// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ #define NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ #include #include #include #include #include #include #include "base/port.h" #include "base/logging.h" #include "base/string_piece.h" #include "net/tools/flip_server/balsa_enums.h" #include "net/tools/flip_server/string_piece_utils.h" namespace net { // WARNING: // Note that -no- char* returned by any function in this // file is null-terminated. // This class exists to service the specific needs of BalsaHeaders. // // Functional goals: // 1) provide a backing-store for all of the StringPieces that BalsaHeaders // returns. Every StringPiece returned from BalsaHeaders should remain // valid until the BalsaHeader's object is cleared, or the header-line is // erased. // 2) provide a backing-store for BalsaFrame, which requires contiguous memory // for its fast-path parsing functions. Note that the cost of copying is // less than the cost of requiring the parser to do slow-path parsing, as // it would have to check for bounds every byte, instead of every 16 bytes. // // This class is optimized for the case where headers are stored in one of two // buffers. It doesn't make a lot of effort to densely pack memory-- in fact, // it -may- be somewhat memory inefficient. This possible inefficiency allows a // certain simplicity of implementation and speed which makes it worthwhile. // If, in the future, better memory density is required, it should be possible // to reuse the abstraction presented by this object to achieve those goals. // // In the most common use-case, this memory inefficiency should be relatively // small. // // Alternate implementations of BalsaBuffer may include: // - vector of strings, one per header line (similar to HTTPHeaders) // - densely packed strings: // - keep a sorted array/map of free-space linked lists or numbers. // - use the entry that most closely first your needs. // - at this point, perhaps just use a vector of strings, and let // the allocator do the right thing. // class BalsaBuffer { public: static const size_t kDefaultBlocksize = 4096; // We have two friends here. These exist as friends as we // want to allow access to the constructors for the test // class and the Balsa* classes. We put this into the // header file as we want this class to be inlined into the // BalsaHeaders implementation, yet be testable. friend class BalsaBufferTestSpouse; friend class BalsaHeaders; // The BufferBlock is a structure used internally by the // BalsaBuffer class to store the base buffer pointers to // each block, as well as the important metadata for buffer // sizes and bytes free. struct BufferBlock { public: char* buffer; size_t buffer_size; size_t bytes_free; size_t bytes_used() const { return buffer_size - bytes_free; } char* start_of_unused_bytes() const { return buffer + bytes_used(); } BufferBlock() : buffer(NULL), buffer_size(0), bytes_free(0) {} ~BufferBlock() {} BufferBlock(char* buf, size_t size, size_t free) : buffer(buf), buffer_size(size), bytes_free(free) {} // Yes we want this to be copyable (it gets stuck into vectors). // For this reason, we don't use scoped ptrs, etc. here-- it // is more efficient to manage this memory externally to this // object. }; typedef std::vector Blocks; ~BalsaBuffer() { CleanupBlocksStartingFrom(0); } // Returns the total amount of memory used by the buffer blocks. size_t GetTotalBufferBlockSize() const { size_t buffer_size = 0; for (Blocks::const_iterator iter = blocks_.begin(); iter != blocks_.end(); ++iter) { buffer_size += iter->buffer_size; } return buffer_size; } const char* GetPtr(Blocks::size_type block_idx) const { DCHECK_LT(block_idx, blocks_.size()) << block_idx << ", " << blocks_.size(); return blocks_[block_idx].buffer; } char* GetPtr(Blocks::size_type block_idx) { DCHECK_LT(block_idx, blocks_.size()) << block_idx << ", " << blocks_.size(); return blocks_[block_idx].buffer; } // This function is different from Write(), as it ensures that the data // stored via subsequent calls to this function are all contiguous (and in // the order in which these writes happened). This is essentially the same // as a string append. // // You may call this function at any time between object // construction/Clear(), and the calling of the // NoMoreWriteToContiguousBuffer() function. // // You must not call this function after the NoMoreWriteToContiguousBuffer() // function is called, unless a Clear() has been called since. // If you do, the program will abort(). // // This condition is placed upon this code so that calls to Write() can // append to the buffer in the first block safely, and without invaliding // the StringPiece which it returns. // // This function's main intended user is the BalsaFrame class, which, // for reasons of efficiency, requires that the buffer from which it parses // the headers be contiguous. // void WriteToContiguousBuffer(const base::StringPiece& sp) { if (sp.empty()) { return; } CHECK(can_write_to_contiguous_buffer_); DCHECK_GE(blocks_.size(), 1u); if (blocks_[0].buffer == NULL && sp.size() <= blocksize_) { blocks_[0] = AllocBlock(); memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size()); } else if (blocks_[0].bytes_free < sp.size()) { // the first block isn't big enough, resize it. const size_t old_storage_size_used = blocks_[0].bytes_used(); const size_t new_storage_size = old_storage_size_used + sp.size(); char* new_storage = new char[new_storage_size]; char* old_storage = blocks_[0].buffer; if (old_storage_size_used) { memcpy(new_storage, old_storage, old_storage_size_used); } memcpy(new_storage + old_storage_size_used, sp.data(), sp.size()); blocks_[0].buffer = new_storage; blocks_[0].bytes_free = sp.size(); blocks_[0].buffer_size = new_storage_size; delete[] old_storage; } else { memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size()); } blocks_[0].bytes_free -= sp.size(); } void NoMoreWriteToContiguousBuffer() { can_write_to_contiguous_buffer_ = false; } // Takes a StringPiece and writes it to "permanent" storage, then returns a // StringPiece which points to that data. If block_idx != NULL, it will be // assigned the index of the block into which the data was stored. // Note that the 'permanent' storage in which it stores data may be in // the first block IFF the NoMoreWriteToContiguousBuffer function has // been called since the last Clear/Construction. base::StringPiece Write(const base::StringPiece& sp, Blocks::size_type* block_buffer_idx) { if (sp.empty()) { return sp; } char* storage = Reserve(sp.size(), block_buffer_idx); memcpy(storage, sp.data(), sp.size()); return base::StringPiece(storage, sp.size()); } // Reserves "permanent" storage of the size indicated. Returns a pointer to // the beginning of that storage, and assigns the index of the block used to // block_buffer_idx. This function uses the first block IFF the // NoMoreWriteToContiguousBuffer function has been called since the last // Clear/Construction. char* Reserve(size_t size, Blocks::size_type* block_buffer_idx) { // There should always be a 'first_block', even if it // contains nothing. DCHECK_GE(blocks_.size(), 1u); BufferBlock* block = NULL; Blocks::size_type block_idx = can_write_to_contiguous_buffer_ ? 1 : 0; for (; block_idx < blocks_.size(); ++block_idx) { if (blocks_[block_idx].bytes_free >= size) { block = &blocks_[block_idx]; break; } } if (block == NULL) { if (blocksize_ < size) { blocks_.push_back(AllocCustomBlock(size)); } else { blocks_.push_back(AllocBlock()); } block = &blocks_.back(); } char* storage = block->start_of_unused_bytes(); block->bytes_free -= size; if (block_buffer_idx) { *block_buffer_idx = block_idx; } return storage; } void Clear() { CHECK(!blocks_.empty()); if (blocksize_ == blocks_[0].buffer_size) { CleanupBlocksStartingFrom(1); blocks_[0].bytes_free = blocks_[0].buffer_size; } else { CleanupBlocksStartingFrom(0); blocks_.push_back(AllocBlock()); } DCHECK_GE(blocks_.size(), 1u); can_write_to_contiguous_buffer_ = true; } void Swap(BalsaBuffer* b) { blocks_.swap(b->blocks_); std::swap(can_write_to_contiguous_buffer_, b->can_write_to_contiguous_buffer_); std::swap(blocksize_, b->blocksize_); } void CopyFrom(const BalsaBuffer& b) { CleanupBlocksStartingFrom(0); blocks_.resize(b.blocks_.size()); for (Blocks::size_type i = 0; i < blocks_.size(); ++i) { blocks_[i] = CopyBlock(b.blocks_[i]); } blocksize_ = b.blocksize_; can_write_to_contiguous_buffer_ = b.can_write_to_contiguous_buffer_; } const char* StartOfFirstBlock() const { return blocks_[0].buffer; } const char* EndOfFirstBlock() const { return blocks_[0].buffer + blocks_[0].bytes_used(); } bool can_write_to_contiguous_buffer() const { return can_write_to_contiguous_buffer_; } size_t blocksize() const { return blocksize_; } Blocks::size_type num_blocks() const { return blocks_.size(); } size_t buffer_size(size_t idx) const { return blocks_[idx].buffer_size; } size_t bytes_used(size_t idx) const { return blocks_[idx].bytes_used(); } protected: BalsaBuffer() : blocksize_(kDefaultBlocksize), can_write_to_contiguous_buffer_(true) { blocks_.push_back(AllocBlock()); } explicit BalsaBuffer(size_t blocksize) : blocksize_(blocksize), can_write_to_contiguous_buffer_(true) { blocks_.push_back(AllocBlock()); } BufferBlock AllocBlock() { return AllocCustomBlock(blocksize_); } BufferBlock AllocCustomBlock(size_t blocksize) { return BufferBlock(new char[blocksize], blocksize, blocksize); } BufferBlock CopyBlock(const BufferBlock& b) { BufferBlock block = b; if (b.buffer == NULL) { return block; } block.buffer = new char[b.buffer_size]; memcpy(block.buffer, b.buffer, b.bytes_used()); return block; } // Cleans up the object. // The block at start_idx, and all subsequent blocks // will be cleared and have associated memory deleted. void CleanupBlocksStartingFrom(Blocks::size_type start_idx) { for (Blocks::size_type i = start_idx; i < blocks_.size(); ++i) { delete[] blocks_[i].buffer; } blocks_.resize(start_idx); } // A container of BufferBlocks Blocks blocks_; // The default allocation size for a block. // In general, blocksize_ bytes will be allocated for // each buffer. size_t blocksize_; // If set to true, then the first block cannot be used for Write() calls as // the WriteToContiguous... function will modify the base pointer for this // block, and the Write() calls need to be sure that the base pointer will // not be changing in order to provide the user with StringPieces which // continue to be valid. bool can_write_to_contiguous_buffer_; }; //////////////////////////////////////////////////////////////////////////////// // All of the functions in the BalsaHeaders class use string pieces, by either // using the StringPiece class, or giving an explicit size and char* (as these // are the native representation for these string pieces). // This is done for several reasons. // 1) This minimizes copying/allocation/deallocation as compared to using // string parameters // 2) This reduces the number of strlen() calls done (as the length of any // string passed in is relatively likely to be known at compile time, and for // those strings passed back we obviate the need for a strlen() to determine // the size of new storage allocations if a new allocation is required. // 3) This class attempts to store all of its data in two linear buffers in // order to enhance the speed of parsing and writing out to a buffer. As a // result, many string pieces are -not- terminated by '\0', and are not // c-strings. Since this is the case, we must delineate the length of the // string explicitly via a length. // // WARNING: The side effect of using StringPiece is that if the underlying // buffer changes (due to modifying the headers) the StringPieces which point // to the data which was modified, may now contain "garbage", and should not // be dereferenced. // For example, If you fetch some component of the first-line, (request or // response), and then you modify the first line, the StringPieces you // originally received from the original first-line may no longer be valid). // // StringPieces pointing to pieces of header lines which have not been // erased() or modified should be valid until the object is cleared or // destroyed. class BalsaHeaders { public: struct HeaderLineDescription { HeaderLineDescription(size_t first_character_index, size_t key_end_index, size_t value_begin_index, size_t last_character_index, size_t buffer_base_index) : first_char_idx(first_character_index), key_end_idx(key_end_index), value_begin_idx(value_begin_index), last_char_idx(last_character_index), buffer_base_idx(buffer_base_index), skip(false) {} HeaderLineDescription() : first_char_idx(0), key_end_idx(0), value_begin_idx(0), last_char_idx(0), buffer_base_idx(0), skip(false) {} size_t first_char_idx; size_t key_end_idx; size_t value_begin_idx; size_t last_char_idx; BalsaBuffer::Blocks::size_type buffer_base_idx; bool skip; }; typedef std::vector HeaderTokenList; friend bool net::ParseHTTPFirstLine(const char* begin, const char* end, bool is_request, size_t max_request_uri_length, BalsaHeaders* headers, BalsaFrameEnums::ErrorCode* error_code); protected: typedef std::vector HeaderLines; // Why these base classes (iterator_base, reverse_iterator_base)? Well, if // we do want to export both iterator and const_iterator types (currently we // only have const_iterator), then this is useful to avoid code duplication. // Additionally, having this base class makes comparisons of iterators of // different types (they're different types to ensure that operator= and // constructors do not work in the places where they're expected to not work) // work properly. There could be as many as 4 iterator types, all based on // the same data as iterator_base... so it makes sense to simply have some // base classes. class iterator_base { public: friend class BalsaHeaders; friend class reverse_iterator_base; typedef std::pair StringPiecePair; typedef StringPiecePair value_type; typedef value_type& reference; typedef value_type* pointer; typedef std::forward_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef iterator_base self; // default constructor. iterator_base() : headers_(NULL), idx_(0) { } // copy constructor. iterator_base(const iterator_base& it) : headers_(it.headers_), idx_(it.idx_) {} reference operator*() const { return Lookup(idx_); } pointer operator->() const { return &(this->operator*()); } bool operator==(const self& it) const { return idx_ == it.idx_; } bool operator<(const self& it) const { return idx_ < it.idx_; } bool operator<=(const self& it) const { return idx_ <= it.idx_; } bool operator!=(const self& it) const { return !(*this == it); } bool operator>(const self& it) const { return it < *this; } bool operator>=(const self& it) const { return it <= *this; } // This mainly exists so that we can have interesting output for // unittesting. The EXPECT_EQ, EXPECT_NE functions require that // operator<< work for the classes it sees. It would be better if there // was an additional traits-like system for the gUnit output... but oh // well. friend std::ostream& operator<<(std::ostream& os, const iterator_base& it) { os << "[" << it.headers_ << ", " << it.idx_ << "]"; return os; } protected: iterator_base(const BalsaHeaders* headers, HeaderLines::size_type index) : headers_(headers), idx_(index) {} void increment() { const HeaderLines& header_lines = headers_->header_lines_; const HeaderLines::size_type header_lines_size = header_lines.size(); const HeaderLines::size_type original_idx = idx_; do { ++idx_; } while (idx_ < header_lines_size && header_lines[idx_].skip == true); // The condition below exists so that ++(end() - 1) == end(), even // if there are only 'skip == true' elements between the end() iterator // and the end of the vector of HeaderLineDescriptions. // TODO(fenix): refactor this list so that we don't have to do // linear scanning through skipped headers (and this condition is // then unnecessary) if (idx_ == header_lines_size) { idx_ = original_idx + 1; } } void decrement() { const HeaderLines& header_lines = headers_->header_lines_; const HeaderLines::size_type header_lines_size = header_lines.size(); const HeaderLines::size_type original_idx = idx_; do { --idx_; } while (idx_ >= 0 && idx_ < header_lines_size && header_lines[idx_].skip == true); // The condition below exists so that --(rbegin() + 1) == rbegin(), even // if there are only 'skip == true' elements between the rbegin() iterator // and the beginning of the vector of HeaderLineDescriptions. // TODO(fenix): refactor this list so that we don't have to do // linear scanning through skipped headers (and this condition is // then unnecessary) if (idx_ < 0 || idx_ > header_lines_size) { idx_ = original_idx - 1; } } reference Lookup(HeaderLines::size_type index) const { DCHECK_LT(index, headers_->header_lines_.size()); const HeaderLineDescription& line = headers_->header_lines_[index]; const char* stream_begin = headers_->GetPtr(line.buffer_base_idx); value_ = value_type( base::StringPiece(stream_begin + line.first_char_idx, line.key_end_idx - line.first_char_idx), base::StringPiece(stream_begin + line.value_begin_idx, line.last_char_idx - line.value_begin_idx)); DCHECK_GE(line.key_end_idx, line.first_char_idx); DCHECK_GE(line.last_char_idx, line.value_begin_idx); return value_; } const BalsaHeaders* headers_; HeaderLines::size_type idx_; mutable StringPiecePair value_; }; class reverse_iterator_base : public iterator_base { public: typedef reverse_iterator_base self; typedef iterator_base::reference reference; typedef iterator_base::pointer pointer; using iterator_base::headers_; using iterator_base::idx_; reverse_iterator_base() : iterator_base() {} // This constructor is no explicit purposely. reverse_iterator_base(const iterator_base& it) : // NOLINT iterator_base(it) { } self& operator=(const iterator_base& it) { idx_ = it.idx_; headers_ = it.headers_; return *this; } self& operator=(const reverse_iterator_base& it) { idx_ = it.idx_; headers_ = it.headers_; return *this; } reference operator*() const { return Lookup(idx_ - 1); } pointer operator->() const { return &(this->operator*()); } reverse_iterator_base(const reverse_iterator_base& it) : iterator_base(it) { } protected: void increment() { --idx_; iterator_base::decrement(); ++idx_; } void decrement() { ++idx_; iterator_base::increment(); --idx_; } reverse_iterator_base(const BalsaHeaders* headers, HeaderLines::size_type index) : iterator_base(headers, index) {} }; public: class const_header_lines_iterator : public iterator_base { friend class BalsaHeaders; public: typedef const_header_lines_iterator self; const_header_lines_iterator() : iterator_base() {} const_header_lines_iterator(const const_header_lines_iterator& it) : iterator_base(it.headers_, it.idx_) {} self& operator++() { iterator_base::increment(); return *this; } self& operator--() { iterator_base::decrement(); return *this; } protected: const_header_lines_iterator(const BalsaHeaders* headers, HeaderLines::size_type index) : iterator_base(headers, index) {} }; class const_reverse_header_lines_iterator : public reverse_iterator_base { public: typedef const_reverse_header_lines_iterator self; const_reverse_header_lines_iterator() : reverse_iterator_base() {} const_reverse_header_lines_iterator( const const_header_lines_iterator& it) : reverse_iterator_base(it.headers_, it.idx_) {} const_reverse_header_lines_iterator( const const_reverse_header_lines_iterator& it) : reverse_iterator_base(it.headers_, it.idx_) {} const_header_lines_iterator base() { return const_header_lines_iterator(headers_, idx_); } self& operator++() { reverse_iterator_base::increment(); return *this; } self& operator--() { reverse_iterator_base::decrement(); return *this; } protected: const_reverse_header_lines_iterator(const BalsaHeaders* headers, HeaderLines::size_type index) : reverse_iterator_base(headers, index) {} friend class BalsaHeaders; }; // An iterator that only stops at lines with a particular key. // See also GetIteratorForKey. // // Check against header_lines_key_end() to determine when iteration is // finished. header_lines_end() will also work. class const_header_lines_key_iterator : public iterator_base { friend class BalsaHeaders; public: typedef const_header_lines_key_iterator self; self& operator++() { do { iterator_base::increment(); } while (!AtEnd() && !StringPieceUtils::EqualIgnoreCase(key_, (**this).first)); return *this; } void operator++(int ignore) { ++(*this); } // Only forward-iteration makes sense, so no operator-- defined. private: const_header_lines_key_iterator(const BalsaHeaders* headers, HeaderLines::size_type index, const base::StringPiece& key) : iterator_base(headers, index), key_(key) { } // Should only be used for creating an end iterator. const_header_lines_key_iterator(const BalsaHeaders* headers, HeaderLines::size_type index) : iterator_base(headers, index) { } bool AtEnd() const { return *this >= headers_->header_lines_end(); } base::StringPiece key_; }; // TODO(fenix): Revisit the amount of bytes initially allocated to the second // block of the balsa_buffer_. It may make sense to pre-allocate some amount // (roughly the amount we'd append in new headers such as X-User-Ip, etc.) BalsaHeaders() : balsa_buffer_(4096), content_length_(0), content_length_status_(BalsaHeadersEnums::NO_CONTENT_LENGTH), parsed_response_code_(0), firstline_buffer_base_idx_(0), whitespace_1_idx_(0), non_whitespace_1_idx_(0), whitespace_2_idx_(0), non_whitespace_2_idx_(0), whitespace_3_idx_(0), non_whitespace_3_idx_(0), whitespace_4_idx_(0), end_of_firstline_idx_(0), transfer_encoding_is_chunked_(false) { } const_header_lines_iterator header_lines_begin() { return HeaderLinesBeginHelper(); } const_header_lines_iterator header_lines_begin() const { return HeaderLinesBeginHelper(); } const_header_lines_iterator header_lines_end() { return HeaderLinesEndHelper(); } const_header_lines_iterator header_lines_end() const { return HeaderLinesEndHelper(); } const_reverse_header_lines_iterator header_lines_rbegin() { return const_reverse_header_lines_iterator(header_lines_end()); } const_reverse_header_lines_iterator header_lines_rbegin() const { return const_reverse_header_lines_iterator(header_lines_end()); } const_reverse_header_lines_iterator header_lines_rend() { return const_reverse_header_lines_iterator(header_lines_begin()); } const_reverse_header_lines_iterator header_lines_rend() const { return const_reverse_header_lines_iterator(header_lines_begin()); } const_header_lines_key_iterator header_lines_key_end() const { return HeaderLinesEndHelper(); } void erase(const const_header_lines_iterator& it) { DCHECK_EQ(it.headers_, this); DCHECK_LT(it.idx_, header_lines_.size()); DCHECK_GE(it.idx_, 0u); header_lines_[it.idx_].skip = true; } void Clear(); void Swap(BalsaHeaders* other); void CopyFrom(const BalsaHeaders& other); void HackHeader(const base::StringPiece& key, const base::StringPiece& value); // Same as AppendToHeader, except that it will attempt to preserve // header ordering. // Note that this will always append to an existing header, if available, // without moving the header around, or collapsing multiple header lines // with the same key together. For this reason, it only 'attempts' to // preserve header ordering. // TODO(fenix): remove this function and rename all occurances // of it in the code to AppendToHeader when the condition above // has been satisified. void HackAppendToHeader(const base::StringPiece& key, const base::StringPiece& value); // Replaces header entries with key 'key' if they exist, or appends // a new header if none exist. See 'AppendHeader' below for additional // comments about ContentLength and TransferEncoding headers. Note that this // will allocate new storage every time that it is called. // TODO(fenix): modify this function to reuse existing storage // if it is available. void ReplaceOrAppendHeader(const base::StringPiece& key, const base::StringPiece& value); // Append a new header entry to the header object. Clients who wish to append // Content-Length header should use SetContentLength() method instead of // adding the content length header using AppendHeader (manually adding the // content length header will not update the content_length_ and // content_length_status_ values). // Similarly, clients who wish to add or remove the transfer encoding header // in order to apply or remove chunked encoding should use SetChunkEncoding() // instead. void AppendHeader(const base::StringPiece& key, const base::StringPiece& value); // Appends ',value' to an existing header named 'key'. If no header with the // correct key exists, it will call AppendHeader(key, value). Calling this // function on a key which exists several times in the headers will produce // unpredictable results. void AppendToHeader(const base::StringPiece& key, const base::StringPiece& value); // Prepends 'value,' to an existing header named 'key'. If no header with the // correct key exists, it will call AppendHeader(key, value). Calling this // function on a key which exists several times in the headers will produce // unpredictable results. void PrependToHeader(const base::StringPiece& key, const base::StringPiece& value); const base::StringPiece GetHeader(const base::StringPiece& key) const; // Iterates over all currently valid header lines, appending their // values into the vector 'out', in top-to-bottom order. // Header-lines which have been erased are not currently valid, and // will not have their values appended. Empty values will be // represented as empty string. If 'key' doesn't exist in the headers at // all, out will not be changed. We do not clear the vector out // before adding new entries. If there are header lines with matching // key but empty value then they are also added to the vector out. // (Basically empty values are not treated in any special manner). // // Example: // Input header: // "GET / HTTP/1.0\r\n" // "key1: v1\r\n" // "key1: \r\n" // "key1:\r\n" // "key1: v1\r\n" // "key1:v2\r\n" // // vector out is initially: ["foo"] // vector out after GetAllOfHeader("key1", &out) is: // ["foo", "v1", "", "", "v2", "v1", "v2"] void GetAllOfHeader(const base::StringPiece& key, std::vector* out) const; // Joins all values for key into a comma-separated string in out. // More efficient than calling JoinStrings on result of GetAllOfHeader if // you don't need the intermediate vector. void GetAllOfHeaderAsString(const base::StringPiece& key, std::string* out) const; // Returns true if RFC 2616 Section 14 indicates that header can // have multiple values. static bool IsMultivaluedHeader(const base::StringPiece& header); // Determine if a given header is present. inline bool HasHeader(const base::StringPiece& key) const { return (GetConstHeaderLinesIterator(key, header_lines_.begin()) != header_lines_.end()); } // Returns true iff any header 'key' exists with non-empty value. bool HasNonEmptyHeader(const base::StringPiece& key) const; const_header_lines_iterator GetHeaderPosition( const base::StringPiece& key) const; // Returns a forward-only iterator that only stops at lines matching key. // String backing 'key' must remain valid for lifetime of iterator. // // Check returned iterator against header_lines_key_end() to determine when // iteration is finished. const_header_lines_key_iterator GetIteratorForKey( const base::StringPiece& key) const; void RemoveAllOfHeader(const base::StringPiece& key); // Removes all headers starting with 'key' [case insensitive] void RemoveAllHeadersWithPrefix(const base::StringPiece& key); // Returns the lower bound of memory used by this header object, including // all internal buffers and data structure. Some of the memory used cannot be // directly measure. For example, memory used for bookkeeping by standard // containers. size_t GetMemoryUsedLowerBound() const; // Returns the upper bound on the required buffer space to fully write out // the header object (this include the first line, all header lines, and the // final CRLF that marks the ending of the header). size_t GetSizeForWriteBuffer() const; // The following WriteHeader* methods are template member functions that // place one requirement on the Buffer class: it must implement a Write // method that takes a pointer and a length. The buffer passed in is not // required to be stretchable. For non-stretchable buffers, the user must // call GetSizeForWriteBuffer() to find out the upper bound on the output // buffer space required to make sure that the entire header is serialized. // BalsaHeaders will not check that there is adequate space in the buffer // object during the write. // Writes the entire header and the final CRLF that marks the end of the HTTP // header section to the buffer. After this method returns, no more header // data should be written to the buffer. template void WriteHeaderAndEndingToBuffer(Buffer* buffer) const { WriteToBuffer(buffer); WriteHeaderEndingToBuffer(buffer); } // Writes the final CRLF to the buffer to terminate the HTTP header section. // After this method returns, no more header data should be written to the // buffer. template static void WriteHeaderEndingToBuffer(Buffer* buffer) { buffer->Write("\r\n", 2); } // Writes the entire header to the buffer without the CRLF that terminates // the HTTP header. This lets users append additional header lines using // WriteHeaderLineToBuffer and then terminate the header with // WriteHeaderEndingToBuffer as the header is serialized to the // buffer, without having to first copy the header. template void WriteToBuffer(Buffer* buffer) const { // write the first line. const size_t firstline_len = whitespace_4_idx_ - non_whitespace_1_idx_; const char* stream_begin = GetPtr(firstline_buffer_base_idx_); buffer->Write(stream_begin + non_whitespace_1_idx_, firstline_len); buffer->Write("\r\n", 2); const HeaderLines::size_type end = header_lines_.size(); for (HeaderLines::size_type i = 0; i < end; ++i) { const HeaderLineDescription& line = header_lines_[i]; if (line.skip) { continue; } const char* line_ptr = GetPtr(line.buffer_base_idx); WriteHeaderLineToBuffer( buffer, base::StringPiece(line_ptr + line.first_char_idx, line.key_end_idx - line.first_char_idx), base::StringPiece(line_ptr + line.value_begin_idx, line.last_char_idx - line.value_begin_idx)); } } // Takes a header line in the form of a key/value pair and append it to the // buffer. This function should be called after WriteToBuffer to // append additional header lines to the header without copying the header. // When the user is done with appending to the buffer, // WriteHeaderEndingToBuffer must be used to terminate the HTTP // header in the buffer. This method is a no-op if key is empty. template static void WriteHeaderLineToBuffer(Buffer* buffer, const base::StringPiece& key, const base::StringPiece& value) { // if the key is empty, we don't want to write the rest because it // will not be a well-formed header line. if (key.size() > 0) { buffer->Write(key.data(), key.size()); buffer->Write(": ", 2); buffer->Write(value.data(), value.size()); buffer->Write("\r\n", 2); } } // Dump the textural representation of the header object to a string, which // is suitable for writing out to logs. All CRLF will be printed out as \n. // This function can be called on a header object in any state. Raw header // data will be printed out if the header object is not completely parsed, // e.g., when there was an error in the middle of parsing. // The header content is appended to the string; the original content is not // cleared. void DumpToString(std::string* str) const; const base::StringPiece first_line() const { DCHECK_GE(whitespace_4_idx_, non_whitespace_1_idx_); return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, whitespace_4_idx_ - non_whitespace_1_idx_); } // Returns the parsed value of the response code if it has been parsed. // Guaranteed to return 0 when unparsed (though it is a much better idea to // verify that the BalsaFrame had no errors while parsing). // This may return response codes which are outside the normal bounds of // HTTP response codes-- it is up to the user of this class to ensure that // the response code is one which is interpretable. size_t parsed_response_code() const { return parsed_response_code_; } const base::StringPiece request_method() const { DCHECK_GE(whitespace_2_idx_, non_whitespace_1_idx_); return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, whitespace_2_idx_ - non_whitespace_1_idx_); } const base::StringPiece response_version() const { // Note: There is no difference between request_method() and // response_version(). They both could be called // GetFirstTokenFromFirstline()... but that wouldn't be anywhere near as // descriptive. return request_method(); } const base::StringPiece request_uri() const { DCHECK_GE(whitespace_3_idx_, non_whitespace_2_idx_); return base::StringPiece(BeginningOfFirstLine() + non_whitespace_2_idx_, whitespace_3_idx_ - non_whitespace_2_idx_); } const base::StringPiece response_code() const { // Note: There is no difference between request_uri() and response_code(). // They both could be called GetSecondtTokenFromFirstline(), but, as noted // in an earlier comment, that wouldn't be as descriptive. return request_uri(); } const base::StringPiece request_version() const { DCHECK_GE(whitespace_4_idx_, non_whitespace_3_idx_); return base::StringPiece(BeginningOfFirstLine() + non_whitespace_3_idx_, whitespace_4_idx_ - non_whitespace_3_idx_); } const base::StringPiece response_reason_phrase() const { // Note: There is no difference between request_version() and // response_reason_phrase(). They both could be called // GetThirdTokenFromFirstline(), but, as noted in an earlier comment, that // wouldn't be as descriptive. return request_version(); } // Note that SetFirstLine will not update the internal indices for the // various bits of the first-line (and may set them all to zero). // If you'd like to use the accessors for the various bits of the firstline, // then you should use the Set* functions, or SetFirstlineFromStringPieces, // below, instead. // void SetFirstlineFromStringPieces(const base::StringPiece& firstline_a, const base::StringPiece& firstline_b, const base::StringPiece& firstline_c); void SetRequestFirstlineFromStringPieces(const base::StringPiece& method, const base::StringPiece& uri, const base::StringPiece& version) { SetFirstlineFromStringPieces(method, uri, version); } void SetResponseFirstlineFromStringPieces( const base::StringPiece& version, const base::StringPiece& code, const base::StringPiece& reason_phrase) { SetFirstlineFromStringPieces(version, code, reason_phrase); } // These functions are exactly the same, except that their names are // different. This is done so that the code using this class is more // expressive. void SetRequestMethod(const base::StringPiece& method); void SetResponseVersion(const base::StringPiece& version); void SetRequestUri(const base::StringPiece& uri); void SetResponseCode(const base::StringPiece& code); void set_parsed_response_code(size_t parsed_response_code) { parsed_response_code_ = parsed_response_code; } void SetParsedResponseCodeAndUpdateFirstline(size_t parsed_response_code); // These functions are exactly the same, except that their names are // different. This is done so that the code using this class is more // expressive. void SetRequestVersion(const base::StringPiece& version); void SetResponseReasonPhrase(const base::StringPiece& reason_phrase); // The biggest problem with SetFirstLine is that we don't want to use a // separate buffer for it. The second biggest problem with it is that the // first biggest problem requires that we store offsets into a buffer instead // of pointers into a buffer. Cuteness aside, SetFirstLine doesn't parse // the individual fields of the firstline, and so accessors to those fields // will not work properly after calling SetFirstLine. If you want those // accessors to work, use the Set* functions above this one. // SetFirstLine is stuff useful, however, if all you care about is correct // serialization with the rest of the header object. void SetFirstLine(const base::StringPiece& line); // Simple accessors to some of the internal state bool transfer_encoding_is_chunked() const { return transfer_encoding_is_chunked_; } static bool ResponseCodeImpliesNoBody(int code) { // From HTTP spec section 6.1.1 all 1xx responses must not have a body, // as well as 204 No Content and 304 Not Modified. return ((code >= 100) && (code <= 199)) || (code == 204) || (code == 304); } // Note: never check this for requests. Nothing bad will happen if you do, // but spec does not allow requests framed by connection close. // TODO(vitaliyl): refactor. bool is_framed_by_connection_close() const { // We declare that response is framed by connection close if it has no // content-length, no transfer encoding, and is allowed to have a body by // the HTTP spec. // parsed_response_code_ is 0 for requests, so ResponseCodeImpliesNoBody // will return false. return (content_length_status_ == BalsaHeadersEnums::NO_CONTENT_LENGTH) && !transfer_encoding_is_chunked_ && !ResponseCodeImpliesNoBody(parsed_response_code_); } size_t content_length() const { return content_length_; } BalsaHeadersEnums::ContentLengthStatus content_length_status() const { return content_length_status_; } // SetContentLength and SetChunkEncoding modifies the header object to use // content-length and transfer-encoding headers in a consistent manner. They // set all internal flags and status so client can get a consistent view from // various accessors. void SetContentLength(size_t length); void SetChunkEncoding(bool chunk_encode); protected: friend class BalsaFrame; friend class FlipFrame; friend class HTTPMessage; friend class BalsaHeadersTokenUtils; const char* BeginningOfFirstLine() const { return GetPtr(firstline_buffer_base_idx_); } char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) { return balsa_buffer_.GetPtr(block_idx); } const char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) const { return balsa_buffer_.GetPtr(block_idx); } void WriteFromFramer(const char* ptr, size_t size) { balsa_buffer_.WriteToContiguousBuffer(base::StringPiece(ptr, size)); } void DoneWritingFromFramer() { balsa_buffer_.NoMoreWriteToContiguousBuffer(); } const char* OriginalHeaderStreamBegin() const { return balsa_buffer_.StartOfFirstBlock(); } const char* OriginalHeaderStreamEnd() const { return balsa_buffer_.EndOfFirstBlock(); } size_t GetReadableBytesFromHeaderStream() const { return OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin(); } void GetReadablePtrFromHeaderStream(const char** p, size_t* s) { *p = OriginalHeaderStreamBegin(); *s = GetReadableBytesFromHeaderStream(); } base::StringPiece GetValueFromHeaderLineDescription( const HeaderLineDescription& line) const; void AddAndMakeDescription(const base::StringPiece& key, const base::StringPiece& value, HeaderLineDescription* d); void AppendOrPrependAndMakeDescription(const base::StringPiece& key, const base::StringPiece& value, bool append, HeaderLineDescription* d); // Removes all header lines with the given key starting at start. void RemoveAllOfHeaderStartingAt(const base::StringPiece& key, HeaderLines::iterator start); // If the 'key' does not exist in the headers, calls // AppendHeader(key, value). Otherwise if append is true, appends ',value' // to the first existing header with key 'key'. If append is false, prepends // 'value,' to the first existing header with key 'key'. void AppendOrPrependToHeader(const base::StringPiece& key, const base::StringPiece& value, bool append); HeaderLines::const_iterator GetConstHeaderLinesIterator( const base::StringPiece& key, HeaderLines::const_iterator start) const; HeaderLines::iterator GetHeaderLinesIteratorNoSkip( const base::StringPiece& key, HeaderLines::iterator start); HeaderLines::iterator GetHeaderLinesIterator( const base::StringPiece& key, HeaderLines::iterator start); template const IteratorType HeaderLinesBeginHelper() const { if (header_lines_.empty()) { return IteratorType(this, 0); } const HeaderLines::size_type header_lines_size = header_lines_.size(); for (HeaderLines::size_type i = 0; i < header_lines_size; ++i) { if (header_lines_[i].skip == false) { return IteratorType(this, i); } } return IteratorType(this, 0); } template const IteratorType HeaderLinesEndHelper() const { if (header_lines_.empty()) { return IteratorType(this, 0); } const HeaderLines::size_type header_lines_size = header_lines_.size(); HeaderLines::size_type i = header_lines_size; do { --i; if (header_lines_[i].skip == false) { return IteratorType(this, i + 1); } } while (i != 0); return IteratorType(this, 0); } // At the moment, this function will always return the original headers. // In the future, it may not do so after erasing header lines, modifying // header lines, or modifying the first line. // For this reason, it is strongly suggested that use of this function is // only acceptable for the purpose of debugging parse errors seen by the // BalsaFrame class. base::StringPiece OriginalHeadersForDebugging() const { return base::StringPiece(OriginalHeaderStreamBegin(), OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin()); } BalsaBuffer balsa_buffer_; size_t content_length_; BalsaHeadersEnums::ContentLengthStatus content_length_status_; size_t parsed_response_code_; // HTTP firstlines all have the following structure: // LWS NONWS LWS NONWS LWS NONWS NOTCRLF CRLF // [\t \r\n]+ [^\t ]+ [\t ]+ [^\t ]+ [\t ]+ [^\t ]+ [^\r\n]+ "\r\n" // ws1 nws1 ws2 nws2 ws3 nws3 ws4 // | [-------) [-------) [----------------) // REQ: method request_uri version // RESP: version statuscode reason // // The first NONWS->LWS component we'll call firstline_a. // The second firstline_b, and the third firstline_c. // // firstline_a goes from nws1 to (but not including) ws2 // firstline_b goes from nws2 to (but not including) ws3 // firstline_c goes from nws3 to (but not including) ws4 // // In the code: // ws1 == whitespace_1_idx_ // nws1 == non_whitespace_1_idx_ // ws2 == whitespace_2_idx_ // nws2 == non_whitespace_2_idx_ // ws3 == whitespace_3_idx_ // nws3 == non_whitespace_3_idx_ // ws4 == whitespace_4_idx_ BalsaBuffer::Blocks::size_type firstline_buffer_base_idx_; size_t whitespace_1_idx_; size_t non_whitespace_1_idx_; size_t whitespace_2_idx_; size_t non_whitespace_2_idx_; size_t whitespace_3_idx_; size_t non_whitespace_3_idx_; size_t whitespace_4_idx_; size_t end_of_firstline_idx_; bool transfer_encoding_is_chunked_; HeaderLines header_lines_; }; } // namespace net #endif // NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_