// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/udp/udp_socket_win.h" #include #include "base/basictypes.h" #include "base/callback.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/metrics/histogram_macros.h" #include "base/metrics/sparse_histogram.h" #include "base/rand_util.h" #include "net/base/io_buffer.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "net/base/net_util.h" #include "net/base/network_activity_monitor.h" #include "net/base/winsock_init.h" #include "net/base/winsock_util.h" #include "net/log/net_log.h" #include "net/socket/socket_descriptor.h" #include "net/udp/udp_net_log_parameters.h" namespace { const int kBindRetries = 10; const int kPortStart = 1024; const int kPortEnd = 65535; } // namespace namespace net { // This class encapsulates all the state that has to be preserved as long as // there is a network IO operation in progress. If the owner UDPSocketWin // is destroyed while an operation is in progress, the Core is detached and it // lives until the operation completes and the OS doesn't reference any resource // declared on this class anymore. class UDPSocketWin::Core : public base::RefCounted { public: explicit Core(UDPSocketWin* socket); // Start watching for the end of a read or write operation. void WatchForRead(); void WatchForWrite(); // The UDPSocketWin is going away. void Detach() { socket_ = NULL; } // The separate OVERLAPPED variables for asynchronous operation. OVERLAPPED read_overlapped_; OVERLAPPED write_overlapped_; // The buffers used in Read() and Write(). scoped_refptr read_iobuffer_; scoped_refptr write_iobuffer_; // The address storage passed to WSARecvFrom(). SockaddrStorage recv_addr_storage_; private: friend class base::RefCounted; class ReadDelegate : public base::win::ObjectWatcher::Delegate { public: explicit ReadDelegate(Core* core) : core_(core) {} ~ReadDelegate() override {} // base::ObjectWatcher::Delegate methods: void OnObjectSignaled(HANDLE object) override; private: Core* const core_; }; class WriteDelegate : public base::win::ObjectWatcher::Delegate { public: explicit WriteDelegate(Core* core) : core_(core) {} ~WriteDelegate() override {} // base::ObjectWatcher::Delegate methods: void OnObjectSignaled(HANDLE object) override; private: Core* const core_; }; ~Core(); // The socket that created this object. UDPSocketWin* socket_; // |reader_| handles the signals from |read_watcher_|. ReadDelegate reader_; // |writer_| handles the signals from |write_watcher_|. WriteDelegate writer_; // |read_watcher_| watches for events from Read(). base::win::ObjectWatcher read_watcher_; // |write_watcher_| watches for events from Write(); base::win::ObjectWatcher write_watcher_; DISALLOW_COPY_AND_ASSIGN(Core); }; UDPSocketWin::Core::Core(UDPSocketWin* socket) : socket_(socket), reader_(this), writer_(this) { memset(&read_overlapped_, 0, sizeof(read_overlapped_)); memset(&write_overlapped_, 0, sizeof(write_overlapped_)); read_overlapped_.hEvent = WSACreateEvent(); write_overlapped_.hEvent = WSACreateEvent(); } UDPSocketWin::Core::~Core() { // Make sure the message loop is not watching this object anymore. read_watcher_.StopWatching(); write_watcher_.StopWatching(); WSACloseEvent(read_overlapped_.hEvent); memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_)); WSACloseEvent(write_overlapped_.hEvent); memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_)); } void UDPSocketWin::Core::WatchForRead() { // We grab an extra reference because there is an IO operation in progress. // Balanced in ReadDelegate::OnObjectSignaled(). AddRef(); read_watcher_.StartWatchingOnce(read_overlapped_.hEvent, &reader_); } void UDPSocketWin::Core::WatchForWrite() { // We grab an extra reference because there is an IO operation in progress. // Balanced in WriteDelegate::OnObjectSignaled(). AddRef(); write_watcher_.StartWatchingOnce(write_overlapped_.hEvent, &writer_); } void UDPSocketWin::Core::ReadDelegate::OnObjectSignaled(HANDLE object) { DCHECK_EQ(object, core_->read_overlapped_.hEvent); if (core_->socket_) core_->socket_->DidCompleteRead(); core_->Release(); } void UDPSocketWin::Core::WriteDelegate::OnObjectSignaled(HANDLE object) { DCHECK_EQ(object, core_->write_overlapped_.hEvent); if (core_->socket_) core_->socket_->DidCompleteWrite(); core_->Release(); } //----------------------------------------------------------------------------- QwaveAPI::QwaveAPI() : qwave_supported_(false) { HMODULE qwave = LoadLibrary(L"qwave.dll"); if (!qwave) return; create_handle_func_ = (CreateHandleFn)GetProcAddress(qwave, "QOSCreateHandle"); close_handle_func_ = (CloseHandleFn)GetProcAddress(qwave, "QOSCloseHandle"); add_socket_to_flow_func_ = (AddSocketToFlowFn)GetProcAddress(qwave, "QOSAddSocketToFlow"); remove_socket_from_flow_func_ = (RemoveSocketFromFlowFn)GetProcAddress(qwave, "QOSRemoveSocketFromFlow"); set_flow_func_ = (SetFlowFn)GetProcAddress(qwave, "QOSSetFlow"); if (create_handle_func_ && close_handle_func_ && add_socket_to_flow_func_ && remove_socket_from_flow_func_ && set_flow_func_) { qwave_supported_ = true; } } QwaveAPI& QwaveAPI::Get() { static base::LazyInstance::Leaky lazy_qwave = LAZY_INSTANCE_INITIALIZER; return lazy_qwave.Get(); } bool QwaveAPI::qwave_supported() const { return qwave_supported_; } BOOL QwaveAPI::CreateHandle(PQOS_VERSION version, PHANDLE handle) { return create_handle_func_(version, handle); } BOOL QwaveAPI::CloseHandle(HANDLE handle) { return close_handle_func_(handle); } BOOL QwaveAPI::AddSocketToFlow(HANDLE handle, SOCKET socket, PSOCKADDR addr, QOS_TRAFFIC_TYPE traffic_type, DWORD flags, PQOS_FLOWID flow_id) { return add_socket_to_flow_func_(handle, socket, addr, traffic_type, flags, flow_id); } BOOL QwaveAPI::RemoveSocketFromFlow(HANDLE handle, SOCKET socket, QOS_FLOWID flow_id, DWORD reserved) { return remove_socket_from_flow_func_(handle, socket, flow_id, reserved); } BOOL QwaveAPI::SetFlow(HANDLE handle, QOS_FLOWID flow_id, QOS_SET_FLOW op, ULONG size, PVOID data, DWORD reserved, LPOVERLAPPED overlapped) { return set_flow_func_(handle, flow_id, op, size, data, reserved, overlapped); } //----------------------------------------------------------------------------- UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type, const RandIntCallback& rand_int_cb, net::NetLog* net_log, const net::NetLog::Source& source) : socket_(INVALID_SOCKET), addr_family_(0), is_connected_(false), socket_options_(SOCKET_OPTION_MULTICAST_LOOP), multicast_interface_(0), multicast_time_to_live_(1), bind_type_(bind_type), rand_int_cb_(rand_int_cb), use_non_blocking_io_(false), read_iobuffer_len_(0), write_iobuffer_len_(0), recv_from_address_(NULL), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_UDP_SOCKET)), qos_handle_(NULL), qos_flow_id_(0) { EnsureWinsockInit(); net_log_.BeginEvent(NetLog::TYPE_SOCKET_ALIVE, source.ToEventParametersCallback()); if (bind_type == DatagramSocket::RANDOM_BIND) DCHECK(!rand_int_cb.is_null()); } UDPSocketWin::~UDPSocketWin() { Close(); net_log_.EndEvent(NetLog::TYPE_SOCKET_ALIVE); } int UDPSocketWin::Open(AddressFamily address_family) { DCHECK(CalledOnValidThread()); DCHECK_EQ(socket_, INVALID_SOCKET); addr_family_ = ConvertAddressFamily(address_family); socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, IPPROTO_UDP); if (socket_ == INVALID_SOCKET) return MapSystemError(WSAGetLastError()); if (!use_non_blocking_io_) { core_ = new Core(this); } else { read_write_event_.Set(WSACreateEvent()); WSAEventSelect(socket_, read_write_event_.Get(), FD_READ | FD_WRITE); } return OK; } void UDPSocketWin::Close() { DCHECK(CalledOnValidThread()); if (socket_ == INVALID_SOCKET) return; if (qos_handle_) { QwaveAPI::Get().CloseHandle(qos_handle_); } // Zero out any pending read/write callback state. read_callback_.Reset(); recv_from_address_ = NULL; write_callback_.Reset(); base::TimeTicks start_time = base::TimeTicks::Now(); closesocket(socket_); UMA_HISTOGRAM_TIMES("Net.UDPSocketWinClose", base::TimeTicks::Now() - start_time); socket_ = INVALID_SOCKET; addr_family_ = 0; is_connected_ = false; read_write_watcher_.StopWatching(); read_write_event_.Close(); if (core_) { core_->Detach(); core_ = NULL; } } int UDPSocketWin::GetPeerAddress(IPEndPoint* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; // TODO(szym): Simplify. http://crbug.com/126152 if (!remote_address_.get()) { SockaddrStorage storage; if (getpeername(socket_, storage.addr, &storage.addr_len)) return MapSystemError(WSAGetLastError()); scoped_ptr remote_address(new IPEndPoint()); if (!remote_address->FromSockAddr(storage.addr, storage.addr_len)) return ERR_ADDRESS_INVALID; remote_address_.reset(remote_address.release()); } *address = *remote_address_; return OK; } int UDPSocketWin::GetLocalAddress(IPEndPoint* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; // TODO(szym): Simplify. http://crbug.com/126152 if (!local_address_.get()) { SockaddrStorage storage; if (getsockname(socket_, storage.addr, &storage.addr_len)) return MapSystemError(WSAGetLastError()); scoped_ptr local_address(new IPEndPoint()); if (!local_address->FromSockAddr(storage.addr, storage.addr_len)) return ERR_ADDRESS_INVALID; local_address_.reset(local_address.release()); net_log_.AddEvent(NetLog::TYPE_UDP_LOCAL_ADDRESS, CreateNetLogUDPConnectCallback(local_address_.get())); } *address = *local_address_; return OK; } int UDPSocketWin::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return RecvFrom(buf, buf_len, NULL, callback); } int UDPSocketWin::RecvFrom(IOBuffer* buf, int buf_len, IPEndPoint* address, const CompletionCallback& callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(INVALID_SOCKET, socket_); CHECK(read_callback_.is_null()); DCHECK(!recv_from_address_); DCHECK(!callback.is_null()); // Synchronous operation not supported. DCHECK_GT(buf_len, 0); int nread = core_ ? InternalRecvFromOverlapped(buf, buf_len, address) : InternalRecvFromNonBlocking(buf, buf_len, address); if (nread != ERR_IO_PENDING) return nread; read_callback_ = callback; recv_from_address_ = address; return ERR_IO_PENDING; } int UDPSocketWin::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return SendToOrWrite(buf, buf_len, NULL, callback); } int UDPSocketWin::SendTo(IOBuffer* buf, int buf_len, const IPEndPoint& address, const CompletionCallback& callback) { return SendToOrWrite(buf, buf_len, &address, callback); } int UDPSocketWin::SendToOrWrite(IOBuffer* buf, int buf_len, const IPEndPoint* address, const CompletionCallback& callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(INVALID_SOCKET, socket_); CHECK(write_callback_.is_null()); DCHECK(!callback.is_null()); // Synchronous operation not supported. DCHECK_GT(buf_len, 0); DCHECK(!send_to_address_.get()); int nwrite = core_ ? InternalSendToOverlapped(buf, buf_len, address) : InternalSendToNonBlocking(buf, buf_len, address); if (nwrite != ERR_IO_PENDING) return nwrite; if (address) send_to_address_.reset(new IPEndPoint(*address)); write_callback_ = callback; return ERR_IO_PENDING; } int UDPSocketWin::Connect(const IPEndPoint& address) { DCHECK_NE(socket_, INVALID_SOCKET); net_log_.BeginEvent(NetLog::TYPE_UDP_CONNECT, CreateNetLogUDPConnectCallback(&address)); int rv = InternalConnect(address); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_UDP_CONNECT, rv); is_connected_ = (rv == OK); return rv; } int UDPSocketWin::InternalConnect(const IPEndPoint& address) { DCHECK(!is_connected()); DCHECK(!remote_address_.get()); int rv = 0; if (bind_type_ == DatagramSocket::RANDOM_BIND) { // Construct IPAddressNumber of appropriate size (IPv4 or IPv6) of 0s, // representing INADDR_ANY or in6addr_any. size_t addr_size = (address.GetSockAddrFamily() == AF_INET) ? kIPv4AddressSize : kIPv6AddressSize; IPAddressNumber addr_any(addr_size); rv = RandomBind(addr_any); } // else connect() does the DatagramSocket::DEFAULT_BIND if (rv < 0) { UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketRandomBindErrorCode", -rv); return rv; } SockaddrStorage storage; if (!address.ToSockAddr(storage.addr, &storage.addr_len)) return ERR_ADDRESS_INVALID; rv = connect(socket_, storage.addr, storage.addr_len); if (rv < 0) return MapSystemError(WSAGetLastError()); remote_address_.reset(new IPEndPoint(address)); return rv; } int UDPSocketWin::Bind(const IPEndPoint& address) { DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(!is_connected()); int rv = SetMulticastOptions(); if (rv < 0) return rv; rv = DoBind(address); if (rv < 0) return rv; local_address_.reset(); is_connected_ = true; return rv; } int UDPSocketWin::BindToNetwork(NetworkChangeNotifier::NetworkHandle network) { NOTIMPLEMENTED(); return ERR_NOT_IMPLEMENTED; } int UDPSocketWin::SetReceiveBufferSize(int32 size) { DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&size), sizeof(size)); if (rv != 0) return MapSystemError(WSAGetLastError()); // According to documentation, setsockopt may succeed, but we need to check // the results via getsockopt to be sure it works on Windows. int32 actual_size = 0; int option_size = sizeof(actual_size); rv = getsockopt(socket_, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&actual_size), &option_size); if (rv != 0) return MapSystemError(WSAGetLastError()); if (actual_size >= size) return OK; UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableReceiveBuffer", actual_size, 1000, 1000000, 50); return ERR_SOCKET_RECEIVE_BUFFER_SIZE_UNCHANGEABLE; } int UDPSocketWin::SetSendBufferSize(int32 size) { DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&size), sizeof(size)); if (rv != 0) return MapSystemError(WSAGetLastError()); // According to documentation, setsockopt may succeed, but we need to check // the results via getsockopt to be sure it works on Windows. int32 actual_size = 0; int option_size = sizeof(actual_size); rv = getsockopt(socket_, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&actual_size), &option_size); if (rv != 0) return MapSystemError(WSAGetLastError()); if (actual_size >= size) return OK; UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableSendBuffer", actual_size, 1000, 1000000, 50); return ERR_SOCKET_SEND_BUFFER_SIZE_UNCHANGEABLE; } int UDPSocketWin::AllowAddressReuse() { DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(CalledOnValidThread()); DCHECK(!is_connected()); BOOL true_value = TRUE; int rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast(&true_value), sizeof(true_value)); return rv == 0 ? OK : MapSystemError(WSAGetLastError()); } int UDPSocketWin::SetBroadcast(bool broadcast) { DCHECK_NE(socket_, INVALID_SOCKET); DCHECK(CalledOnValidThread()); BOOL value = broadcast ? TRUE : FALSE; int rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST, reinterpret_cast(&value), sizeof(value)); return rv == 0 ? OK : MapSystemError(WSAGetLastError()); } void UDPSocketWin::DoReadCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(!read_callback_.is_null()); // since Run may result in Read being called, clear read_callback_ up front. CompletionCallback c = read_callback_; read_callback_.Reset(); c.Run(rv); } void UDPSocketWin::DoWriteCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(!write_callback_.is_null()); // since Run may result in Write being called, clear write_callback_ up front. CompletionCallback c = write_callback_; write_callback_.Reset(); c.Run(rv); } void UDPSocketWin::DidCompleteRead() { DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->read_overlapped_.hEvent); int result = ok ? num_bytes : MapSystemError(WSAGetLastError()); // Convert address. IPEndPoint address; IPEndPoint* address_to_log = NULL; if (result >= 0) { if (address.FromSockAddr(core_->recv_addr_storage_.addr, core_->recv_addr_storage_.addr_len)) { if (recv_from_address_) *recv_from_address_ = address; address_to_log = &address; } else { result = ERR_ADDRESS_INVALID; } } LogRead(result, core_->read_iobuffer_->data(), address_to_log); core_->read_iobuffer_ = NULL; recv_from_address_ = NULL; DoReadCallback(result); } void UDPSocketWin::DidCompleteWrite() { DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->write_overlapped_.hEvent); int result = ok ? num_bytes : MapSystemError(WSAGetLastError()); LogWrite(result, core_->write_iobuffer_->data(), send_to_address_.get()); send_to_address_.reset(); core_->write_iobuffer_ = NULL; DoWriteCallback(result); } void UDPSocketWin::OnObjectSignaled(HANDLE object) { DCHECK(object == read_write_event_.Get()); WSANETWORKEVENTS network_events; int os_error = 0; int rv = WSAEnumNetworkEvents(socket_, read_write_event_.Get(), &network_events); if (rv == SOCKET_ERROR) { os_error = WSAGetLastError(); rv = MapSystemError(os_error); if (read_iobuffer_) { read_iobuffer_ = NULL; read_iobuffer_len_ = 0; recv_from_address_ = NULL; DoReadCallback(rv); } if (write_iobuffer_) { write_iobuffer_ = NULL; write_iobuffer_len_ = 0; send_to_address_.reset(); DoWriteCallback(rv); } return; } if ((network_events.lNetworkEvents & FD_READ) && read_iobuffer_) { OnReadSignaled(); } if ((network_events.lNetworkEvents & FD_WRITE) && write_iobuffer_) { OnWriteSignaled(); } // There's still pending read / write. Watch for further events. if (read_iobuffer_ || write_iobuffer_) { WatchForReadWrite(); } } void UDPSocketWin::OnReadSignaled() { int rv = InternalRecvFromNonBlocking(read_iobuffer_.get(), read_iobuffer_len_, recv_from_address_); if (rv == ERR_IO_PENDING) return; read_iobuffer_ = NULL; read_iobuffer_len_ = 0; recv_from_address_ = NULL; DoReadCallback(rv); } void UDPSocketWin::OnWriteSignaled() { int rv = InternalSendToNonBlocking(write_iobuffer_.get(), write_iobuffer_len_, send_to_address_.get()); if (rv == ERR_IO_PENDING) return; write_iobuffer_ = NULL; write_iobuffer_len_ = 0; send_to_address_.reset(); DoWriteCallback(rv); } void UDPSocketWin::WatchForReadWrite() { if (read_write_watcher_.IsWatching()) return; bool watched = read_write_watcher_.StartWatchingOnce(read_write_event_.Get(), this); DCHECK(watched); } void UDPSocketWin::LogRead(int result, const char* bytes, const IPEndPoint* address) const { if (result < 0) { net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_RECEIVE_ERROR, result); return; } if (net_log_.IsCapturing()) { net_log_.AddEvent( NetLog::TYPE_UDP_BYTES_RECEIVED, CreateNetLogUDPDataTranferCallback(result, bytes, address)); } NetworkActivityMonitor::GetInstance()->IncrementBytesReceived(result); } void UDPSocketWin::LogWrite(int result, const char* bytes, const IPEndPoint* address) const { if (result < 0) { net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_SEND_ERROR, result); return; } if (net_log_.IsCapturing()) { net_log_.AddEvent( NetLog::TYPE_UDP_BYTES_SENT, CreateNetLogUDPDataTranferCallback(result, bytes, address)); } NetworkActivityMonitor::GetInstance()->IncrementBytesSent(result); } int UDPSocketWin::InternalRecvFromOverlapped(IOBuffer* buf, int buf_len, IPEndPoint* address) { DCHECK(!core_->read_iobuffer_.get()); SockaddrStorage& storage = core_->recv_addr_storage_; storage.addr_len = sizeof(storage.addr_storage); WSABUF read_buffer; read_buffer.buf = buf->data(); read_buffer.len = buf_len; DWORD flags = 0; DWORD num; CHECK_NE(INVALID_SOCKET, socket_); AssertEventNotSignaled(core_->read_overlapped_.hEvent); int rv = WSARecvFrom(socket_, &read_buffer, 1, &num, &flags, storage.addr, &storage.addr_len, &core_->read_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) { int result = num; // Convert address. IPEndPoint address_storage; IPEndPoint* address_to_log = NULL; if (result >= 0) { if (address_storage.FromSockAddr(core_->recv_addr_storage_.addr, core_->recv_addr_storage_.addr_len)) { if (address) *address = address_storage; address_to_log = &address_storage; } else { result = ERR_ADDRESS_INVALID; } } LogRead(result, buf->data(), address_to_log); return result; } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) { int result = MapSystemError(os_error); LogRead(result, NULL, NULL); return result; } } core_->WatchForRead(); core_->read_iobuffer_ = buf; return ERR_IO_PENDING; } int UDPSocketWin::InternalSendToOverlapped(IOBuffer* buf, int buf_len, const IPEndPoint* address) { DCHECK(!core_->write_iobuffer_.get()); SockaddrStorage storage; struct sockaddr* addr = storage.addr; // Convert address. if (!address) { addr = NULL; storage.addr_len = 0; } else { if (!address->ToSockAddr(addr, &storage.addr_len)) { int result = ERR_ADDRESS_INVALID; LogWrite(result, NULL, NULL); return result; } } WSABUF write_buffer; write_buffer.buf = buf->data(); write_buffer.len = buf_len; DWORD flags = 0; DWORD num; AssertEventNotSignaled(core_->write_overlapped_.hEvent); int rv = WSASendTo(socket_, &write_buffer, 1, &num, flags, addr, storage.addr_len, &core_->write_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) { int result = num; LogWrite(result, buf->data(), address); return result; } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) { int result = MapSystemError(os_error); LogWrite(result, NULL, NULL); return result; } } core_->WatchForWrite(); core_->write_iobuffer_ = buf; return ERR_IO_PENDING; } int UDPSocketWin::InternalRecvFromNonBlocking(IOBuffer* buf, int buf_len, IPEndPoint* address) { DCHECK(!read_iobuffer_ || read_iobuffer_.get() == buf); SockaddrStorage storage; storage.addr_len = sizeof(storage.addr_storage); CHECK_NE(INVALID_SOCKET, socket_); int rv = recvfrom(socket_, buf->data(), buf_len, 0, storage.addr, &storage.addr_len); if (rv == SOCKET_ERROR) { int os_error = WSAGetLastError(); if (os_error == WSAEWOULDBLOCK) { read_iobuffer_ = buf; read_iobuffer_len_ = buf_len; WatchForReadWrite(); return ERR_IO_PENDING; } rv = MapSystemError(os_error); LogRead(rv, NULL, NULL); return rv; } IPEndPoint address_storage; IPEndPoint* address_to_log = NULL; if (rv >= 0) { if (address_storage.FromSockAddr(storage.addr, storage.addr_len)) { if (address) *address = address_storage; address_to_log = &address_storage; } else { rv = ERR_ADDRESS_INVALID; } } LogRead(rv, buf->data(), address_to_log); return rv; } int UDPSocketWin::InternalSendToNonBlocking(IOBuffer* buf, int buf_len, const IPEndPoint* address) { DCHECK(!write_iobuffer_ || write_iobuffer_.get() == buf); SockaddrStorage storage; struct sockaddr* addr = storage.addr; // Convert address. if (address) { if (!address->ToSockAddr(addr, &storage.addr_len)) { int result = ERR_ADDRESS_INVALID; LogWrite(result, NULL, NULL); return result; } } else { addr = NULL; storage.addr_len = 0; } int rv = sendto(socket_, buf->data(), buf_len, 0, addr, storage.addr_len); if (rv == SOCKET_ERROR) { int os_error = WSAGetLastError(); if (os_error == WSAEWOULDBLOCK) { write_iobuffer_ = buf; write_iobuffer_len_ = buf_len; WatchForReadWrite(); return ERR_IO_PENDING; } rv = MapSystemError(os_error); LogWrite(rv, NULL, NULL); return rv; } LogWrite(rv, buf->data(), address); return rv; } int UDPSocketWin::SetMulticastOptions() { if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) { DWORD loop = 0; int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; int option = addr_family_ == AF_INET ? IP_MULTICAST_LOOP: IPV6_MULTICAST_LOOP; int rv = setsockopt(socket_, protocol_level, option, reinterpret_cast(&loop), sizeof(loop)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (multicast_time_to_live_ != 1) { DWORD hops = multicast_time_to_live_; int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; int option = addr_family_ == AF_INET ? IP_MULTICAST_TTL: IPV6_MULTICAST_HOPS; int rv = setsockopt(socket_, protocol_level, option, reinterpret_cast(&hops), sizeof(hops)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (multicast_interface_ != 0) { switch (addr_family_) { case AF_INET: { in_addr address; address.s_addr = htonl(multicast_interface_); int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF, reinterpret_cast(&address), sizeof(address)); if (rv) return MapSystemError(WSAGetLastError()); break; } case AF_INET6: { uint32 interface_index = multicast_interface_; int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF, reinterpret_cast(&interface_index), sizeof(interface_index)); if (rv) return MapSystemError(WSAGetLastError()); break; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } return OK; } int UDPSocketWin::DoBind(const IPEndPoint& address) { SockaddrStorage storage; if (!address.ToSockAddr(storage.addr, &storage.addr_len)) return ERR_ADDRESS_INVALID; int rv = bind(socket_, storage.addr, storage.addr_len); if (rv == 0) return OK; int last_error = WSAGetLastError(); UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketBindErrorFromWinOS", last_error); // Map some codes that are special to bind() separately. // * WSAEACCES: If a port is already bound to a socket, WSAEACCES may be // returned instead of WSAEADDRINUSE, depending on whether the socket // option SO_REUSEADDR or SO_EXCLUSIVEADDRUSE is set and whether the // conflicting socket is owned by a different user account. See the MSDN // page "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE" for the gory details. if (last_error == WSAEACCES || last_error == WSAEADDRNOTAVAIL) return ERR_ADDRESS_IN_USE; return MapSystemError(last_error); } int UDPSocketWin::RandomBind(const IPAddressNumber& address) { DCHECK(bind_type_ == DatagramSocket::RANDOM_BIND && !rand_int_cb_.is_null()); for (int i = 0; i < kBindRetries; ++i) { int rv = DoBind(IPEndPoint( address, static_cast(rand_int_cb_.Run(kPortStart, kPortEnd)))); if (rv == OK || rv != ERR_ADDRESS_IN_USE) return rv; } return DoBind(IPEndPoint(address, 0)); } int UDPSocketWin::JoinGroup( const IPAddressNumber& group_address) const { DCHECK(CalledOnValidThread()); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; switch (group_address.size()) { case kIPv4AddressSize: { if (addr_family_ != AF_INET) return ERR_ADDRESS_INVALID; ip_mreq mreq; mreq.imr_interface.s_addr = htonl(multicast_interface_); memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize); int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP, reinterpret_cast(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } case kIPv6AddressSize: { if (addr_family_ != AF_INET6) return ERR_ADDRESS_INVALID; ipv6_mreq mreq; mreq.ipv6mr_interface = multicast_interface_; memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize); int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, reinterpret_cast(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } int UDPSocketWin::LeaveGroup( const IPAddressNumber& group_address) const { DCHECK(CalledOnValidThread()); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; switch (group_address.size()) { case kIPv4AddressSize: { if (addr_family_ != AF_INET) return ERR_ADDRESS_INVALID; ip_mreq mreq; mreq.imr_interface.s_addr = htonl(multicast_interface_); memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize); int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP, reinterpret_cast(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } case kIPv6AddressSize: { if (addr_family_ != AF_INET6) return ERR_ADDRESS_INVALID; ipv6_mreq mreq; mreq.ipv6mr_interface = multicast_interface_; memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize); int rv = setsockopt(socket_, IPPROTO_IPV6, IP_DROP_MEMBERSHIP, reinterpret_cast(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } int UDPSocketWin::SetMulticastInterface(uint32 interface_index) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; multicast_interface_ = interface_index; return OK; } int UDPSocketWin::SetMulticastTimeToLive(int time_to_live) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; if (time_to_live < 0 || time_to_live > 255) return ERR_INVALID_ARGUMENT; multicast_time_to_live_ = time_to_live; return OK; } int UDPSocketWin::SetMulticastLoopbackMode(bool loopback) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; if (loopback) socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP; else socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP; return OK; } int UDPSocketWin::SetDiffServCodePoint(DiffServCodePoint dscp) { if (dscp == DSCP_NO_CHANGE) { return OK; } if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; QwaveAPI& qos(QwaveAPI::Get()); if (!qos.qwave_supported()) return ERROR_NOT_SUPPORTED; if (qos_handle_ == NULL) { QOS_VERSION version; version.MajorVersion = 1; version.MinorVersion = 0; qos.CreateHandle(&version, &qos_handle_); if (qos_handle_ == NULL) return ERROR_NOT_SUPPORTED; } QOS_TRAFFIC_TYPE traffic_type = QOSTrafficTypeBestEffort; switch (dscp) { case DSCP_CS0: traffic_type = QOSTrafficTypeBestEffort; break; case DSCP_CS1: traffic_type = QOSTrafficTypeBackground; break; case DSCP_AF11: case DSCP_AF12: case DSCP_AF13: case DSCP_CS2: case DSCP_AF21: case DSCP_AF22: case DSCP_AF23: case DSCP_CS3: case DSCP_AF31: case DSCP_AF32: case DSCP_AF33: case DSCP_CS4: traffic_type = QOSTrafficTypeExcellentEffort; break; case DSCP_AF41: case DSCP_AF42: case DSCP_AF43: case DSCP_CS5: traffic_type = QOSTrafficTypeAudioVideo; break; case DSCP_EF: case DSCP_CS6: traffic_type = QOSTrafficTypeVoice; break; case DSCP_CS7: traffic_type = QOSTrafficTypeControl; break; case DSCP_NO_CHANGE: NOTREACHED(); break; } if (qos_flow_id_ != 0) { qos.RemoveSocketFromFlow(qos_handle_, NULL, qos_flow_id_, 0); qos_flow_id_ = 0; } if (!qos.AddSocketToFlow(qos_handle_, socket_, NULL, traffic_type, QOS_NON_ADAPTIVE_FLOW, &qos_flow_id_)) { DWORD err = GetLastError(); if (err == ERROR_DEVICE_REINITIALIZATION_NEEDED) { qos.CloseHandle(qos_handle_); qos_flow_id_ = 0; qos_handle_ = 0; } return MapSystemError(err); } // This requires admin rights, and may fail, if so we ignore it // as AddSocketToFlow should still do *approximately* the right thing. DWORD buf = dscp; qos.SetFlow(qos_handle_, qos_flow_id_, QOSSetOutgoingDSCPValue, sizeof(buf), &buf, 0, NULL); return OK; } void UDPSocketWin::DetachFromThread() { base::NonThreadSafe::DetachFromThread(); } void UDPSocketWin::UseNonBlockingIO() { DCHECK(!core_); use_non_blocking_io_ = true; } } // namespace net