// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/websockets/websocket_frame.h" #include #include #include "base/basictypes.h" #include "base/memory/aligned_memory.h" #include "net/base/net_errors.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace { TEST(WebSocketFrameHeaderTest, FrameLengths) { struct TestCase { const char* frame_header; size_t frame_header_length; uint64 frame_length; }; static const TestCase kTests[] = { { "\x81\x00", 2, GG_UINT64_C(0) }, { "\x81\x7D", 2, GG_UINT64_C(125) }, { "\x81\x7E\x00\x7E", 4, GG_UINT64_C(126) }, { "\x81\x7E\xFF\xFF", 4, GG_UINT64_C(0xFFFF) }, { "\x81\x7F\x00\x00\x00\x00\x00\x01\x00\x00", 10, GG_UINT64_C(0x10000) }, { "\x81\x7F\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 10, GG_UINT64_C(0x7FFFFFFFFFFFFFFF) } }; static const int kNumTests = arraysize(kTests); for (int i = 0; i < kNumTests; ++i) { WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); header.final = true; header.payload_length = kTests[i].frame_length; std::vector expected_output( kTests[i].frame_header, kTests[i].frame_header + kTests[i].frame_header_length); std::vector output(expected_output.size()); EXPECT_EQ(static_cast(expected_output.size()), WriteWebSocketFrameHeader( header, NULL, &output.front(), output.size())); EXPECT_EQ(expected_output, output); } } TEST(WebSocketFrameHeaderTest, FrameLengthsWithMasking) { static const char kMaskingKey[] = "\xDE\xAD\xBE\xEF"; static_assert( arraysize(kMaskingKey) - 1 == WebSocketFrameHeader::kMaskingKeyLength, "incorrect masking key size"); struct TestCase { const char* frame_header; size_t frame_header_length; uint64 frame_length; }; static const TestCase kTests[] = { { "\x81\x80\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(0) }, { "\x81\xFD\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(125) }, { "\x81\xFE\x00\x7E\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(126) }, { "\x81\xFE\xFF\xFF\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(0xFFFF) }, { "\x81\xFF\x00\x00\x00\x00\x00\x01\x00\x00\xDE\xAD\xBE\xEF", 14, GG_UINT64_C(0x10000) }, { "\x81\xFF\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xDE\xAD\xBE\xEF", 14, GG_UINT64_C(0x7FFFFFFFFFFFFFFF) } }; static const int kNumTests = arraysize(kTests); WebSocketMaskingKey masking_key; std::copy(kMaskingKey, kMaskingKey + WebSocketFrameHeader::kMaskingKeyLength, masking_key.key); for (int i = 0; i < kNumTests; ++i) { WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); header.final = true; header.masked = true; header.payload_length = kTests[i].frame_length; std::vector expected_output( kTests[i].frame_header, kTests[i].frame_header + kTests[i].frame_header_length); std::vector output(expected_output.size()); EXPECT_EQ(static_cast(expected_output.size()), WriteWebSocketFrameHeader( header, &masking_key, &output.front(), output.size())); EXPECT_EQ(expected_output, output); } } TEST(WebSocketFrameHeaderTest, FrameOpCodes) { struct TestCase { const char* frame_header; size_t frame_header_length; WebSocketFrameHeader::OpCode opcode; }; static const TestCase kTests[] = { { "\x80\x00", 2, WebSocketFrameHeader::kOpCodeContinuation }, { "\x81\x00", 2, WebSocketFrameHeader::kOpCodeText }, { "\x82\x00", 2, WebSocketFrameHeader::kOpCodeBinary }, { "\x88\x00", 2, WebSocketFrameHeader::kOpCodeClose }, { "\x89\x00", 2, WebSocketFrameHeader::kOpCodePing }, { "\x8A\x00", 2, WebSocketFrameHeader::kOpCodePong }, // These are undefined opcodes, but the builder should accept them anyway. { "\x83\x00", 2, 0x3 }, { "\x84\x00", 2, 0x4 }, { "\x85\x00", 2, 0x5 }, { "\x86\x00", 2, 0x6 }, { "\x87\x00", 2, 0x7 }, { "\x8B\x00", 2, 0xB }, { "\x8C\x00", 2, 0xC }, { "\x8D\x00", 2, 0xD }, { "\x8E\x00", 2, 0xE }, { "\x8F\x00", 2, 0xF } }; static const int kNumTests = arraysize(kTests); for (int i = 0; i < kNumTests; ++i) { WebSocketFrameHeader header(kTests[i].opcode); header.final = true; header.payload_length = 0; std::vector expected_output( kTests[i].frame_header, kTests[i].frame_header + kTests[i].frame_header_length); std::vector output(expected_output.size()); EXPECT_EQ(static_cast(expected_output.size()), WriteWebSocketFrameHeader( header, NULL, &output.front(), output.size())); EXPECT_EQ(expected_output, output); } } TEST(WebSocketFrameHeaderTest, FinalBitAndReservedBits) { struct TestCase { const char* frame_header; size_t frame_header_length; bool final; bool reserved1; bool reserved2; bool reserved3; }; static const TestCase kTests[] = { { "\x81\x00", 2, true, false, false, false }, { "\x01\x00", 2, false, false, false, false }, { "\xC1\x00", 2, true, true, false, false }, { "\xA1\x00", 2, true, false, true, false }, { "\x91\x00", 2, true, false, false, true }, { "\x71\x00", 2, false, true, true, true }, { "\xF1\x00", 2, true, true, true, true } }; static const int kNumTests = arraysize(kTests); for (int i = 0; i < kNumTests; ++i) { WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); header.final = kTests[i].final; header.reserved1 = kTests[i].reserved1; header.reserved2 = kTests[i].reserved2; header.reserved3 = kTests[i].reserved3; header.payload_length = 0; std::vector expected_output( kTests[i].frame_header, kTests[i].frame_header + kTests[i].frame_header_length); std::vector output(expected_output.size()); EXPECT_EQ(static_cast(expected_output.size()), WriteWebSocketFrameHeader( header, NULL, &output.front(), output.size())); EXPECT_EQ(expected_output, output); } } TEST(WebSocketFrameHeaderTest, InsufficientBufferSize) { struct TestCase { uint64 payload_length; bool masked; size_t expected_header_size; }; static const TestCase kTests[] = { { GG_UINT64_C(0), false, 2u }, { GG_UINT64_C(125), false, 2u }, { GG_UINT64_C(126), false, 4u }, { GG_UINT64_C(0xFFFF), false, 4u }, { GG_UINT64_C(0x10000), false, 10u }, { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), false, 10u }, { GG_UINT64_C(0), true, 6u }, { GG_UINT64_C(125), true, 6u }, { GG_UINT64_C(126), true, 8u }, { GG_UINT64_C(0xFFFF), true, 8u }, { GG_UINT64_C(0x10000), true, 14u }, { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), true, 14u } }; static const int kNumTests = arraysize(kTests); for (int i = 0; i < kNumTests; ++i) { WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); header.final = true; header.opcode = WebSocketFrameHeader::kOpCodeText; header.masked = kTests[i].masked; header.payload_length = kTests[i].payload_length; char dummy_buffer[14]; // Set an insufficient size to |buffer_size|. EXPECT_EQ( ERR_INVALID_ARGUMENT, WriteWebSocketFrameHeader( header, NULL, dummy_buffer, kTests[i].expected_header_size - 1)); } } TEST(WebSocketFrameTest, MaskPayload) { struct TestCase { const char* masking_key; uint64 frame_offset; const char* input; const char* output; size_t data_length; }; static const TestCase kTests[] = { { "\xDE\xAD\xBE\xEF", 0, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 }, { "\xDE\xAD\xBE\xEF", 1, "FooBar", "\xEB\xD1\x80\x9C\xCC\xCC", 6 }, { "\xDE\xAD\xBE\xEF", 2, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 }, { "\xDE\xAD\xBE\xEF", 3, "FooBar", "\xA9\xB1\xC2\xFC\x8E\xAC", 6 }, { "\xDE\xAD\xBE\xEF", 4, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 }, { "\xDE\xAD\xBE\xEF", 42, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 }, { "\xDE\xAD\xBE\xEF", 0, "", "", 0 }, { "\xDE\xAD\xBE\xEF", 0, "\xDE\xAD\xBE\xEF", "\x00\x00\x00\x00", 4 }, { "\xDE\xAD\xBE\xEF", 0, "\x00\x00\x00\x00", "\xDE\xAD\xBE\xEF", 4 }, { "\x00\x00\x00\x00", 0, "FooBar", "FooBar", 6 }, { "\xFF\xFF\xFF\xFF", 0, "FooBar", "\xB9\x90\x90\xBD\x9E\x8D", 6 }, }; static const int kNumTests = arraysize(kTests); for (int i = 0; i < kNumTests; ++i) { WebSocketMaskingKey masking_key; std::copy(kTests[i].masking_key, kTests[i].masking_key + WebSocketFrameHeader::kMaskingKeyLength, masking_key.key); std::vector frame_data(kTests[i].input, kTests[i].input + kTests[i].data_length); std::vector expected_output(kTests[i].output, kTests[i].output + kTests[i].data_length); MaskWebSocketFramePayload(masking_key, kTests[i].frame_offset, frame_data.empty() ? NULL : &frame_data.front(), frame_data.size()); EXPECT_EQ(expected_output, frame_data); } } // Check that all combinations of alignment, frame offset and chunk size work // correctly for MaskWebSocketFramePayload(). This is mainly used to ensure that // vectorisation optimisations don't break anything. We could take a "white box" // approach and only test the edge cases, but since the exhaustive "black box" // approach runs in acceptable time, we don't have to take the risk of being // clever. // // This brute-force approach runs in O(N^3) time where N is the size of the // maximum vector size we want to test again. This might need reconsidering if // MaskWebSocketFramePayload() is ever optimised for a dedicated vector // architecture. TEST(WebSocketFrameTest, MaskPayloadAlignment) { // This reflects what might be implemented in the future, rather than // the current implementation. FMA3 and FMA4 support 256-bit vector ops. static const size_t kMaxVectorSizeInBits = 256; static const size_t kMaxVectorSize = kMaxVectorSizeInBits / 8; static const size_t kMaxVectorAlignment = kMaxVectorSize; static const size_t kMaskingKeyLength = WebSocketFrameHeader::kMaskingKeyLength; static const size_t kScratchBufferSize = kMaxVectorAlignment + kMaxVectorSize * 2; static const char kTestMask[] = "\xd2\xba\x5a\xbe"; // We use 786 bits of random input to reduce the risk of correlated errors. static const char kTestInput[] = { "\x3d\x77\x1d\x1b\x19\x8c\x48\xa3\x19\x6d\xf7\xcc\x39\xe7\x57\x0b" "\x69\x8c\xda\x4b\xfc\xac\x2c\xd3\x49\x96\x6e\x8a\x7b\x5a\x32\x76" "\xd0\x11\x43\xa0\x89\xfc\x76\x2b\x10\x2f\x4c\x7b\x4f\xa6\xdd\xe4" "\xfc\x8e\xd8\x72\xcf\x7e\x37\xcd\x31\xcd\xc1\xc0\x89\x0c\xa7\x4c" "\xda\xa8\x4b\x75\xa1\xcb\xa9\x77\x19\x4d\x6e\xdf\xc8\x08\x1c\xb6" "\x6d\xfb\x38\x04\x44\xd5\xba\x57\x9f\x76\xb0\x2e\x07\x91\xe6\xa8" }; static const size_t kTestInputSize = arraysize(kTestInput) - 1; static const char kTestOutput[] = { "\xef\xcd\x47\xa5\xcb\x36\x12\x1d\xcb\xd7\xad\x72\xeb\x5d\x0d\xb5" "\xbb\x36\x80\xf5\x2e\x16\x76\x6d\x9b\x2c\x34\x34\xa9\xe0\x68\xc8" "\x02\xab\x19\x1e\x5b\x46\x2c\x95\xc2\x95\x16\xc5\x9d\x1c\x87\x5a" "\x2e\x34\x82\xcc\x1d\xc4\x6d\x73\xe3\x77\x9b\x7e\x5b\xb6\xfd\xf2" "\x08\x12\x11\xcb\x73\x71\xf3\xc9\xcb\xf7\x34\x61\x1a\xb2\x46\x08" "\xbf\x41\x62\xba\x96\x6f\xe0\xe9\x4d\xcc\xea\x90\xd5\x2b\xbc\x16" }; static_assert(arraysize(kTestInput) == arraysize(kTestOutput), "output and input arrays should have the same length"); scoped_ptr scratch( static_cast( base::AlignedAlloc(kScratchBufferSize, kMaxVectorAlignment))); WebSocketMaskingKey masking_key; std::copy(kTestMask, kTestMask + kMaskingKeyLength, masking_key.key); for (size_t frame_offset = 0; frame_offset < kMaskingKeyLength; ++frame_offset) { for (size_t alignment = 0; alignment < kMaxVectorAlignment; ++alignment) { char* const aligned_scratch = scratch.get() + alignment; const size_t aligned_len = std::min(kScratchBufferSize - alignment, kTestInputSize - frame_offset); for (size_t chunk_size = 1; chunk_size < kMaxVectorSize; ++chunk_size) { memcpy(aligned_scratch, kTestInput + frame_offset, aligned_len); for (size_t chunk_start = 0; chunk_start < aligned_len; chunk_start += chunk_size) { const size_t this_chunk_size = std::min(chunk_size, aligned_len - chunk_start); MaskWebSocketFramePayload(masking_key, frame_offset + chunk_start, aligned_scratch + chunk_start, this_chunk_size); } // Stop the test if it fails, since we don't want to spew thousands of // failures. ASSERT_TRUE(std::equal(aligned_scratch, aligned_scratch + aligned_len, kTestOutput + frame_offset)) << "Output failed to match for frame_offset=" << frame_offset << ", alignment=" << alignment << ", chunk_size=" << chunk_size; } } } } // "IsKnownDataOpCode" is currently implemented in an "obviously correct" // manner, but we test is anyway in case it changes to a more complex // implementation in future. TEST(WebSocketFrameHeaderTest, IsKnownDataOpCode) { // Make the test less verbose. typedef WebSocketFrameHeader Frame; // Known opcode, is used for data frames EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeContinuation)); EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeText)); EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeBinary)); // Known opcode, is used for control frames EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeClose)); EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePing)); EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePong)); // Check that unused opcodes return false EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused)); EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnused)); // Check that opcodes with the 4 bit set return false EXPECT_FALSE(Frame::IsKnownDataOpCode(0x6)); EXPECT_FALSE(Frame::IsKnownDataOpCode(0xF)); // Check that out-of-range opcodes return false EXPECT_FALSE(Frame::IsKnownDataOpCode(-1)); EXPECT_FALSE(Frame::IsKnownDataOpCode(0xFF)); } // "IsKnownControlOpCode" is implemented in an "obviously correct" manner but // might be optimised in future. TEST(WebSocketFrameHeaderTest, IsKnownControlOpCode) { // Make the test less verbose. typedef WebSocketFrameHeader Frame; // Known opcode, is used for data frames EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeContinuation)); EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeText)); EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeBinary)); // Known opcode, is used for control frames EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodeClose)); EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePing)); EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePong)); // Check that unused opcodes return false EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused)); EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnused)); // Check that opcodes with the 4 bit set return false EXPECT_FALSE(Frame::IsKnownControlOpCode(0x6)); EXPECT_FALSE(Frame::IsKnownControlOpCode(0xF)); // Check that out-of-range opcodes return false EXPECT_FALSE(Frame::IsKnownControlOpCode(-1)); EXPECT_FALSE(Frame::IsKnownControlOpCode(0xFF)); } } // namespace } // namespace net