/* * Copyright 2009, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @fileoverview This file contains matrix/vector math functions. * It adds them to the "math" module on the o3djs object. * * o3djs.math supports a row-major and a column-major mode. In both * modes, vectors are stored as arrays of numbers, and matrices are stored as * arrays of arrays of numbers. * * In row-major mode: * * - Rows of a matrix are sub-arrays. * - Individual entries of a matrix M get accessed in M[row][column] fashion. * - Tuples of coordinates are interpreted as row-vectors. * - A vector v gets transformed by a matrix M by multiplying in the order v*M. * * In column-major mode: * * - Columns of a matrix are sub-arrays. * - Individual entries of a matrix M get accessed in M[column][row] fashion. * - Tuples of coordinates are interpreted as column-vectors. * - A matrix M transforms a vector v by multiplying in the order M*v. * * When a function in o3djs.math requires separate row-major and * column-major versions, a function with the same name gets added to each of * the namespaces o3djs.math.rowMajor and o3djs.math.columnMajor. The * function installRowMajorFunctions() or the function * installColumnMajorFunctions() should get called during initialization to * establish the mode. installRowMajorFunctions() works by iterating through * the o3djs.math.rowMajor namespace and for each function foo, setting * o3djs.math.foo equal to o3djs.math.rowMajor.foo. * installRowMajorFunctions() works the same way, iterating over the columnMajor * namespace. At the end of this file, we call installRowMajorFunctions(). * * Switching modes changes two things. It changes how a matrix is encoded as an * array, and it changes how the entries of a matrix get interpreted. Because * those two things change together, the matrix representing a given * transformation of space is the same JavaScript object in either mode. * One consequence of this is that very few functions require separate row-major * and column-major versions. Typically, a function requires separate versions * only if it makes matrix multiplication order explicit, like * mulMatrixMatrix(), mulMatrixVector(), or mulVectorMatrix(). Functions which * create a new matrix, like scaling(), rotationZYX(), and translation() return * the same JavaScript object in either mode, and functions which implicitly * multiply like scale(), rotateZYX() and translate() modify the matrix in the * same way in either mode. * * The convention choice made for math functions in this library is independent * of the convention choice for how matrices get loaded into shaders. That * convention is determined on a per-shader basis. * * Other utilities in o3djs should avoid making calls to functions that make * multiplication order explicit. Instead they should appeal to functions like: * * o3djs.math.matrix4.transformPoint * o3djs.math.matrix4.transformDirection * o3djs.math.matrix4.transformNormal * o3djs.math.matrix4.transformVector4 * o3djs.math.matrix4.composition * o3djs.math.matrix4.compose * * These functions multiply matrices implicitly and internally choose the * multiplication order to get the right result. That way, utilities which use * o3djs.math work in either major mode. Note that this does not necessarily * mean all sample code will work even if a line is added which switches major * modes, but it does mean that calls to o3djs still do what they are supposed * to. * */ o3djs.provide('o3djs.math'); /** * A module for math for o3djs.math. * @namespace */ o3djs.math = o3djs.math || {}; /** * A random seed for the pseudoRandom function. * @private * @type {number} */ o3djs.math.randomSeed_ = 0; /** * A constant for the pseudoRandom function * @private * @type {number} */ o3djs.math.RANDOM_RANGE_ = Math.pow(2, 32); /** * Functions which deal with 4-by-4 transformation matrices are kept in their * own namespsace. * @namespace */ o3djs.math.matrix4 = o3djs.math.matrix4 || {}; /** * Functions that are specifically row major are kept in their own namespace. * @namespace */ o3djs.math.rowMajor = o3djs.math.rowMajor || {}; /** * Functions that are specifically column major are kept in their own namespace. * @namespace */ o3djs.math.columnMajor = o3djs.math.columnMajor || {}; /** * Functions that do error checking are stored in their own namespace. * @namespace */ o3djs.math.errorCheck = o3djs.math.errorCheck || {}; /** * Functions that do no error checking and have a separate version that does in * o3djs.math.errorCheck are stored in their own namespace. * @namespace */ o3djs.math.errorCheckFree = o3djs.math.errorCheckFree || {}; /** * An Array of 2 floats * @type {(!Array.|!o3d.Float2)} */ o3djs.math.Vector2 = goog.typedef; /** * An Array of 3 floats * @type {(!Array.|!o3d.Float3)} */ o3djs.math.Vector3 = goog.typedef; /** * An Array of 4 floats * @type {(!Array.|!o3d.Float4)} */ o3djs.math.Vector4 = goog.typedef; /** * An Array of floats. * @type {!Array.} */ o3djs.math.Vector = goog.typedef; /** * A 1x1 Matrix of floats * @type {!Array.>} */ o3djs.math.Matrix1 = goog.typedef; /** * A 2x2 Matrix of floats * @type {!Array.>} */ o3djs.math.Matrix2 = goog.typedef; /** * A 3x3 Matrix of floats * @type {!Array.>} */ o3djs.math.Matrix3 = goog.typedef; /** * A 4x4 Matrix of floats * @type {(!Array.>|!o3d.Matrix4)} */ o3djs.math.Matrix4 = goog.typedef; /** * A arbitrary size Matrix of floats * @type {(!Array.>|!o3d.Matrix4)} */ o3djs.math.Matrix = goog.typedef; /** * Returns a deterministic pseudorandom number between 0 and 1 * @return {number} a random number between 0 and 1 */ o3djs.math.pseudoRandom = function() { var math = o3djs.math; return (math.randomSeed_ = (134775813 * math.randomSeed_ + 1) % math.RANDOM_RANGE_) / math.RANDOM_RANGE_; }; /** * Resets the pseudoRandom function sequence. */ o3djs.math.resetPseudoRandom = function() { o3djs.math.randomSeed_ = 0; }; /** * Converts degrees to radians. * @param {number} degrees A value in degrees. * @return {number} the value in radians. */ o3djs.math.degToRad = function(degrees) { return degrees * Math.PI / 180; }; /** * Converts radians to degrees. * @param {number} radians A value in radians. * @return {number} the value in degrees. */ o3djs.math.radToDeg = function(radians) { return radians * 180 / Math.PI; }; /** * Performs linear interpolation on two scalars. * Given scalars a and b and interpolation coefficient t, returns * (1 - t) * a + t * b. * @param {number} a Operand scalar. * @param {number} b Operand scalar. * @param {number} t Interpolation coefficient. * @return {number} The weighted sum of a and b. */ o3djs.math.lerpScalar = function(a, b, t) { return (1 - t) * a + t * b; }; /** * Adds two vectors; assumes a and b have the same dimension. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {!o3djs.math.Vector} The sum of a and b. */ o3djs.math.addVector = function(a, b) { var r = []; var aLength = a.length; for (var i = 0; i < aLength; ++i) r[i] = a[i] + b[i]; return r; }; /** * Subtracts two vectors. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {!o3djs.math.Vector} The difference of a and b. */ o3djs.math.subVector = function(a, b) { var r = []; var aLength = a.length; for (var i = 0; i < aLength; ++i) r[i] = a[i] - b[i]; return r; }; /** * Performs linear interpolation on two vectors. * Given vectors a and b and interpolation coefficient t, returns * (1 - t) * a + t * b. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @param {number} t Interpolation coefficient. * @return {!o3djs.math.Vector} The weighted sum of a and b. */ o3djs.math.lerpVector = function(a, b, t) { var r = []; var aLength = a.length; for (var i = 0; i < aLength; ++i) r[i] = (1 - t) * a[i] + t * b[i]; return r; }; /** * Clamps a value between 0 and range using a modulo. * @param {number} v Value to clamp mod. * @param {number} range Range to clamp to. * @param {number} opt_rangeStart start of range. Default = 0. * @return {number} Clamp modded value. */ o3djs.math.modClamp = function(v, range, opt_rangeStart) { var start = opt_rangeStart || 0; if (range < 0.00001) { return start; } v -= start; if (v < 0) { v -= Math.floor(v / range) * range; } else { v = v % range; } return v + start; }; /** * Lerps in a circle. * Does a lerp between a and b but inside range so for example if * range is 100, a is 95 and b is 5 lerping will go in the positive direction. * @param {number} a Start value. * @param {number} b Target value. * @param {number} t Amount to lerp (0 to 1). * @param {number} range Range of circle. * @return {number} lerped result. */ o3djs.math.lerpCircular = function(a, b, t, range) { a = o3djs.math.modClamp(a, range); b = o3djs.math.modClamp(b, range); var delta = b - a; if (Math.abs(delta) > range * 0.5) { if (delta > 0) { b -= range; } else { b += range; } } return o3djs.math.modClamp(o3djs.math.lerpScalar(a, b, t), range); }; /** * Lerps radians. * @param {number} a Start value. * @param {number} b Target value. * @param {number} t Amount to lerp (0 to 1). * @return {number} lerped result. */ o3djs.math.lerpRadian = function(a, b, t) { return o3djs.math.lerpCircular(a, b, t, Math.PI * 2); }; /** * Divides a vector by a scalar. * @param {!o3djs.math.Vector} v The vector. * @param {number} k The scalar. * @return {!o3djs.math.Vector} v The vector v divided by k. */ o3djs.math.divVectorScalar = function(v, k) { var r = []; var vLength = v.length; for (var i = 0; i < vLength; ++i) r[i] = v[i] / k; return r; }; /** * Computes the dot product of two vectors; assumes that a and b have * the same dimension. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {number} The dot product of a and b. */ o3djs.math.dot = function(a, b) { var r = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) r += a[i] * b[i]; return r; }; /** * Computes the cross product of two vectors; assumes both vectors have * three entries. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {!o3djs.math.Vector} The vector a cross b. */ o3djs.math.cross = function(a, b) { return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]]; }; /** * Computes the Euclidean length of a vector, i.e. the square root of the * sum of the squares of the entries. * @param {!o3djs.math.Vector} a The vector. * @return {number} The length of a. */ o3djs.math.length = function(a) { var r = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) r += a[i] * a[i]; return Math.sqrt(r); }; /** * Computes the square of the Euclidean length of a vector, i.e. the sum * of the squares of the entries. * @param {!o3djs.math.Vector} a The vector. * @return {number} The square of the length of a. */ o3djs.math.lengthSquared = function(a) { var r = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) r += a[i] * a[i]; return r; }; /** * Computes the Euclidean distance between two vectors. * @param {!o3djs.math.Vector} a A vector. * @param {!o3djs.math.Vector} b A vector. * @return {number} The distance between a and b. */ o3djs.math.distance = function(a, b) { var r = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) { var t = a[i] - b[i]; r += t * t; } return Math.sqrt(r); }; /** * Computes the square of the Euclidean distance between two vectors. * @param {!o3djs.math.Vector} a A vector. * @param {!o3djs.math.Vector} b A vector. * @return {number} The distance between a and b. */ o3djs.math.distanceSquared = function(a, b) { var r = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) { var t = a[i] - b[i]; r += t * t; } return r; }; /** * Divides a vector by its Euclidean length and returns the quotient. * @param {!o3djs.math.Vector} a The vector. * @return {!o3djs.math.Vector} The normalized vector. */ o3djs.math.normalize = function(a) { var r = []; var n = 0.0; var aLength = a.length; for (var i = 0; i < aLength; ++i) n += a[i] * a[i]; n = Math.sqrt(n); for (var i = 0; i < aLength; ++i) r[i] = a[i] / n; return r; }; /** * Adds two matrices; assumes a and b are the same size. * @param {!o3djs.math.Matrix} a Operand matrix. * @param {!o3djs.math.Matrix} b Operand matrix. * @return {!o3djs.math.Matrix} The sum of a and b. */ o3djs.math.addMatrix = function(a, b) { var r = []; var aLength = a.length; var a0Length = a[0].length; for (var i = 0; i < aLength; ++i) { var row = []; var ai = a[i]; var bi = b[i]; for (var j = 0; j < a0Length; ++j) row[j] = ai[j] + bi[j]; r[i] = row; } return r; }; /** * Subtracts two matrices; assumes a and b are the same size. * @param {!o3djs.math.Matrix} a Operand matrix. * @param {!o3djs.math.Matrix} b Operand matrix. * @return {!o3djs.math.Matrix} The sum of a and b. */ o3djs.math.subMatrix = function(a, b) { var r = []; var aLength = a.length; var a0Length = a[0].length; for (var i = 0; i < aLength; ++i) { var row = []; var ai = a[i]; var bi = b[i]; for (var j = 0; j < a0Length; ++j) row[j] = ai[j] - bi[j]; r[i] = row; } return r; }; /** * Performs linear interpolation on two matrices. * Given matrices a and b and interpolation coefficient t, returns * (1 - t) * a + t * b. * @param {!o3djs.math.Matrix} a Operand matrix. * @param {!o3djs.math.Matrix} b Operand matrix. * @param {number} t Interpolation coefficient. * @return {!o3djs.math.Matrix} The weighted of a and b. */ o3djs.math.lerpMatrix = function(a, b, t) { var r = []; var aLength = a.length; var a0Length = a[0].length; for (var i = 0; i < aLength; ++i) { var row = []; var ai = a[i]; var bi = b[i]; for (var j = 0; j < a0Length; ++j) row[j] = (1 - t) * ai[j] + t * bi[j]; r[i] = row; } return r; }; /** * Divides a matrix by a scalar. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} k The scalar. * @return {!o3djs.math.Matrix} The matrix m divided by k. */ o3djs.math.divMatrixScalar = function(m, k) { var r = []; var mLength = m.length; var m0Length = m[0].length; for (var i = 0; i < mLength; ++i) { r[i] = []; for (var j = 0; j < m0Length; ++j) r[i][j] = m[i][j] / k; } return r; }; /** * Negates a scalar. * @param {number} a The scalar. * @return {number} -a. */ o3djs.math.negativeScalar = function(a) { return -a; }; /** * Negates a vector. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} -v. */ o3djs.math.negativeVector = function(v) { var r = []; var vLength = v.length; for (var i = 0; i < vLength; ++i) { r[i] = -v[i]; } return r; }; /** * Negates a matrix. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} -m. */ o3djs.math.negativeMatrix = function(m) { var r = []; var mLength = m.length; var m0Length = m[0].length; for (var i = 0; i < mLength; ++i) { r[i] = []; for (var j = 0; j < m0Length; ++j) r[i][j] = -m[i][j]; } return r; }; /** * Copies a scalar. * @param {number} a The scalar. * @return {number} a. */ o3djs.math.copyScalar = function(a) { return a; }; /** * Copies a vector. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} A copy of v. */ o3djs.math.copyVector = function(v) { var r = []; for (var i = 0; i < v.length; i++) r[i] = v[i]; return r; }; /** * Copies a matrix. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} A copy of m. */ o3djs.math.copyMatrix = function(m) { var r = []; var mLength = m.length; for (var i = 0; i < mLength; ++i) { r[i] = []; for (var j = 0; j < m[i].length; j++) { r[i][j] = m[i][j]; } } return r; }; /** * Returns the elements of a matrix as a one-dimensional array. The * rows or columns (depending on whether the matrix is row-major or * column-major) are concatenated. * @param {!o3djs.math.Matrix} m The matrix. * @return {!Array.} The matrix's elements as a one-dimensional array. */ o3djs.math.getMatrixElements = function(m) { var r = []; var mLength = m.length; var k = 0; for (var i = 0; i < mLength; i++) { for (var j = 0; j < m[i].length; j++) { r[k++] = m[i][j]; } } return r; }; /** * Multiplies two scalars. * @param {number} a Operand scalar. * @param {number} b Operand scalar. * @return {number} The product of a and b. */ o3djs.math.mulScalarScalar = function(a, b) { return a * b; }; /** * Multiplies a scalar by a vector. * @param {number} k The scalar. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} The product of k and v. */ o3djs.math.mulScalarVector = function(k, v) { var r = []; var vLength = v.length; for (var i = 0; i < vLength; ++i) { r[i] = k * v[i]; } return r; }; /** * Multiplies a vector by a scalar. * @param {!o3djs.math.Vector} v The vector. * @param {number} k The scalar. * @return {!o3djs.math.Vector} The product of k and v. */ o3djs.math.mulVectorScalar = function(v, k) { return o3djs.math.mulScalarVector(k, v); }; /** * Multiplies a scalar by a matrix. * @param {number} k The scalar. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} The product of m and k. */ o3djs.math.mulScalarMatrix = function(k, m) { var r = []; var mLength = m.length; var m0Length = m[0].length; for (var i = 0; i < mLength; ++i) { r[i] = []; for (var j = 0; j < m0Length; ++j) r[i][j] = k * m[i][j]; } return r; }; /** * Multiplies a matrix by a scalar. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} k The scalar. * @return {!o3djs.math.Matrix} The product of m and k. */ o3djs.math.mulMatrixScalar = function(m, k) { return o3djs.math.mulScalarMatrix(k, m); }; /** * Multiplies a vector by another vector (component-wise); assumes a and * b have the same length. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {!o3djs.math.Vector} The vector of products of entries of a and * b. */ o3djs.math.mulVectorVector = function(a, b) { var r = []; var aLength = a.length; for (var i = 0; i < aLength; ++i) r[i] = a[i] * b[i]; return r; }; /** * Divides a vector by another vector (component-wise); assumes a and * b have the same length. * @param {!o3djs.math.Vector} a Operand vector. * @param {!o3djs.math.Vector} b Operand vector. * @return {!o3djs.math.Vector} The vector of quotients of entries of a and * b. */ o3djs.math.divVectorVector = function(a, b) { var r = []; var aLength = a.length; for (var i = 0; i < aLength; ++i) r[i] = a[i] / b[i]; return r; }; /** * Multiplies a vector by a matrix; treats the vector as a row vector; assumes * matrix entries are accessed in [row][column] fashion. * @param {!o3djs.math.Vector} v The vector. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Vector} The product of v and m as a row vector. */ o3djs.math.rowMajor.mulVectorMatrix = function(v, m) { var r = []; var m0Length = m[0].length; var vLength = v.length; for (var i = 0; i < m0Length; ++i) { r[i] = 0.0; for (var j = 0; j < vLength; ++j) r[i] += v[j] * m[j][i]; } return r; }; /** * Multiplies a vector by a matrix; treats the vector as a row vector; assumes * matrix entries are accessed in [column][row] fashion. * @param {!o3djs.math.Vector} v The vector. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Vector} The product of v and m as a row vector. */ o3djs.math.columnMajor.mulVectorMatrix = function(v, m) { var r = []; var mLength = m.length; var vLength = v.length; for (var i = 0; i < mLength; ++i) { r[i] = 0.0; var column = m[i]; for (var j = 0; j < vLength; ++j) r[i] += v[j] * column[j]; } return r; }; /** * Multiplies a vector by a matrix; treats the vector as a row vector. * @param {!o3djs.math.Matrix} m The matrix. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} The product of m and v as a row vector. */ o3djs.math.mulVectorMatrix = null; /** * Multiplies a matrix by a vector; treats the vector as a column vector. * assumes matrix entries are accessed in [row][column] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} The product of m and v as a column vector. */ o3djs.math.rowMajor.mulMatrixVector = function(m, v) { var r = []; var mLength = m.length; var m0Length = m[0].length; for (var i = 0; i < mLength; ++i) { r[i] = 0.0; var row = m[i]; for (var j = 0; j < m0Length; ++j) r[i] += row[j] * v[j]; } return r; }; /** * Multiplies a matrix by a vector; treats the vector as a column vector; * assumes matrix entries are accessed in [column][row] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} The product of m and v as a column vector. */ o3djs.math.columnMajor.mulMatrixVector = function(m, v) { var r = []; var m0Length = m[0].length; var vLength = v.length; for (var i = 0; i < m0Length; ++i) { r[i] = 0.0; for (var j = 0; j < vLength; ++j) r[i] += v[j] * m[j][i]; } return r; }; /** * Multiplies a matrix by a vector; treats the vector as a column vector. * @param {!o3djs.math.Matrix} m The matrix. * @param {!o3djs.math.Vector} v The vector. * @return {!o3djs.math.Vector} The product of m and v as a column vector. */ o3djs.math.mulMatrixVector = null; /** * Multiplies two 2-by-2 matrices; assumes that the given matrices are 2-by-2; * assumes matrix entries are accessed in [row][column] fashion. * @param {!o3djs.math.Matrix2} a The matrix on the left. * @param {!o3djs.math.Matrix2} b The matrix on the right. * @return {!o3djs.math.Matrix2} The matrix product of a and b. */ o3djs.math.rowMajor.mulMatrixMatrix2 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var b0 = b[0]; var b1 = b[1]; var a00 = a0[0]; var a01 = a0[1]; var a10 = a1[0]; var a11 = a1[1]; var b00 = b0[0]; var b01 = b0[1]; var b10 = b1[0]; var b11 = b1[1]; return [[a00 * b00 + a01 * b10, a00 * b01 + a01 * b11], [a10 * b00 + a11 * b10, a10 * b01 + a11 * b11]]; }; /** * Multiplies two 2-by-2 matrices; assumes that the given matrices are 2-by-2; * assumes matrix entries are accessed in [column][row] fashion. * @param {!o3djs.math.Matrix2} a The matrix on the left. * @param {!o3djs.math.Matrix2} b The matrix on the right. * @return {!o3djs.math.Matrix2} The matrix product of a and b. */ o3djs.math.columnMajor.mulMatrixMatrix2 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var b0 = b[0]; var b1 = b[1]; var a00 = a0[0]; var a01 = a0[1]; var a10 = a1[0]; var a11 = a1[1]; var b00 = b0[0]; var b01 = b0[1]; var b10 = b1[0]; var b11 = b1[1]; return [[a00 * b00 + a10 * b01, a01 * b00 + a11 * b01], [a00 * b10 + a10 * b11, a01 * b10 + a11 * b11]]; }; /** * Multiplies two 2-by-2 matrices. * @param {!o3djs.math.Matrix2} a The matrix on the left. * @param {!o3djs.math.Matrix2} b The matrix on the right. * @return {!o3djs.math.Matrix2} The matrix product of a and b. */ o3djs.math.mulMatrixMatrix2 = null; /** * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3; * assumes matrix entries are accessed in [row][column] fashion. * @param {!o3djs.math.Matrix3} a The matrix on the left. * @param {!o3djs.math.Matrix3} b The matrix on the right. * @return {!o3djs.math.Matrix3} The matrix product of a and b. */ o3djs.math.rowMajor.mulMatrixMatrix3 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; return [[a00 * b00 + a01 * b10 + a02 * b20, a00 * b01 + a01 * b11 + a02 * b21, a00 * b02 + a01 * b12 + a02 * b22], [a10 * b00 + a11 * b10 + a12 * b20, a10 * b01 + a11 * b11 + a12 * b21, a10 * b02 + a11 * b12 + a12 * b22], [a20 * b00 + a21 * b10 + a22 * b20, a20 * b01 + a21 * b11 + a22 * b21, a20 * b02 + a21 * b12 + a22 * b22]]; }; /** * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3; * assumes matrix entries are accessed in [column][row] fashion. * @param {!o3djs.math.Matrix3} a The matrix on the left. * @param {!o3djs.math.Matrix3} b The matrix on the right. * @return {!o3djs.math.Matrix3} The matrix product of a and b. */ o3djs.math.columnMajor.mulMatrixMatrix3 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; return [[a00 * b00 + a10 * b01 + a20 * b02, a01 * b00 + a11 * b01 + a21 * b02, a02 * b00 + a12 * b01 + a22 * b02], [a00 * b10 + a10 * b11 + a20 * b12, a01 * b10 + a11 * b11 + a21 * b12, a02 * b10 + a12 * b11 + a22 * b12], [a00 * b20 + a10 * b21 + a20 * b22, a01 * b20 + a11 * b21 + a21 * b22, a02 * b20 + a12 * b21 + a22 * b22]]; }; /** * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3. * @param {!o3djs.math.Matrix3} a The matrix on the left. * @param {!o3djs.math.Matrix3} b The matrix on the right. * @return {!o3djs.math.Matrix3} The matrix product of a and b. */ o3djs.math.mulMatrixMatrix3 = null; /** * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4; * assumes matrix entries are accessed in [row][column] fashion. * @param {!o3djs.math.Matrix4} a The matrix on the left. * @param {!o3djs.math.Matrix4} b The matrix on the right. * @return {!o3djs.math.Matrix4} The matrix product of a and b. */ o3djs.math.rowMajor.mulMatrixMatrix4 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var a3 = a[3]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var b3 = b[3]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a03 = a0[3]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a13 = a1[3]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var a23 = a2[3]; var a30 = a3[0]; var a31 = a3[1]; var a32 = a3[2]; var a33 = a3[3]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b03 = b0[3]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b13 = b1[3]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; var b23 = b2[3]; var b30 = b3[0]; var b31 = b3[1]; var b32 = b3[2]; var b33 = b3[3]; return [[a00 * b00 + a01 * b10 + a02 * b20 + a03 * b30, a00 * b01 + a01 * b11 + a02 * b21 + a03 * b31, a00 * b02 + a01 * b12 + a02 * b22 + a03 * b32, a00 * b03 + a01 * b13 + a02 * b23 + a03 * b33], [a10 * b00 + a11 * b10 + a12 * b20 + a13 * b30, a10 * b01 + a11 * b11 + a12 * b21 + a13 * b31, a10 * b02 + a11 * b12 + a12 * b22 + a13 * b32, a10 * b03 + a11 * b13 + a12 * b23 + a13 * b33], [a20 * b00 + a21 * b10 + a22 * b20 + a23 * b30, a20 * b01 + a21 * b11 + a22 * b21 + a23 * b31, a20 * b02 + a21 * b12 + a22 * b22 + a23 * b32, a20 * b03 + a21 * b13 + a22 * b23 + a23 * b33], [a30 * b00 + a31 * b10 + a32 * b20 + a33 * b30, a30 * b01 + a31 * b11 + a32 * b21 + a33 * b31, a30 * b02 + a31 * b12 + a32 * b22 + a33 * b32, a30 * b03 + a31 * b13 + a32 * b23 + a33 * b33]]; }; /** * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4; * assumes matrix entries are accessed in [column][row] fashion. * @param {!o3djs.math.Matrix4} a The matrix on the left. * @param {!o3djs.math.Matrix4} b The matrix on the right. * @return {!o3djs.math.Matrix4} The matrix product of a and b. */ o3djs.math.columnMajor.mulMatrixMatrix4 = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var a3 = a[3]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var b3 = b[3]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a03 = a0[3]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a13 = a1[3]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var a23 = a2[3]; var a30 = a3[0]; var a31 = a3[1]; var a32 = a3[2]; var a33 = a3[3]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b03 = b0[3]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b13 = b1[3]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; var b23 = b2[3]; var b30 = b3[0]; var b31 = b3[1]; var b32 = b3[2]; var b33 = b3[3]; return [[a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03], [a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13], [a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23], [a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33]]; }; /** * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4. * @param {!o3djs.math.Matrix4} a The matrix on the left. * @param {!o3djs.math.Matrix4} b The matrix on the right. * @return {!o3djs.math.Matrix4} The matrix product of a and b. */ o3djs.math.mulMatrixMatrix4 = null; /** * Multiplies two matrices; assumes that the sizes of the matrices are * appropriately compatible; assumes matrix entries are accessed in * [row][column] fashion. * @param {!o3djs.math.Matrix} a The matrix on the left. * @param {!o3djs.math.Matrix} b The matrix on the right. * @return {!o3djs.math.Matrix} The matrix product of a and b. */ o3djs.math.rowMajor.mulMatrixMatrix = function(a, b) { var r = []; var aRows = a.length; var bColumns = b[0].length; var bRows = b.length; for (var i = 0; i < aRows; ++i) { var v = []; // v becomes a row of the answer. var ai = a[i]; // ith row of a. for (var j = 0; j < bColumns; ++j) { v[j] = 0.0; for (var k = 0; k < bRows; ++k) v[j] += ai[k] * b[k][j]; // kth row, jth column. } r[i] = v; } return r; }; /** * Multiplies two matrices; assumes that the sizes of the matrices are * appropriately compatible; assumes matrix entries are accessed in * [row][column] fashion. * @param {!o3djs.math.Matrix} a The matrix on the left. * @param {!o3djs.math.Matrix} b The matrix on the right. * @return {!o3djs.math.Matrix} The matrix product of a and b. */ o3djs.math.columnMajor.mulMatrixMatrix = function(a, b) { var r = []; var bColumns = b.length; var aRows = a[0].length; var aColumns = a.length; for (var i = 0; i < bColumns; ++i) { var v = []; // v becomes a column of the answer. var bi = b[i]; // ith column of b. for (var j = 0; j < aRows; ++j) { v[j] = 0.0; for (var k = 0; k < aColumns; ++k) v[j] += bi[k] * a[k][j]; // kth column, jth row. } r[i] = v; } return r; }; /** * Multiplies two matrices; assumes that the sizes of the matrices are * appropriately compatible. * @param {!o3djs.math.Matrix} a The matrix on the left. * @param {!o3djs.math.Matrix} b The matrix on the right. * @return {!o3djs.math.Matrix} The matrix product of a and b. */ o3djs.math.mulMatrixMatrix = null; /** * Gets the jth column of the given matrix m; assumes matrix entries are * accessed in [row][column] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} j The index of the desired column. * @return {!o3djs.math.Vector} The jth column of m as a vector. */ o3djs.math.rowMajor.column = function(m, j) { var r = []; var mLength = m.length; for (var i = 0; i < mLength; ++i) { r[i] = m[i][j]; } return r; }; /** * Gets the jth column of the given matrix m; assumes matrix entries are * accessed in [column][row] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} j The index of the desired column. * @return {!o3djs.math.Vector} The jth column of m as a vector. */ o3djs.math.columnMajor.column = function(m, j) { return m[j].slice(); }; /** * Gets the jth column of the given matrix m. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} j The index of the desired column. * @return {!o3djs.math.Vector} The jth column of m as a vector. */ o3djs.math.column = null; /** * Gets the ith row of the given matrix m; assumes matrix entries are * accessed in [row][column] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} i The index of the desired row. * @return {!o3djs.math.Vector} The ith row of m. */ o3djs.math.rowMajor.row = function(m, i) { return m[i].slice(); }; /** * Gets the ith row of the given matrix m; assumes matrix entries are * accessed in [column][row] fashion. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} i The index of the desired row. * @return {!o3djs.math.Vector} The ith row of m. */ o3djs.math.columnMajor.row = function(m, i) { var r = []; var mLength = m.length; for (var j = 0; j < mLength; ++j) { r[j] = m[j][i]; } return r; }; /** * Gets the ith row of the given matrix m. * @param {!o3djs.math.Matrix} m The matrix. * @param {number} i The index of the desired row. * @return {!o3djs.math.Vector} The ith row of m. */ o3djs.math.row = null; /** * Creates an n-by-n identity matrix. * @param {number} n The dimension of the identity matrix required. * @return {!o3djs.math.Matrix} An n-by-n identity matrix. */ o3djs.math.identity = function(n) { var r = []; for (var j = 0; j < n; ++j) { r[j] = []; for (var i = 0; i < n; ++i) r[j][i] = (i == j) ? 1 : 0; } return r; }; /** * Takes the transpose of a matrix. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} The transpose of m. */ o3djs.math.transpose = function(m) { var r = []; var m0Length = m[0].length; var mLength = m.length; for (var j = 0; j < m0Length; ++j) { r[j] = []; for (var i = 0; i < mLength; ++i) r[j][i] = m[i][j]; } return r; }; /** * Computes the trace (sum of the diagonal entries) of a square matrix; * assumes m is square. * @param {!o3djs.math.Matrix} m The matrix. * @return {number} The trace of m. */ o3djs.math.trace = function(m) { var r = 0.0; var mLength = m.length; for (var i = 0; i < mLength; ++i) r += m[i][i]; return r; }; /** * Computes the determinant of a 1-by-1 matrix. * @param {!o3djs.math.Matrix1} m The matrix. * @return {number} The determinant of m. */ o3djs.math.det1 = function(m) { return m[0][0]; }; /** * Computes the determinant of a 2-by-2 matrix. * @param {!o3djs.math.Matrix2} m The matrix. * @return {number} The determinant of m. */ o3djs.math.det2 = function(m) { return m[0][0] * m[1][1] - m[0][1] * m[1][0]; }; /** * Computes the determinant of a 3-by-3 matrix. * @param {!o3djs.math.Matrix3} m The matrix. * @return {number} The determinant of m. */ o3djs.math.det3 = function(m) { return m[2][2] * (m[0][0] * m[1][1] - m[0][1] * m[1][0]) - m[2][1] * (m[0][0] * m[1][2] - m[0][2] * m[1][0]) + m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); }; /** * Computes the determinant of a 4-by-4 matrix. * @param {!o3djs.math.Matrix4} m The matrix. * @return {number} The determinant of m. */ o3djs.math.det4 = function(m) { var t01 = m[0][0] * m[1][1] - m[0][1] * m[1][0]; var t02 = m[0][0] * m[1][2] - m[0][2] * m[1][0]; var t03 = m[0][0] * m[1][3] - m[0][3] * m[1][0]; var t12 = m[0][1] * m[1][2] - m[0][2] * m[1][1]; var t13 = m[0][1] * m[1][3] - m[0][3] * m[1][1]; var t23 = m[0][2] * m[1][3] - m[0][3] * m[1][2]; return m[3][3] * (m[2][2] * t01 - m[2][1] * t02 + m[2][0] * t12) - m[3][2] * (m[2][3] * t01 - m[2][1] * t03 + m[2][0] * t13) + m[3][1] * (m[2][3] * t02 - m[2][2] * t03 + m[2][0] * t23) - m[3][0] * (m[2][3] * t12 - m[2][2] * t13 + m[2][1] * t23); }; /** * Computes the inverse of a 1-by-1 matrix. * @param {!o3djs.math.Matrix1} m The matrix. * @return {!o3djs.math.Matrix1} The inverse of m. */ o3djs.math.inverse1 = function(m) { return [[1.0 / m[0][0]]]; }; /** * Computes the inverse of a 2-by-2 matrix. * @param {!o3djs.math.Matrix2} m The matrix. * @return {!o3djs.math.Matrix2} The inverse of m. */ o3djs.math.inverse2 = function(m) { var d = 1.0 / (m[0][0] * m[1][1] - m[0][1] * m[1][0]); return [[d * m[1][1], -d * m[0][1]], [-d * m[1][0], d * m[0][0]]]; }; /** * Computes the inverse of a 3-by-3 matrix. * @param {!o3djs.math.Matrix3} m The matrix. * @return {!o3djs.math.Matrix3} The inverse of m. */ o3djs.math.inverse3 = function(m) { var t00 = m[1][1] * m[2][2] - m[1][2] * m[2][1]; var t10 = m[0][1] * m[2][2] - m[0][2] * m[2][1]; var t20 = m[0][1] * m[1][2] - m[0][2] * m[1][1]; var d = 1.0 / (m[0][0] * t00 - m[1][0] * t10 + m[2][0] * t20); return [[d * t00, -d * t10, d * t20], [-d * (m[1][0] * m[2][2] - m[1][2] * m[2][0]), d * (m[0][0] * m[2][2] - m[0][2] * m[2][0]), -d * (m[0][0] * m[1][2] - m[0][2] * m[1][0])], [d * (m[1][0] * m[2][1] - m[1][1] * m[2][0]), -d * (m[0][0] * m[2][1] - m[0][1] * m[2][0]), d * (m[0][0] * m[1][1] - m[0][1] * m[1][0])]]; }; /** * Computes the inverse of a 4-by-4 matrix. * @param {!o3djs.math.Matrix4} m The matrix. * @return {!o3djs.math.Matrix4} The inverse of m. */ o3djs.math.inverse4 = function(m) { var tmp_0 = m[2][2] * m[3][3]; var tmp_1 = m[3][2] * m[2][3]; var tmp_2 = m[1][2] * m[3][3]; var tmp_3 = m[3][2] * m[1][3]; var tmp_4 = m[1][2] * m[2][3]; var tmp_5 = m[2][2] * m[1][3]; var tmp_6 = m[0][2] * m[3][3]; var tmp_7 = m[3][2] * m[0][3]; var tmp_8 = m[0][2] * m[2][3]; var tmp_9 = m[2][2] * m[0][3]; var tmp_10 = m[0][2] * m[1][3]; var tmp_11 = m[1][2] * m[0][3]; var tmp_12 = m[2][0] * m[3][1]; var tmp_13 = m[3][0] * m[2][1]; var tmp_14 = m[1][0] * m[3][1]; var tmp_15 = m[3][0] * m[1][1]; var tmp_16 = m[1][0] * m[2][1]; var tmp_17 = m[2][0] * m[1][1]; var tmp_18 = m[0][0] * m[3][1]; var tmp_19 = m[3][0] * m[0][1]; var tmp_20 = m[0][0] * m[2][1]; var tmp_21 = m[2][0] * m[0][1]; var tmp_22 = m[0][0] * m[1][1]; var tmp_23 = m[1][0] * m[0][1]; var t0 = (tmp_0 * m[1][1] + tmp_3 * m[2][1] + tmp_4 * m[3][1]) - (tmp_1 * m[1][1] + tmp_2 * m[2][1] + tmp_5 * m[3][1]); var t1 = (tmp_1 * m[0][1] + tmp_6 * m[2][1] + tmp_9 * m[3][1]) - (tmp_0 * m[0][1] + tmp_7 * m[2][1] + tmp_8 * m[3][1]); var t2 = (tmp_2 * m[0][1] + tmp_7 * m[1][1] + tmp_10 * m[3][1]) - (tmp_3 * m[0][1] + tmp_6 * m[1][1] + tmp_11 * m[3][1]); var t3 = (tmp_5 * m[0][1] + tmp_8 * m[1][1] + tmp_11 * m[2][1]) - (tmp_4 * m[0][1] + tmp_9 * m[1][1] + tmp_10 * m[2][1]); var d = 1.0 / (m[0][0] * t0 + m[1][0] * t1 + m[2][0] * t2 + m[3][0] * t3); return [[d * t0, d * t1, d * t2, d * t3], [d * ((tmp_1 * m[1][0] + tmp_2 * m[2][0] + tmp_5 * m[3][0]) - (tmp_0 * m[1][0] + tmp_3 * m[2][0] + tmp_4 * m[3][0])), d * ((tmp_0 * m[0][0] + tmp_7 * m[2][0] + tmp_8 * m[3][0]) - (tmp_1 * m[0][0] + tmp_6 * m[2][0] + tmp_9 * m[3][0])), d * ((tmp_3 * m[0][0] + tmp_6 * m[1][0] + tmp_11 * m[3][0]) - (tmp_2 * m[0][0] + tmp_7 * m[1][0] + tmp_10 * m[3][0])), d * ((tmp_4 * m[0][0] + tmp_9 * m[1][0] + tmp_10 * m[2][0]) - (tmp_5 * m[0][0] + tmp_8 * m[1][0] + tmp_11 * m[2][0]))], [d * ((tmp_12 * m[1][3] + tmp_15 * m[2][3] + tmp_16 * m[3][3]) - (tmp_13 * m[1][3] + tmp_14 * m[2][3] + tmp_17 * m[3][3])), d * ((tmp_13 * m[0][3] + tmp_18 * m[2][3] + tmp_21 * m[3][3]) - (tmp_12 * m[0][3] + tmp_19 * m[2][3] + tmp_20 * m[3][3])), d * ((tmp_14 * m[0][3] + tmp_19 * m[1][3] + tmp_22 * m[3][3]) - (tmp_15 * m[0][3] + tmp_18 * m[1][3] + tmp_23 * m[3][3])), d * ((tmp_17 * m[0][3] + tmp_20 * m[1][3] + tmp_23 * m[2][3]) - (tmp_16 * m[0][3] + tmp_21 * m[1][3] + tmp_22 * m[2][3]))], [d * ((tmp_14 * m[2][2] + tmp_17 * m[3][2] + tmp_13 * m[1][2]) - (tmp_16 * m[3][2] + tmp_12 * m[1][2] + tmp_15 * m[2][2])), d * ((tmp_20 * m[3][2] + tmp_12 * m[0][2] + tmp_19 * m[2][2]) - (tmp_18 * m[2][2] + tmp_21 * m[3][2] + tmp_13 * m[0][2])), d * ((tmp_18 * m[1][2] + tmp_23 * m[3][2] + tmp_15 * m[0][2]) - (tmp_22 * m[3][2] + tmp_14 * m[0][2] + tmp_19 * m[1][2])), d * ((tmp_22 * m[2][2] + tmp_16 * m[0][2] + tmp_21 * m[1][2]) - (tmp_20 * m[1][2] + tmp_23 * m[2][2] + tmp_17 * m[0][2]))]]; }; /** * Computes the determinant of the cofactor matrix obtained by removal * of a specified row and column. This is a helper function for the general * determinant and matrix inversion functions. * @param {!o3djs.math.Matrix} a The original matrix. * @param {number} x The row to be removed. * @param {number} y The column to be removed. * @return {number} The determinant of the matrix obtained by removing * row x and column y from a. */ o3djs.math.codet = function(a, x, y) { var size = a.length; var b = []; var ai = 0; for (var bi = 0; bi < size - 1; ++bi) { if (ai == x) ai++; b[bi] = []; var aj = 0; for (var bj = 0; bj < size - 1; ++bj) { if (aj == y) aj++; b[bi][bj] = a[ai][aj]; aj++; } ai++; } return o3djs.math.det(b); }; /** * Computes the determinant of an arbitrary square matrix. * @param {!o3djs.math.Matrix} m The matrix. * @return {number} the determinant of m. */ o3djs.math.det = function(m) { var d = m.length; if (d <= 4) { return o3djs.math['det' + d](m); } var r = 0.0; var sign = 1; var row = m[0]; var mLength = m.length; for (var y = 0; y < mLength; y++) { r += sign * row[y] * o3djs.math.codet(m, 0, y); sign *= -1; } return r; }; /** * Computes the inverse of an arbitrary square matrix. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} The inverse of m. */ o3djs.math.inverse = function(m) { var d = m.length; if (d <= 4) { return o3djs.math['inverse' + d](m); } var r = []; var size = m.length; for (var j = 0; j < size; ++j) { r[j] = []; for (var i = 0; i < size; ++i) r[j][i] = ((i + j) % 2 ? -1 : 1) * o3djs.math.codet(m, i, j); } return o3djs.math.divMatrixScalar(r, o3djs.math.det(m)); }; /** * Performs Graham-Schmidt orthogonalization on the vectors which make up the * given matrix and returns the result in the rows of a new matrix. When * multiplying many orthogonal matrices together, errors can accumulate causing * the product to fail to be orthogonal. This function can be used to correct * that. * @param {!o3djs.math.Matrix} m The matrix. * @return {!o3djs.math.Matrix} A matrix whose rows are obtained from the * rows of m by the Graham-Schmidt process. */ o3djs.math.orthonormalize = function(m) { var r = []; var mLength = m.length; for (var i = 0; i < mLength; ++i) { var v = m[i]; for (var j = 0; j < i; ++j) { v = o3djs.math.subVector(v, o3djs.math.mulScalarVector( o3djs.math.dot(r[j], m[i]), r[j])); } r[i] = o3djs.math.normalize(v); } return r; }; /** * Computes the inverse of a 4-by-4 matrix. * Note: It is faster to call this than o3djs.math.inverse. * @param {!o3djs.math.Matrix4} m The matrix. * @return {!o3djs.math.Matrix4} The inverse of m. */ o3djs.math.matrix4.inverse = function(m) { return o3djs.math.inverse4(m); }; /** * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4. * Note: It is faster to call this than o3djs.math.mul. * @param {!o3djs.math.Matrix4} a The matrix on the left. * @param {!o3djs.math.Matrix4} b The matrix on the right. * @return {!o3djs.math.Matrix4} The matrix product of a and b. */ o3djs.math.matrix4.mul = function(a, b) { return o3djs.math.mulMatrixMatrix4(a, b); }; /** * Computes the determinant of a 4-by-4 matrix. * Note: It is faster to call this than o3djs.math.det. * @param {!o3djs.math.Matrix4} m The matrix. * @return {number} The determinant of m. */ o3djs.math.matrix4.det = function(m) { return o3djs.math.det4(m); }; /** * Copies a Matrix4. * Note: It is faster to call this than o3djs.math.copy. * @param {!o3djs.math.Matrix4} m The matrix. * @return {!o3djs.math.Matrix4} A copy of m. */ o3djs.math.matrix4.copy = function(m) { return o3djs.math.copyMatrix(m); }; /** * Sets the upper 3-by-3 block of matrix a to the upper 3-by-3 block of matrix * b; assumes that a and b are big enough to contain an upper 3-by-3 block. * @param {!o3djs.math.Matrix4} a A matrix. * @param {!o3djs.math.Matrix3} b A 3-by-3 matrix. * @return {!o3djs.math.Matrix4} a once modified. */ o3djs.math.matrix4.setUpper3x3 = function(a, b) { var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; a[0].splice(0, 3, b0[0], b0[1], b0[2]); a[1].splice(0, 3, b1[0], b1[1], b1[2]); a[2].splice(0, 3, b2[0], b2[1], b2[2]); return a; }; /** * Returns a 3-by-3 matrix mimicking the upper 3-by-3 block of m; assumes m * is big enough to contain an upper 3-by-3 block. * @param {!o3djs.math.Matrix4} m The matrix. * @return {!o3djs.math.Matrix3} The upper 3-by-3 block of m. */ o3djs.math.matrix4.getUpper3x3 = function(m) { return [m[0].slice(0, 3), m[1].slice(0, 3), m[2].slice(0, 3)]; }; /** * Sets the translation component of a 4-by-4 matrix to the given * vector. * @param {!o3djs.math.Matrix4} a The matrix. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector. * @return {!o3djs.math.Matrix4} a once modified. */ o3djs.math.matrix4.setTranslation = function(a, v) { a[3].splice(0, 4, v[0], v[1], v[2], 1); return a; }; /** * Returns the translation component of a 4-by-4 matrix as a vector with 3 * entries. * @param {!o3djs.math.Matrix4} m The matrix. * @return {!o3djs.math.Vector3} The translation component of m. */ o3djs.math.matrix4.getTranslation = function(m) { return m[3].slice(0, 3); }; /** * Takes a 4-by-4 matrix and a vector with 3 entries, * interprets the vector as a point, transforms that point by the matrix, and * returns the result as a vector with 3 entries. * @param {!o3djs.math.Matrix4} m The matrix. * @param {!o3djs.math.Vector3} v The point. * @return {!o3djs.math.Vector3} The transformed point. */ o3djs.math.matrix4.transformPoint = function(m, v) { var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var d = v0 * m0[3] + v1 * m1[3] + v2 * m2[3] + m3[3]; return [(v0 * m0[0] + v1 * m1[0] + v2 * m2[0] + m3[0]) / d, (v0 * m0[1] + v1 * m1[1] + v2 * m2[1] + m3[1]) / d, (v0 * m0[2] + v1 * m1[2] + v2 * m2[2] + m3[2]) / d]; }; /** * Takes a 4-by-4 matrix and a vector with 4 entries, transforms that vector by * the matrix, and returns the result as a vector with 4 entries. * @param {!o3djs.math.Matrix4} m The matrix. * @param {!o3djs.math.Vector4} v The point in homogenous coordinates. * @return {!o3djs.math.Vector4} The transformed point in homogenous * coordinates. */ o3djs.math.matrix4.transformVector4 = function(m, v) { var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var v3 = v[3]; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; return [v0 * m0[0] + v1 * m1[0] + v2 * m2[0] + v3 * m3[0], v0 * m0[1] + v1 * m1[1] + v2 * m2[1] + v3 * m3[1], v0 * m0[2] + v1 * m1[2] + v2 * m2[2] + v3 * m3[2], v0 * m0[3] + v1 * m1[3] + v2 * m2[3] + v3 * m3[3]]; }; /** * Takes a 4-by-4 matrix and a vector with 3 entries, interprets the vector as a * direction, transforms that direction by the matrix, and returns the result; * assumes the transformation of 3-dimensional space represented by the matrix * is parallel-preserving, i.e. any combination of rotation, scaling and * translation, but not a perspective distortion. Returns a vector with 3 * entries. * @param {!o3djs.math.Matrix4} m The matrix. * @param {!o3djs.math.Vector3} v The direction. * @return {!o3djs.math.Vector3} The transformed direction. */ o3djs.math.matrix4.transformDirection = function(m, v) { var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; return [v0 * m0[0] + v1 * m1[0] + v2 * m2[0], v0 * m0[1] + v1 * m1[1] + v2 * m2[1], v0 * m0[2] + v1 * m1[2] + v2 * m2[2]]; }; /** * Takes a 4-by-4 matrix m and a vector v with 3 entries, interprets the vector * as a normal to a surface, and computes a vector which is normal upon * transforming that surface by the matrix. The effect of this function is the * same as transforming v (as a direction) by the inverse-transpose of m. This * function assumes the transformation of 3-dimensional space represented by the * matrix is parallel-preserving, i.e. any combination of rotation, scaling and * translation, but not a perspective distortion. Returns a vector with 3 * entries. * @param {!o3djs.math.Matrix4} m The matrix. * @param {!o3djs.math.Vector3} v The normal. * @return {!o3djs.math.Vector3} The transformed normal. */ o3djs.math.matrix4.transformNormal = function(m, v) { var mInverse = o3djs.math.inverse4(m); var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var mi0 = mInverse[0]; var mi1 = mInverse[1]; var mi2 = mInverse[2]; var mi3 = mInverse[3]; return [v0 * mi0[0] + v1 * mi0[1] + v2 * mi0[2], v0 * mi1[0] + v1 * mi1[1] + v2 * mi1[2], v0 * mi2[0] + v1 * mi2[1] + v2 * mi2[2]]; }; /** * Creates a 4-by-4 identity matrix. * @return {!o3djs.math.Matrix4} The 4-by-4 identity. */ o3djs.math.matrix4.identity = function() { return [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]; }; /** * Sets the given 4-by-4 matrix to the identity matrix. * @param {!o3djs.math.Matrix4} m The matrix to set to identity. * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.setIdentity = function(m) { for (var i = 0; i < 4; i++) { for (var j = 0; j < 4; j++) { if (i == j) { m[i][j] = 1; } else { m[i][j] = 0; } } } return m; }; /** * Computes a 4-by-4 perspective transformation matrix given the angular height * of the frustum, the aspect ratio, and the near and far clipping planes. The * arguments define a frustum extending in the negative z direction. The given * angle is the vertical angle of the frustum, and the horizontal angle is * determined to produce the given aspect ratio. The arguments near and far are * the distances to the near and far clipping planes. Note that near and far * are not z coordinates, but rather they are distances along the negative * z-axis. The matrix generated sends the viewing frustum to the unit box. * We assume a unit box extending from -1 to 1 in the x and y dimensions and * from 0 to 1 in the z dimension. * @param {number} angle The camera angle from top to bottom (in radians). * @param {number} aspect The aspect ratio width / height. * @param {number} near The depth (negative z coordinate) * of the near clipping plane. * @param {number} far The depth (negative z coordinate) * of the far clipping plane. * @return {!o3djs.math.Matrix4} The perspective matrix. */ o3djs.math.matrix4.perspective = function(angle, aspect, near, far) { var f = Math.tan(0.5 * (Math.PI - angle)); var range = near - far; return [ [f / aspect, 0, 0, 0], [0, f, 0, 0], [0, 0, far / range, -1], [0, 0, near * far / range, 0] ]; }; /** * Computes a 4-by-4 orthographic projection matrix given the coordinates of the * planes defining the axis-aligned, box-shaped viewing volume. The matrix * generated sends that box to the unit box. Note that although left and right * are x coordinates and bottom and top are y coordinates, near and far * are not z coordinates, but rather they are distances along the negative * z-axis. We assume a unit box extending from -1 to 1 in the x and y * dimensions and from 0 to 1 in the z dimension. * @param {number} left The x coordinate of the left plane of the box. * @param {number} right The x coordinate of the right plane of the box. * @param {number} bottom The y coordinate of the bottom plane of the box. * @param {number} top The y coordinate of the right plane of the box. * @param {number} near The negative z coordinate of the near plane of the box. * @param {number} far The negative z coordinate of the far plane of the box. * @return {!o3djs.math.Matrix4} The orthographic projection matrix. */ o3djs.math.matrix4.orthographic = function(left, right, bottom, top, near, far) { return [ [2 / (right - left), 0, 0, 0], [0, 2 / (top - bottom), 0, 0], [0, 0, 1 / (near - far), 0], [(left + right) / (left - right), (bottom + top) / (bottom - top), near / (near - far), 1] ]; }; /** * Computes a 4-by-4 perspective transformation matrix given the left, right, * top, bottom, near and far clipping planes. The arguments define a frustum * extending in the negative z direction. The arguments near and far are the * distances to the near and far clipping planes. Note that near and far are not * z coordinates, but rather they are distances along the negative z-axis. The * matrix generated sends the viewing frustum to the unit box. We assume a unit * box extending from -1 to 1 in the x and y dimensions and from 0 to 1 in the z * dimension. * @param {number} left The x coordinate of the left plane of the box. * @param {number} right The x coordinate of the right plane of the box. * @param {number} bottom The y coordinate of the bottom plane of the box. * @param {number} top The y coordinate of the right plane of the box. * @param {number} near The negative z coordinate of the near plane of the box. * @param {number} far The negative z coordinate of the far plane of the box. * @return {!o3djs.math.Matrix4} The perspective projection matrix. */ o3djs.math.matrix4.frustum = function(left, right, bottom, top, near, far) { var dx = (right - left); var dy = (top - bottom); var dz = (near - far); return [ [2 * near / dx, 0, 0, 0], [0, 2 * near / dy, 0, 0], [(left + right) / dx, (top + bottom) / dy, far / dz, -1], [0, 0, near * far / dz, 0]]; }; /** * Computes a 4-by-4 look-at transformation. The transformation generated is * an orthogonal rotation matrix with translation component. The translation * component sends the eye to the origin. The rotation component sends the * vector pointing from the eye to the target to a vector pointing in the * negative z direction, and also sends the up vector into the upper half of * the yz plane. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} eye The position * of the eye. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} target The * position meant to be viewed. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} up A vector * pointing up. * @return {!o3djs.math.Matrix4} The look-at matrix. */ o3djs.math.matrix4.lookAt = function(eye, target, up) { var vz = o3djs.math.normalize( o3djs.math.subVector(eye, target).slice(0, 3)).concat(0); var vx = o3djs.math.normalize( o3djs.math.cross(up, vz)).concat(0); var vy = o3djs.math.cross(vz, vx).concat(0); return o3djs.math.inverse([vx, vy, vz, eye.concat(1)]); }; /** * Takes two 4-by-4 matrices, a and b, and computes the product in the order * that pre-composes b with a. In other words, the matrix returned will * transform by b first and then a. Note this is subtly different from just * multiplying the matrices together. For given a and b, this function returns * the same object in both row-major and column-major mode. * @param {!o3djs.math.Matrix4} a A 4-by-4 matrix. * @param {!o3djs.math.Matrix4} b A 4-by-4 matrix. * @return {!o3djs.math.Matrix4} the composition of a and b, b first then a. */ o3djs.math.matrix4.composition = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var a3 = a[3]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var b3 = b[3]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a03 = a0[3]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a13 = a1[3]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var a23 = a2[3]; var a30 = a3[0]; var a31 = a3[1]; var a32 = a3[2]; var a33 = a3[3]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b03 = b0[3]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b13 = b1[3]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; var b23 = b2[3]; var b30 = b3[0]; var b31 = b3[1]; var b32 = b3[2]; var b33 = b3[3]; return [[a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03], [a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13], [a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23], [a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33]]; }; /** * Takes two 4-by-4 matrices, a and b, and modifies a to be the product in the * order that pre-composes b with a. The matrix a, upon modification will * transform by b first and then a. Note this is subtly different from just * multiplying the matrices together. For given a and b, a, upon modification, * will be the same object in both row-major and column-major mode. * @param {!o3djs.math.Matrix4} a A 4-by-4 matrix. * @param {!o3djs.math.Matrix4} b A 4-by-4 matrix. * @return {!o3djs.math.Matrix4} a once modified. */ o3djs.math.matrix4.compose = function(a, b) { var a0 = a[0]; var a1 = a[1]; var a2 = a[2]; var a3 = a[3]; var b0 = b[0]; var b1 = b[1]; var b2 = b[2]; var b3 = b[3]; var a00 = a0[0]; var a01 = a0[1]; var a02 = a0[2]; var a03 = a0[3]; var a10 = a1[0]; var a11 = a1[1]; var a12 = a1[2]; var a13 = a1[3]; var a20 = a2[0]; var a21 = a2[1]; var a22 = a2[2]; var a23 = a2[3]; var a30 = a3[0]; var a31 = a3[1]; var a32 = a3[2]; var a33 = a3[3]; var b00 = b0[0]; var b01 = b0[1]; var b02 = b0[2]; var b03 = b0[3]; var b10 = b1[0]; var b11 = b1[1]; var b12 = b1[2]; var b13 = b1[3]; var b20 = b2[0]; var b21 = b2[1]; var b22 = b2[2]; var b23 = b2[3]; var b30 = b3[0]; var b31 = b3[1]; var b32 = b3[2]; var b33 = b3[3]; a[0].splice(0, 4, a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03); a[1].splice(0, 4, a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13); a[2].splice(0, 4, a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23), a[3].splice(0, 4, a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33); return a; }; /** * Creates a 4-by-4 matrix which translates by the given vector v. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector by * which to translate. * @return {!o3djs.math.Matrix4} The translation matrix. */ o3djs.math.matrix4.translation = function(v) { return [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [v[0], v[1], v[2], 1] ]; }; /** * Modifies the given 4-by-4 matrix by translation by the given vector v. * @param {!o3djs.math.Matrix4} m The matrix. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector by * which to translate. * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.translate = function(m, v) { var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m00 = m0[0]; var m01 = m0[1]; var m02 = m0[2]; var m03 = m0[3]; var m10 = m1[0]; var m11 = m1[1]; var m12 = m1[2]; var m13 = m1[3]; var m20 = m2[0]; var m21 = m2[1]; var m22 = m2[2]; var m23 = m2[3]; var m30 = m3[0]; var m31 = m3[1]; var m32 = m3[2]; var m33 = m3[3]; m3.splice(0, 4, m00 * v0 + m10 * v1 + m20 * v2 + m30, m01 * v0 + m11 * v1 + m21 * v2 + m31, m02 * v0 + m12 * v1 + m22 * v2 + m32, m03 * v0 + m13 * v1 + m23 * v2 + m33); return m; }; /** * Creates a 4-by-4 matrix which scales in each dimension by an amount given by * the corresponding entry in the given vector; assumes the vector has three * entries. * @param {!o3djs.math.Vector3} v A vector of * three entries specifying the factor by which to scale in each dimension. * @return {!o3djs.math.Matrix4} The scaling matrix. */ o3djs.math.matrix4.scaling = function(v) { return [ [v[0], 0, 0, 0], [0, v[1], 0, 0], [0, 0, v[2], 0], [0, 0, 0, 1] ]; }; /** * Modifies the given 4-by-4 matrix, scaling in each dimension by an amount * given by the corresponding entry in the given vector; assumes the vector has * three entries. * @param {!o3djs.math.Matrix4} m The matrix to be modified. * @param {!o3djs.math.Vector3} v A vector of three entries specifying the * factor by which to scale in each dimension. * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.scale = function(m, v) { var v0 = v[0]; var v1 = v[1]; var v2 = v[2]; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; m0.splice(0, 4, v0 * m0[0], v0 * m0[1], v0 * m0[2], v0 * m0[3]); m1.splice(0, 4, v1 * m1[0], v1 * m1[1], v1 * m1[2], v1 * m1[3]); m2.splice(0, 4, v2 * m2[0], v2 * m2[1], v2 * m2[2], v2 * m2[3]); return m; }; /** * Creates a 4-by-4 matrix which rotates around the x-axis by the given angle. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} The rotation matrix. */ o3djs.math.matrix4.rotationX = function(angle) { var c = Math.cos(angle); var s = Math.sin(angle); return [ [1, 0, 0, 0], [0, c, s, 0], [0, -s, c, 0], [0, 0, 0, 1] ]; }; /** * Modifies the given 4-by-4 matrix by a rotation around the x-axis by the given * angle. * @param {!o3djs.math.Matrix4} m The matrix. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.rotateX = function(m, angle) { var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m10 = m1[0]; var m11 = m1[1]; var m12 = m1[2]; var m13 = m1[3]; var m20 = m2[0]; var m21 = m2[1]; var m22 = m2[2]; var m23 = m2[3]; var c = Math.cos(angle); var s = Math.sin(angle); m1.splice(0, 4, c * m10 + s * m20, c * m11 + s * m21, c * m12 + s * m22, c * m13 + s * m23); m2.splice(0, 4, c * m20 - s * m10, c * m21 - s * m11, c * m22 - s * m12, c * m23 - s * m13); return m; }; /** * Creates a 4-by-4 matrix which rotates around the y-axis by the given angle. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} The rotation matrix. */ o3djs.math.matrix4.rotationY = function(angle) { var c = Math.cos(angle); var s = Math.sin(angle); return [ [c, 0, -s, 0], [0, 1, 0, 0], [s, 0, c, 0], [0, 0, 0, 1] ]; }; /** * Modifies the given 4-by-4 matrix by a rotation around the y-axis by the given * angle. * @param {!o3djs.math.Matrix4} m The matrix. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.rotateY = function(m, angle) { var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m00 = m0[0]; var m01 = m0[1]; var m02 = m0[2]; var m03 = m0[3]; var m20 = m2[0]; var m21 = m2[1]; var m22 = m2[2]; var m23 = m2[3]; var c = Math.cos(angle); var s = Math.sin(angle); m0.splice(0, 4, c * m00 - s * m20, c * m01 - s * m21, c * m02 - s * m22, c * m03 - s * m23); m2.splice(0, 4, c * m20 + s * m00, c * m21 + s * m01, c * m22 + s * m02, c * m23 + s * m03); return m; }; /** * Creates a 4-by-4 matrix which rotates around the z-axis by the given angle. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} The rotation matrix. */ o3djs.math.matrix4.rotationZ = function(angle) { var c = Math.cos(angle); var s = Math.sin(angle); return [ [c, s, 0, 0], [-s, c, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]; }; /** * Modifies the given 4-by-4 matrix by a rotation around the z-axis by the given * angle. * @param {!o3djs.math.Matrix4} m The matrix. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.rotateZ = function(m, angle) { var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m00 = m0[0]; var m01 = m0[1]; var m02 = m0[2]; var m03 = m0[3]; var m10 = m1[0]; var m11 = m1[1]; var m12 = m1[2]; var m13 = m1[3]; var c = Math.cos(angle); var s = Math.sin(angle); m0.splice(0, 4, c * m00 + s * m10, c * m01 + s * m11, c * m02 + s * m12, c * m03 + s * m13); m1.splice(0, 4, c * m10 - s * m00, c * m11 - s * m01, c * m12 - s * m02, c * m13 - s * m03); return m; }; /** * Creates a 4-by-4 rotation matrix. Interprets the entries of the given * vector as angles by which to rotate around the x, y and z axes, returns a * a matrix which rotates around the x-axis first, then the y-axis, then the * z-axis. * @param {!o3djs.math.Vector3} v A vector of angles (in radians). * @return {!o3djs.math.Matrix4} The rotation matrix. */ o3djs.math.matrix4.rotationZYX = function(v) { var sinx = Math.sin(v[0]); var cosx = Math.cos(v[0]); var siny = Math.sin(v[1]); var cosy = Math.cos(v[1]); var sinz = Math.sin(v[2]); var cosz = Math.cos(v[2]); var coszsiny = cosz * siny; var sinzsiny = sinz * siny; return [ [cosz * cosy, sinz * cosy, -siny, 0], [coszsiny * sinx - sinz * cosx, sinzsiny * sinx + cosz * cosx, cosy * sinx, 0], [coszsiny * cosx + sinz * sinx, sinzsiny * cosx - cosz * sinx, cosy * cosx, 0], [0, 0, 0, 1] ]; }; /** * Modifies a 4-by-4 matrix by a rotation. Interprets the coordinates of the * given vector as angles by which to rotate around the x, y and z axes, rotates * around the x-axis first, then the y-axis, then the z-axis. * @param {!o3djs.math.Matrix4} m The matrix. * @param {!o3djs.math.Vector3} v A vector of angles (in radians). * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.rotateZYX = function(m, v) { var sinX = Math.sin(v[0]); var cosX = Math.cos(v[0]); var sinY = Math.sin(v[1]); var cosY = Math.cos(v[1]); var sinZ = Math.sin(v[2]); var cosZ = Math.cos(v[2]); var cosZSinY = cosZ * sinY; var sinZSinY = sinZ * sinY; var r00 = cosZ * cosY; var r01 = sinZ * cosY; var r02 = -sinY; var r10 = cosZSinY * sinX - sinZ * cosX; var r11 = sinZSinY * sinX + cosZ * cosX; var r12 = cosY * sinX; var r20 = cosZSinY * cosX + sinZ * sinX; var r21 = sinZSinY * cosX - cosZ * sinX; var r22 = cosY * cosX; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m00 = m0[0]; var m01 = m0[1]; var m02 = m0[2]; var m03 = m0[3]; var m10 = m1[0]; var m11 = m1[1]; var m12 = m1[2]; var m13 = m1[3]; var m20 = m2[0]; var m21 = m2[1]; var m22 = m2[2]; var m23 = m2[3]; var m30 = m3[0]; var m31 = m3[1]; var m32 = m3[2]; var m33 = m3[3]; m0.splice(0, 4, r00 * m00 + r01 * m10 + r02 * m20, r00 * m01 + r01 * m11 + r02 * m21, r00 * m02 + r01 * m12 + r02 * m22, r00 * m03 + r01 * m13 + r02 * m23); m1.splice(0, 4, r10 * m00 + r11 * m10 + r12 * m20, r10 * m01 + r11 * m11 + r12 * m21, r10 * m02 + r11 * m12 + r12 * m22, r10 * m03 + r11 * m13 + r12 * m23); m2.splice(0, 4, r20 * m00 + r21 * m10 + r22 * m20, r20 * m01 + r21 * m11 + r22 * m21, r20 * m02 + r21 * m12 + r22 * m22, r20 * m03 + r21 * m13 + r22 * m23); return m; }; /** * Creates a 4-by-4 matrix which rotates around the given axis by the given * angle. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} axis The axis * about which to rotate. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} A matrix which rotates angle radians * around the axis. */ o3djs.math.matrix4.axisRotation = function(axis, angle) { var x = axis[0]; var y = axis[1]; var z = axis[2]; var n = Math.sqrt(x * x + y * y + z * z); x /= n; y /= n; z /= n; var xx = x * x; var yy = y * y; var zz = z * z; var c = Math.cos(angle); var s = Math.sin(angle); var oneMinusCosine = 1 - c; return [ [xx + (1 - xx) * c, x * y * oneMinusCosine + z * s, x * z * oneMinusCosine - y * s, 0], [x * y * oneMinusCosine - z * s, yy + (1 - yy) * c, y * z * oneMinusCosine + x * s, 0], [x * z * oneMinusCosine + y * s, y * z * oneMinusCosine - x * s, zz + (1 - zz) * c, 0], [0, 0, 0, 1] ]; }; /** * Modifies the given 4-by-4 matrix by rotation around the given axis by the * given angle. * @param {!o3djs.math.Matrix4} m The matrix. * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} axis The axis * about which to rotate. * @param {number} angle The angle by which to rotate (in radians). * @return {!o3djs.math.Matrix4} m once modified. */ o3djs.math.matrix4.axisRotate = function(m, axis, angle) { var x = axis[0]; var y = axis[1]; var z = axis[2]; var n = Math.sqrt(x * x + y * y + z * z); x /= n; y /= n; z /= n; var xx = x * x; var yy = y * y; var zz = z * z; var c = Math.cos(angle); var s = Math.sin(angle); var oneMinusCosine = 1 - c; var r00 = xx + (1 - xx) * c; var r01 = x * y * oneMinusCosine + z * s; var r02 = x * z * oneMinusCosine - y * s; var r10 = x * y * oneMinusCosine - z * s; var r11 = yy + (1 - yy) * c; var r12 = y * z * oneMinusCosine + x * s; var r20 = x * z * oneMinusCosine + y * s; var r21 = y * z * oneMinusCosine - x * s; var r22 = zz + (1 - zz) * c; var m0 = m[0]; var m1 = m[1]; var m2 = m[2]; var m3 = m[3]; var m00 = m0[0]; var m01 = m0[1]; var m02 = m0[2]; var m03 = m0[3]; var m10 = m1[0]; var m11 = m1[1]; var m12 = m1[2]; var m13 = m1[3]; var m20 = m2[0]; var m21 = m2[1]; var m22 = m2[2]; var m23 = m2[3]; var m30 = m3[0]; var m31 = m3[1]; var m32 = m3[2]; var m33 = m3[3]; m0.splice(0, 4, r00 * m00 + r01 * m10 + r02 * m20, r00 * m01 + r01 * m11 + r02 * m21, r00 * m02 + r01 * m12 + r02 * m22, r00 * m03 + r01 * m13 + r02 * m23); m1.splice(0, 4, r10 * m00 + r11 * m10 + r12 * m20, r10 * m01 + r11 * m11 + r12 * m21, r10 * m02 + r11 * m12 + r12 * m22, r10 * m03 + r11 * m13 + r12 * m23); m2.splice(0, 4, r20 * m00 + r21 * m10 + r22 * m20, r20 * m01 + r21 * m11 + r22 * m21, r20 * m02 + r21 * m12 + r22 * m22, r20 * m03 + r21 * m13 + r22 * m23); return m; }; /** * Sets each function in the namespace o3djs.math to the row major * version in o3djs.math.rowMajor (provided such a function exists in * o3djs.math.rowMajor). Call this function to establish the row major * convention. */ o3djs.math.installRowMajorFunctions = function() { for (var f in o3djs.math.rowMajor) { o3djs.math[f] = o3djs.math.rowMajor[f]; } }; /** * Sets each function in the namespace o3djs.math to the column major * version in o3djs.math.columnMajor (provided such a function exists in * o3djs.math.columnMajor). Call this function to establish the column * major convention. */ o3djs.math.installColumnMajorFunctions = function() { for (var f in o3djs.math.columnMajor) { o3djs.math[f] = o3djs.math.columnMajor[f]; } }; /** * Sets each function in the namespace o3djs.math to the error checking * version in o3djs.math.errorCheck (provided such a function exists in * o3djs.math.errorCheck). */ o3djs.math.installErrorCheckFunctions = function() { for (var f in o3djs.math.errorCheck) { o3djs.math[f] = o3djs.math.errorCheck[f]; } }; /** * Sets each function in the namespace o3djs.math to the error checking free * version in o3djs.math.errorCheckFree (provided such a function exists in * o3djs.math.errorCheckFree). */ o3djs.math.installErrorCheckFreeFunctions = function() { for (var f in o3djs.math.errorCheckFree) { o3djs.math[f] = o3djs.math.errorCheckFree[f]; } } // By default, install the row-major functions. o3djs.math.installRowMajorFunctions(); // By default, install prechecking. o3djs.math.installErrorCheckFunctions();