// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "remoting/codec/video_encoder_vp8.h" #include "base/logging.h" #include "base/sys_info.h" #include "base/time/time.h" #include "media/base/yuv_convert.h" #include "remoting/base/util.h" #include "remoting/proto/video.pb.h" #include "third_party/webrtc/modules/desktop_capture/desktop_frame.h" #include "third_party/webrtc/modules/desktop_capture/desktop_geometry.h" extern "C" { #define VPX_CODEC_DISABLE_COMPAT 1 #include "third_party/libvpx/source/libvpx/vpx/vpx_encoder.h" #include "third_party/libvpx/source/libvpx/vpx/vp8cx.h" } namespace { // Defines the dimension of a macro block. This is used to compute the active // map for the encoder. const int kMacroBlockSize = 16; } // namespace remoting namespace remoting { VideoEncoderVp8::VideoEncoderVp8() : initialized_(false), active_map_width_(0), active_map_height_(0), last_timestamp_(0) {} VideoEncoderVp8::~VideoEncoderVp8() { Destroy(); } void VideoEncoderVp8::Destroy() { if (initialized_) { vpx_codec_err_t ret = vpx_codec_destroy(codec_.get()); DCHECK_EQ(ret, VPX_CODEC_OK) << "Failed to destroy codec"; initialized_ = false; } } bool VideoEncoderVp8::Init(const webrtc::DesktopSize& size) { Destroy(); codec_.reset(new vpx_codec_ctx_t()); image_.reset(new vpx_image_t()); memset(image_.get(), 0, sizeof(vpx_image_t)); image_->fmt = VPX_IMG_FMT_YV12; // libvpx seems to require both to be assigned. image_->d_w = size.width(); image_->w = size.width(); image_->d_h = size.height(); image_->h = size.height(); // Initialize active map. active_map_width_ = (image_->w + kMacroBlockSize - 1) / kMacroBlockSize; active_map_height_ = (image_->h + kMacroBlockSize - 1) / kMacroBlockSize; active_map_.reset(new uint8[active_map_width_ * active_map_height_]); // YUV image size is 1.5 times of a plane. Multiplication is performed first // to avoid rounding error. const int y_plane_size = image_->w * image_->h; const int uv_width = (image_->w + 1) / 2; const int uv_height = (image_->h + 1) / 2; const int uv_plane_size = uv_width * uv_height; const int yuv_image_size = y_plane_size + uv_plane_size * 2; // libvpx may try to access memory after the buffer (it still // doesn't use it) - it copies the data in 16x16 blocks: // crbug.com/119633 . Here we workaround that problem by adding // padding at the end of the buffer. Overreading to U and V buffers // is safe so the padding is necessary only at the end. // // TODO(sergeyu): Remove this padding when the bug is fixed in libvpx. const int active_map_area = active_map_width_ * kMacroBlockSize * active_map_height_ * kMacroBlockSize; const int padding_size = active_map_area - y_plane_size; const int buffer_size = yuv_image_size + padding_size; yuv_image_.reset(new uint8[buffer_size]); // Reset image value to 128 so we just need to fill in the y plane. memset(yuv_image_.get(), 128, yuv_image_size); // Fill in the information for |image_|. unsigned char* image = reinterpret_cast(yuv_image_.get()); image_->planes[0] = image; image_->planes[1] = image + y_plane_size; image_->planes[2] = image + y_plane_size + uv_plane_size; image_->stride[0] = image_->w; image_->stride[1] = uv_width; image_->stride[2] = uv_width; // Configure the encoder. vpx_codec_enc_cfg_t config; const vpx_codec_iface_t* algo = vpx_codec_vp8_cx(); CHECK(algo); vpx_codec_err_t ret = vpx_codec_enc_config_default(algo, &config, 0); if (ret != VPX_CODEC_OK) return false; config.rc_target_bitrate = image_->w * image_->h * config.rc_target_bitrate / config.g_w / config.g_h; config.g_w = image_->w; config.g_h = image_->h; config.g_pass = VPX_RC_ONE_PASS; // Value of 2 means using the real time profile. This is basically a // redundant option since we explicitly select real time mode when doing // encoding. config.g_profile = 2; // Using 2 threads gives a great boost in performance for most systems with // adequate processing power. NB: Going to multiple threads on low end // windows systems can really hurt performance. // http://crbug.com/99179 config.g_threads = (base::SysInfo::NumberOfProcessors() > 2) ? 2 : 1; config.rc_min_quantizer = 20; config.rc_max_quantizer = 30; config.g_timebase.num = 1; config.g_timebase.den = 20; if (vpx_codec_enc_init(codec_.get(), algo, &config, 0)) return false; // Value of 16 will have the smallest CPU load. This turns off subpixel // motion search. if (vpx_codec_control(codec_.get(), VP8E_SET_CPUUSED, 16)) return false; // Use the lowest level of noise sensitivity so as to spend less time // on motion estimation and inter-prediction mode. if (vpx_codec_control(codec_.get(), VP8E_SET_NOISE_SENSITIVITY, 0)) return false; return true; } void VideoEncoderVp8::PrepareImage(const webrtc::DesktopFrame* frame, SkRegion* updated_region) { if (frame->updated_region().is_empty()) { updated_region->setEmpty(); return; } // Align the region to macroblocks, to avoid encoding artefacts. // This also ensures that all rectangles have even-aligned top-left, which // is required for ConvertRGBToYUVWithRect() to work. std::vector aligned_rects; for (webrtc::DesktopRegion::Iterator r(frame->updated_region()); !r.IsAtEnd(); r.Advance()) { const webrtc::DesktopRect& rect = r.rect(); aligned_rects.push_back(AlignRect( SkIRect::MakeLTRB(rect.left(), rect.top(), rect.right(), rect.bottom()))); } DCHECK(!aligned_rects.empty()); updated_region->setRects(&aligned_rects[0], aligned_rects.size()); // Clip back to the screen dimensions, in case they're not macroblock aligned. // The conversion routines don't require even width & height, so this is safe // even if the source dimensions are not even. updated_region->op(SkIRect::MakeWH(image_->w, image_->h), SkRegion::kIntersect_Op); // Convert the updated region to YUV ready for encoding. const uint8* rgb_data = frame->data(); const int rgb_stride = frame->stride(); const int y_stride = image_->stride[0]; DCHECK_EQ(image_->stride[1], image_->stride[2]); const int uv_stride = image_->stride[1]; uint8* y_data = image_->planes[0]; uint8* u_data = image_->planes[1]; uint8* v_data = image_->planes[2]; for (SkRegion::Iterator r(*updated_region); !r.done(); r.next()) { const SkIRect& rect = r.rect(); ConvertRGB32ToYUVWithRect( rgb_data, y_data, u_data, v_data, rect.x(), rect.y(), rect.width(), rect.height(), rgb_stride, y_stride, uv_stride); } } void VideoEncoderVp8::PrepareActiveMap(const SkRegion& updated_region) { // Clear active map first. memset(active_map_.get(), 0, active_map_width_ * active_map_height_); // Mark updated areas active. for (SkRegion::Iterator r(updated_region); !r.done(); r.next()) { const SkIRect& rect = r.rect(); int left = rect.left() / kMacroBlockSize; int right = (rect.right() - 1) / kMacroBlockSize; int top = rect.top() / kMacroBlockSize; int bottom = (rect.bottom() - 1) / kMacroBlockSize; DCHECK_LT(right, active_map_width_); DCHECK_LT(bottom, active_map_height_); uint8* map = active_map_.get() + top * active_map_width_; for (int y = top; y <= bottom; ++y) { for (int x = left; x <= right; ++x) map[x] = 1; map += active_map_width_; } } } void VideoEncoderVp8::Encode( const webrtc::DesktopFrame* frame, const DataAvailableCallback& data_available_callback) { DCHECK_LE(32, frame->size().width()); DCHECK_LE(32, frame->size().height()); base::Time encode_start_time = base::Time::Now(); if (!initialized_ || !frame->size().equals(webrtc::DesktopSize(image_->w, image_->h))) { bool ret = Init(frame->size()); // TODO(hclam): Handle error better. CHECK(ret) << "Initialization of encoder failed"; initialized_ = ret; } // Convert the updated capture data ready for encode. SkRegion updated_region; PrepareImage(frame, &updated_region); // Update active map based on updated region. PrepareActiveMap(updated_region); // Apply active map to the encoder. vpx_active_map_t act_map; act_map.rows = active_map_height_; act_map.cols = active_map_width_; act_map.active_map = active_map_.get(); if (vpx_codec_control(codec_.get(), VP8E_SET_ACTIVEMAP, &act_map)) { LOG(ERROR) << "Unable to apply active map"; } // Do the actual encoding. vpx_codec_err_t ret = vpx_codec_encode(codec_.get(), image_.get(), last_timestamp_, 1, 0, VPX_DL_REALTIME); DCHECK_EQ(ret, VPX_CODEC_OK) << "Encoding error: " << vpx_codec_err_to_string(ret) << "\n" << "Details: " << vpx_codec_error(codec_.get()) << "\n" << vpx_codec_error_detail(codec_.get()); // TODO(hclam): Apply the proper timestamp here. last_timestamp_ += 50; // Read the encoded data. vpx_codec_iter_t iter = NULL; bool got_data = false; // TODO(hclam): Make sure we get exactly one frame from the packet. // TODO(hclam): We should provide the output buffer to avoid one copy. scoped_ptr packet(new VideoPacket()); while (!got_data) { const vpx_codec_cx_pkt_t* vpx_packet = vpx_codec_get_cx_data(codec_.get(), &iter); if (!vpx_packet) continue; switch (vpx_packet->kind) { case VPX_CODEC_CX_FRAME_PKT: got_data = true; // TODO(sergeyu): Split each frame into multiple partitions. packet->set_data(vpx_packet->data.frame.buf, vpx_packet->data.frame.sz); break; default: break; } } // Construct the VideoPacket message. packet->mutable_format()->set_encoding(VideoPacketFormat::ENCODING_VP8); packet->set_flags(VideoPacket::FIRST_PACKET | VideoPacket::LAST_PACKET | VideoPacket::LAST_PARTITION); packet->mutable_format()->set_screen_width(frame->size().width()); packet->mutable_format()->set_screen_height(frame->size().height()); packet->set_capture_time_ms(frame->capture_time_ms()); packet->set_encode_time_ms( (base::Time::Now() - encode_start_time).InMillisecondsRoundedUp()); if (!frame->dpi().is_zero()) { packet->mutable_format()->set_x_dpi(frame->dpi().x()); packet->mutable_format()->set_y_dpi(frame->dpi().y()); } for (SkRegion::Iterator r(updated_region); !r.done(); r.next()) { Rect* rect = packet->add_dirty_rects(); rect->set_x(r.rect().x()); rect->set_y(r.rect().y()); rect->set_width(r.rect().width()); rect->set_height(r.rect().height()); } data_available_callback.Run(packet.Pass()); } } // namespace remoting