // Add a new node with the given weight and parent. Non-exclusive nodes // simply get added below the parent node. If exclusive = true, the node // becomes the parent's sole child and the parent's previous children // become the children of the new node. // Returns true on success. Returns false if the node already exists // in the tree, or if the parent node does not exist. bool AddNode(NodeId node_id, NodeId parent_id, int weight, bool exclusive); // Remove an existing node from the tree. Returns true on success, or // false if the node doesn't exist. bool RemoveNode(NodeId node_id); // Get the weight of the given node. int GetWeight(NodeId node_id) const; // Get the parent of the given node. If the node doesn't exist, or is a root // node (and thus has no parent), returns NodeId(). NodeId GetParent(NodeId node_id) const; // Get the children of the given node. If the node doesn't exist, or has no // child, returns empty vector. std::vector GetChildren(NodeId node_id) const; // Set the priority of the given node. bool SetWeight(NodeId node_id, int weight); // Set the parent of the given node. Returns true on success. // Returns false and has no effect if the node and/or the parent doesn't // exist. If the new parent is a descendant of the node (i.e. this would have // created a cycle) then we rearrange the topology of the tree as described // in section 5.3.3 of RFC 7540: // https://tools.ietf.org/html/rfc7540#section-5.3.3 bool SetParent(NodeId node_id, NodeId parent_id, bool exclusive); // Returns true if the node parent_id has child_id in its children. bool HasChild(NodeId parent_id, NodeId child_id) const; // Mark a node as blocked or unblocked. Return true on success, or false // if unable to mark the specified node. bool SetBlocked(NodeId node_id, bool blocked); // Mark whether or not a node is ready to write; i.e. whether there is // buffered data for the associated stream. Return true on success, or false // if unable to mark the specified node. bool SetReady(NodeId node_id, bool ready); // Returns an ordered list of writeable nodes and their priorities. // Priority is calculated as: // parent's priority * (node's weight / sum of sibling weights) PriorityList GetPriorityList(); private: struct Node; typedef std::vector NodeVector; typedef std::map NodeMap; struct Node { // ID for this node. NodeId id; // ID of parent node. Node* parent = nullptr; // Weights can range between 1 and 256 (inclusive). int weight = kDefaultWeight; // The total weight of this node's direct descendants. int total_child_weights = 0; // The total weight of direct descendants that are writeable // (ready to write and not blocked). This value does not necessarily // reflect the current state of the tree; instead, we lazily update it // on calls to PropagateNodeState(). int total_writeable_child_weights = 0; // Pointers to nodes for children, if any. NodeVector children; // Is the associated stream write-blocked? bool blocked = false; // Does the stream have data ready for writing? bool ready = false; // The fraction of resources to dedicate to this node. float priority = 0; }; static bool Remove(NodeVector* nodes, const Node* node); // Update the value of total_writeable_child_weights for the given node // to reflect the current state of the tree. void PropagateNodeState(Node* node); // Get the given node, or return nullptr if it doesn't exist. const Node* FindNode(NodeId node_id) const; Node* FindNode(NodeId node_id); // Return true if all internal invariants hold (useful for unit tests). // Unless there are bugs, this should always return true. bool ValidateInvariantsForTests() const; Node* root_node_; // pointee owned by all_nodes_ NodeMap all_nodes_; // maps from node IDs to Node objects STLValueDeleter all_nodes_deleter_; DISALLOW_COPY_AND_ASSIGN(SpdyPriorityTree); }; template SpdyPriorityTree::SpdyPriorityTree() : all_nodes_deleter_(&all_nodes_) { root_node_ = new Node(); root_node_->id = kRootNodeId; root_node_->weight = kDefaultWeight; root_node_->parent = nullptr; root_node_->priority = 1.0; root_node_->ready = true; all_nodes_[kRootNodeId] = root_node_; } template bool SpdyPriorityTree::NodePriorityComparator::operator()( const std::pair& lhs, const std::pair& rhs) { return lhs.second > rhs.second; } template int SpdyPriorityTree::num_nodes() const { return all_nodes_.size(); } template bool SpdyPriorityTree::NodeExists(NodeId node_id) const { return ContainsKey(all_nodes_, node_id); } template bool SpdyPriorityTree::AddNode(NodeId node_id, NodeId parent_id, int weight, bool exclusive) { if (NodeExists(node_id) || weight < kMinWeight || weight > kMaxWeight) { return false; } Node* parent = FindNode(parent_id); if (parent == nullptr) { return false; } Node* new_node = new Node; new_node->id = node_id; new_node->weight = weight; new_node->parent = parent; all_nodes_[node_id] = new_node; if (exclusive) { // Move the parent's current children below the new node. using std::swap; swap(new_node->children, parent->children); new_node->total_child_weights = parent->total_child_weights; // Update each child's parent. for (Node* child : new_node->children) { child->parent = new_node; } // Clear parent's old child data. DCHECK(parent->children.empty()); parent->total_child_weights = 0; } // Add new node to parent. parent->children.push_back(new_node); parent->total_child_weights += weight; return true; } template bool SpdyPriorityTree::RemoveNode(NodeId node_id) { if (node_id == kRootNodeId) { return false; } // Remove the node from table. typename NodeMap::iterator it = all_nodes_.find(node_id); if (it == all_nodes_.end()) { return false; } scoped_ptr node(it->second); all_nodes_.erase(it); Node* parent = node->parent; // Remove the node from parent's child list. Remove(&parent->children, node.get()); parent->total_child_weights -= node->weight; // Move the node's children to the parent's child list. // Update each child's parent and weight. for (Node* child : node->children) { child->parent = parent; parent->children.push_back(child); // Divide the removed node's weight among its children, rounding to the // nearest valid weight. float float_weight = node->weight * static_cast(child->weight) / static_cast(node->total_child_weights); int new_weight = floor(float_weight + 0.5); if (new_weight == 0) { new_weight = 1; } child->weight = new_weight; parent->total_child_weights += child->weight; } return true; } template int SpdyPriorityTree::GetWeight(NodeId node_id) const { const Node* node = FindNode(node_id); return (node == nullptr) ? 0 : node->weight; } template NodeId SpdyPriorityTree::GetParent(NodeId node_id) const { const Node* node = FindNode(node_id); // Root node has null parent. return (node == nullptr || node->parent == nullptr) ? kRootNodeId : node->parent->id; } template std::vector SpdyPriorityTree::GetChildren( NodeId node_id) const { std::vector child_vec; const Node* node = FindNode(node_id); if (node != nullptr) { child_vec.reserve(node->children.size()); for (Node* child : node->children) { child_vec.push_back(child->id); } } return child_vec; } template bool SpdyPriorityTree::SetWeight( NodeId node_id, int weight) { if (!NodeExists(node_id)) { return false; } if (weight < kMinWeight || weight > kMaxWeight) { return false; } Node* node = all_nodes_[node_id]; if (node->parent != nullptr) { node->parent->total_child_weights += (weight - node->weight); } node->weight = weight; return true; } template bool SpdyPriorityTree::SetParent( NodeId node_id, NodeId parent_id, bool exclusive) { if (node_id == kRootNodeId || node_id == parent_id) { return false; } Node* node = FindNode(node_id); Node* new_parent = FindNode(parent_id); if (node == nullptr || new_parent == nullptr) { return false; } // If the new parent is already the node's parent, we're done. if (node->parent == new_parent) { return true; } // Next, check to see if the new parent is currently a descendant // of the node. Node* last = new_parent->parent; bool cycle_exists = false; while (last != nullptr) { if (last == node) { cycle_exists = true; break; } last = last->parent; } if (cycle_exists) { // The new parent moves to the level of the current node. SetParent(parent_id, node->parent->id, false); } // Remove node from old parent's child list. Node* old_parent = node->parent; Remove(&old_parent->children, node); old_parent->total_child_weights -= node->weight; if (exclusive) { // Move the new parent's current children below the current node. for (Node* child : new_parent->children) { child->parent = node; node->children.push_back(child); } node->total_child_weights += new_parent->total_child_weights; // Clear new parent's old child data. new_parent->children.clear(); new_parent->total_child_weights = 0; } // Make the change. node->parent = new_parent; new_parent->children.push_back(node); new_parent->total_child_weights += node->weight; return true; } template bool SpdyPriorityTree::SetBlocked(NodeId node_id, bool blocked) { if (!NodeExists(node_id)) { return false; } Node* node = all_nodes_[node_id]; node->blocked = blocked; return true; } template bool SpdyPriorityTree::SetReady(NodeId node_id, bool ready) { if (!NodeExists(node_id)) { return false; } Node* node = all_nodes_[node_id]; node->ready = ready; return true; } template bool SpdyPriorityTree::Remove(NodeVector* nodes, const Node* node) { for (typename NodeVector::iterator it = nodes->begin(); it != nodes->end(); ++it) { if (*it == node) { nodes->erase(it); return true; } } return false; } template void SpdyPriorityTree::PropagateNodeState(Node* node) { // Reset total_writeable_child_weights to its maximum value. node->total_writeable_child_weights = node->total_child_weights; for (Node* child : node->children) { PropagateNodeState(child); } if (node->total_writeable_child_weights == 0 && (node->blocked || !node->ready)) { // Tell the parent that this entire subtree is unwriteable. node->parent->total_writeable_child_weights -= node->weight; } } template const typename SpdyPriorityTree::Node* SpdyPriorityTree::FindNode(NodeId node_id) const { typename NodeMap::const_iterator it = all_nodes_.find(node_id); return (it == all_nodes_.end() ? nullptr : it->second); } template typename SpdyPriorityTree::Node* SpdyPriorityTree::FindNode( NodeId node_id) { typename NodeMap::const_iterator it = all_nodes_.find(node_id); return (it == all_nodes_.end() ? nullptr : it->second); } template bool SpdyPriorityTree::HasChild(NodeId parent_id, NodeId child_id) const { const Node* parent = FindNode(parent_id); if (parent == nullptr) { return false; } auto found = std::find_if(parent->children.begin(), parent->children.end(), [child_id](Node* node) { return node->id == child_id; }); return found != parent->children.end(); } template std::vector > SpdyPriorityTree::GetPriorityList() { PriorityList priority_list; // Update total_writeable_child_weights to reflect the current // state of the tree. PropagateNodeState(root_node_); std::deque queue; DCHECK(root_node_->priority == 1.0); // Start by examining our top-level nodes. for (Node* child : root_node_->children) { queue.push_back(child); } while (!queue.empty()) { Node* current_node = queue.front(); const Node* parent_node = current_node->parent; if (current_node->blocked || !current_node->ready) { if (current_node->total_writeable_child_weights > 0) { // This node isn't writeable, but it has writeable children. // Calculate the total fraction of resources we can allot // to this subtree. current_node->priority = parent_node->priority * (static_cast(current_node->weight) / static_cast(parent_node->total_writeable_child_weights)); // Examine the children. for (Node* child : current_node->children) { queue.push_back(child); } } else { // There's nothing to see in this subtree. current_node->priority = 0; } } else { // This node is writeable; calculate its priority. current_node->priority = parent_node->priority * (static_cast(current_node->weight) / static_cast(parent_node->total_writeable_child_weights)); // Add this node to the priority list. priority_list.push_back( PriorityNode(current_node->id, current_node->priority)); } // Remove this node from the queue. queue.pop_front(); } // Sort the nodes in descending order of priority. std::sort(priority_list.begin(), priority_list.end(), NodePriorityComparator()); return priority_list; } template bool SpdyPriorityTree::ValidateInvariantsForTests() const { int total_nodes = 0; int nodes_visited = 0; // Iterate through all nodes in the map. for (const auto& kv : all_nodes_) { ++total_nodes; ++nodes_visited; const Node& node = *kv.second; // All nodes except the root should have a parent, and should appear in // the children of that parent. if (node.id != kRootNodeId && !HasChild(node.parent->id, node.id)) { DLOG(INFO) << "Parent node " << node.parent->id << " does not exist, or does not list node " << node.id << " as its child."; return false; } if (!node.children.empty()) { int total_child_weights = 0; // Iterate through the node's children. for (Node* child : node.children) { ++nodes_visited; // Each node in the list should exist and should have this node // set as its parent. if (!NodeExists(child->id) || node.id != GetParent(child->id)) { DLOG(INFO) << "Child node " << child->id << " does not exist, " << "or does not list " << node.id << " as its parent."; return false; } total_child_weights += child->weight; } // Verify that total_child_weights is correct. if (total_child_weights != node.total_child_weights) { DLOG(INFO) << "Child weight totals do not agree. For node " << node.id << " total_child_weights has value " << node.total_child_weights << ", expected " << total_child_weights; return false; } } } // Make sure num_nodes reflects the total number of nodes the map contains. if (total_nodes != num_nodes()) { DLOG(INFO) << "Map contains incorrect number of nodes."; return false; } // Validate the validation function; we should have visited each node twice // (except for the root) DCHECK(nodes_visited == 2*num_nodes() - 1); return true; } } // namespace net #endif // NET_SPDY_SPDY_PRIORITY_TREE_H_