// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_URL_REQUEST_URL_REQUEST_JOB_H_ #define NET_URL_REQUEST_URL_REQUEST_JOB_H_ #include #include #include "base/memory/ref_counted.h" #include "base/memory/scoped_ptr.h" #include "base/memory/weak_ptr.h" #include "base/message_loop.h" #include "base/power_monitor/power_observer.h" #include "googleurl/src/gurl.h" #include "net/base/filter.h" #include "net/base/host_port_pair.h" #include "net/base/load_states.h" #include "net/base/net_export.h" #include "net/base/request_priority.h" #include "net/base/upload_progress.h" #include "net/cookies/canonical_cookie.h" namespace net { class AuthChallengeInfo; class AuthCredentials; class CookieOptions; class HttpRequestHeaders; class HttpResponseInfo; class IOBuffer; struct LoadTimingInfo; class NetworkDelegate; class SSLCertRequestInfo; class SSLInfo; class URLRequest; class UploadDataStream; class URLRequestStatus; class X509Certificate; class NET_EXPORT URLRequestJob : public base::RefCounted, public base::PowerObserver { public: explicit URLRequestJob(URLRequest* request, NetworkDelegate* network_delegate); // Returns the request that owns this job. THIS POINTER MAY BE NULL if the // request was destroyed. URLRequest* request() const { return request_; } // Sets the upload data, most requests have no upload data, so this is a NOP. // Job types supporting upload data will override this. virtual void SetUpload(UploadDataStream* upload_data_stream); // Sets extra request headers for Job types that support request // headers. Called once before Start() is called. virtual void SetExtraRequestHeaders(const HttpRequestHeaders& headers); // Sets the priority of the job. Called once before Start() is // called, but also when the priority of the parent request changes. virtual void SetPriority(RequestPriority priority); // If any error occurs while starting the Job, NotifyStartError should be // called. // This helps ensure that all errors follow more similar notification code // paths, which should simplify testing. virtual void Start() = 0; // This function MUST somehow call NotifyDone/NotifyCanceled or some requests // will get leaked. Certain callers use that message to know when they can // delete their URLRequest object, even when doing a cancel. The default // Kill implementation calls NotifyCanceled, so it is recommended that // subclasses call URLRequestJob::Kill() after doing any additional work. // // The job should endeavor to stop working as soon as is convenient, but must // not send and complete notifications from inside this function. Instead, // complete notifications (including "canceled") should be sent from a // callback run from the message loop. // // The job is not obliged to immediately stop sending data in response to // this call, nor is it obliged to fail with "canceled" unless not all data // was sent as a result. A typical case would be where the job is almost // complete and can succeed before the canceled notification can be // dispatched (from the message loop). // // The job should be prepared to receive multiple calls to kill it, but only // one notification must be issued. virtual void Kill(); // Called to detach the request from this Job. Results in the Job being // killed off eventually. The job must not use the request pointer any more. void DetachRequest(); // Called to read post-filtered data from this Job, returning the number of // bytes read, 0 when there is no more data, or -1 if there was an error. // This is just the backend for URLRequest::Read, see that function for // more info. bool Read(IOBuffer* buf, int buf_size, int* bytes_read); // Stops further caching of this request, if any. For more info, see // URLRequest::StopCaching(). virtual void StopCaching(); // Called to fetch the current load state for the job. virtual LoadState GetLoadState() const; // Called to get the upload progress in bytes. virtual UploadProgress GetUploadProgress() const; // Called to fetch the charset for this request. Only makes sense for some // types of requests. Returns true on success. Calling this on a type that // doesn't have a charset will return false. virtual bool GetCharset(std::string* charset); // Called to get response info. virtual void GetResponseInfo(HttpResponseInfo* info); // This returns the times when events actually occurred, rather than the time // each event blocked the request. See FixupLoadTimingInfo in url_request.h // for more information on the difference. virtual void GetLoadTimingInfo(LoadTimingInfo* load_timing_info) const; // Returns the cookie values included in the response, if applicable. // Returns true if applicable. // NOTE: This removes the cookies from the job, so it will only return // useful results once per job. virtual bool GetResponseCookies(std::vector* cookies); // Called to setup a stream filter for this request. An example of filter is // content encoding/decoding. // Subclasses should return the appropriate Filter, or NULL for no Filter. // This class takes ownership of the returned Filter. // // The default implementation returns NULL. virtual Filter* SetupFilter() const; // Called to determine if this response is a redirect. Only makes sense // for some types of requests. This method returns true if the response // is a redirect, and fills in the location param with the URL of the // redirect. The HTTP status code (e.g., 302) is filled into // |*http_status_code| to signify the type of redirect. // // The caller is responsible for following the redirect by setting up an // appropriate replacement Job. Note that the redirected location may be // invalid, the caller should be sure it can handle this. // // The default implementation inspects the response_info_. virtual bool IsRedirectResponse(GURL* location, int* http_status_code); // Called to determine if it is okay to redirect this job to the specified // location. This may be used to implement protocol-specific restrictions. // If this function returns false, then the URLRequest will fail // reporting ERR_UNSAFE_REDIRECT. virtual bool IsSafeRedirect(const GURL& location); // Called to determine if this response is asking for authentication. Only // makes sense for some types of requests. The caller is responsible for // obtaining the credentials passing them to SetAuth. virtual bool NeedsAuth(); // Fills the authentication info with the server's response. virtual void GetAuthChallengeInfo( scoped_refptr* auth_info); // Resend the request with authentication credentials. virtual void SetAuth(const AuthCredentials& credentials); // Display the error page without asking for credentials again. virtual void CancelAuth(); virtual void ContinueWithCertificate(X509Certificate* client_cert); // Continue processing the request ignoring the last error. virtual void ContinueDespiteLastError(); void FollowDeferredRedirect(); // Returns true if the Job is done producing response data and has called // NotifyDone on the request. bool is_done() const { return done_; } // Get/Set expected content size int64 expected_content_size() const { return expected_content_size_; } void set_expected_content_size(const int64& size) { expected_content_size_ = size; } // Whether we have processed the response for that request yet. bool has_response_started() const { return has_handled_response_; } // These methods are not applicable to all connections. virtual bool GetMimeType(std::string* mime_type) const; virtual int GetResponseCode() const; // Returns the socket address for the connection. // See url_request.h for details. virtual HostPortPair GetSocketAddress() const; // base::PowerObserver methods: // We invoke URLRequestJob::Kill on suspend (crbug.com/4606). virtual void OnSuspend() OVERRIDE; // Called after a NetworkDelegate has been informed that the URLRequest // will be destroyed. This is used to track that no pending callbacks // exist at destruction time of the URLRequestJob, unless they have been // canceled by an explicit NetworkDelegate::NotifyURLRequestDestroyed() call. virtual void NotifyURLRequestDestroyed(); protected: friend class base::RefCounted; virtual ~URLRequestJob(); // Notifies the job that a certificate is requested. void NotifyCertificateRequested(SSLCertRequestInfo* cert_request_info); // Notifies the job about an SSL certificate error. void NotifySSLCertificateError(const SSLInfo& ssl_info, bool fatal); // Delegates to URLRequest::Delegate. bool CanGetCookies(const CookieList& cookie_list) const; // Delegates to URLRequest::Delegate. bool CanSetCookie(const std::string& cookie_line, CookieOptions* options) const; // Notifies the job that headers have been received. void NotifyHeadersComplete(); // Notifies the request that the job has completed a Read operation. void NotifyReadComplete(int bytes_read); // Notifies the request that a start error has occurred. void NotifyStartError(const URLRequestStatus& status); // NotifyDone marks when we are done with a request. It is really // a glorified set_status, but also does internal state checking and // job tracking. It should be called once per request, when the job is // finished doing all IO. void NotifyDone(const URLRequestStatus& status); // Some work performed by NotifyDone must be completed on a separate task // so as to avoid re-entering the delegate. This method exists to perform // that work. void CompleteNotifyDone(); // Used as an asynchronous callback for Kill to notify the URLRequest // that we were canceled. void NotifyCanceled(); // Notifies the job the request should be restarted. // Should only be called if the job has not started a resposne. void NotifyRestartRequired(); // Called when the network delegate blocks or unblocks this request when // intercepting certain requests. void SetBlockedOnDelegate(); void SetUnblockedOnDelegate(); // Called to read raw (pre-filtered) data from this Job. // If returning true, data was read from the job. buf will contain // the data, and bytes_read will receive the number of bytes read. // If returning true, and bytes_read is returned as 0, there is no // additional data to be read. // If returning false, an error occurred or an async IO is now pending. // If async IO is pending, the status of the request will be // URLRequestStatus::IO_PENDING, and buf must remain available until the // operation is completed. See comments on URLRequest::Read for more // info. virtual bool ReadRawData(IOBuffer* buf, int buf_size, int *bytes_read); // Called to tell the job that a filter has successfully reached the end of // the stream. virtual void DoneReading(); // Informs the filter that data has been read into its buffer void FilteredDataRead(int bytes_read); // Reads filtered data from the request. Returns true if successful, // false otherwise. Note, if there is not enough data received to // return data, this call can issue a new async IO request under // the hood. bool ReadFilteredData(int *bytes_read); // Whether the response is being filtered in this job. // Only valid after NotifyHeadersComplete() has been called. bool HasFilter() { return filter_ != NULL; } // At or near destruction time, a derived class may request that the filters // be destroyed so that statistics can be gathered while the derived class is // still present to assist in calculations. This is used by URLRequestHttpJob // to get SDCH to emit stats. void DestroyFilters() { filter_.reset(); } // Provides derived classes with access to the request's network delegate. NetworkDelegate* network_delegate() { return network_delegate_; } // The status of the job. const URLRequestStatus GetStatus(); // Set the status of the job. void SetStatus(const URLRequestStatus& status); // The number of bytes read before passing to the filter. int prefilter_bytes_read() const { return prefilter_bytes_read_; } // The number of bytes read after passing through the filter. int postfilter_bytes_read() const { return postfilter_bytes_read_; } // Total number of bytes read from network (or cache) and typically handed // to filter to process. Used to histogram compression ratios, and error // recovery scenarios in filters. int64 filter_input_byte_count() const { return filter_input_byte_count_; } // The request that initiated this job. This value MAY BE NULL if the // request was released by DetachRequest(). URLRequest* request_; private: // When data filtering is enabled, this function is used to read data // for the filter. Returns true if raw data was read. Returns false if // an error occurred (or we are waiting for IO to complete). bool ReadRawDataForFilter(int *bytes_read); // Invokes ReadRawData and records bytes read if the read completes // synchronously. bool ReadRawDataHelper(IOBuffer* buf, int buf_size, int* bytes_read); // Called in response to a redirect that was not canceled to follow the // redirect. The current job will be replaced with a new job loading the // given redirect destination. void FollowRedirect(const GURL& location, int http_status_code); // Called after every raw read. If |bytes_read| is > 0, this indicates // a successful read of |bytes_read| unfiltered bytes. If |bytes_read| // is 0, this indicates that there is no additional data to read. If // |bytes_read| is < 0, an error occurred and no bytes were read. void OnRawReadComplete(int bytes_read); // Updates the profiling info and notifies observers that an additional // |bytes_read| unfiltered bytes have been read for this job. void RecordBytesRead(int bytes_read); // Called to query whether there is data available in the filter to be read // out. bool FilterHasData(); // Subclasses may implement this method to record packet arrival times. // The default implementation does nothing. virtual void UpdatePacketReadTimes(); // Custom handler for derived classes when the request is detached. virtual void OnDetachRequest() {} // Indicates that the job is done producing data, either it has completed // all the data or an error has been encountered. Set exclusively by // NotifyDone so that it is kept in sync with the request. bool done_; int prefilter_bytes_read_; int postfilter_bytes_read_; int64 filter_input_byte_count_; // The data stream filter which is enabled on demand. scoped_ptr filter_; // If the filter filled its output buffer, then there is a change that it // still has internal data to emit, and this flag is set. bool filter_needs_more_output_space_; // When we filter data, we receive data into the filter buffers. After // processing the filtered data, we return the data in the caller's buffer. // While the async IO is in progress, we save the user buffer here, and // when the IO completes, we fill this in. scoped_refptr filtered_read_buffer_; int filtered_read_buffer_len_; // We keep a pointer to the read buffer while asynchronous reads are // in progress, so we are able to pass those bytes to job observers. scoped_refptr raw_read_buffer_; // Used by HandleResponseIfNecessary to track whether we've sent the // OnResponseStarted callback and potentially redirect callbacks as well. bool has_handled_response_; // Expected content size int64 expected_content_size_; // Set when a redirect is deferred. GURL deferred_redirect_url_; int deferred_redirect_status_code_; // The network delegate to use with this request, if any. NetworkDelegate* network_delegate_; base::WeakPtrFactory weak_factory_; DISALLOW_COPY_AND_ASSIGN(URLRequestJob); }; } // namespace net #endif // NET_URL_REQUEST_URL_REQUEST_JOB_H_