// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "remoting/codec/video_encoder_vpx.h" #include "base/bind.h" #include "base/command_line.h" #include "base/logging.h" #include "base/sys_info.h" #include "remoting/base/util.h" #include "remoting/proto/video.pb.h" #include "third_party/libyuv/include/libyuv/convert_from_argb.h" #include "third_party/webrtc/modules/desktop_capture/desktop_frame.h" #include "third_party/webrtc/modules/desktop_capture/desktop_geometry.h" #include "third_party/webrtc/modules/desktop_capture/desktop_region.h" extern "C" { #define VPX_CODEC_DISABLE_COMPAT 1 #include "third_party/libvpx/source/libvpx/vpx/vpx_encoder.h" #include "third_party/libvpx/source/libvpx/vpx/vp8cx.h" } namespace remoting { namespace { // Name of command-line flag to enable VP9 to use I444 by default. const char kEnableI444SwitchName[] = "enable-i444"; // Number of bytes in an RGBx pixel. const int kBytesPerRgbPixel = 4; // Defines the dimension of a macro block. This is used to compute the active // map for the encoder. const int kMacroBlockSize = 16; // Magic encoder profile numbers for I420 and I444 input formats. const int kVp9I420ProfileNumber = 0; const int kVp9I444ProfileNumber = 1; void SetCommonCodecParameters(const webrtc::DesktopSize& size, vpx_codec_enc_cfg_t* config) { // Use millisecond granularity time base. config->g_timebase.num = 1; config->g_timebase.den = 1000; // Adjust default target bit-rate to account for actual desktop size. config->rc_target_bitrate = size.width() * size.height() * config->rc_target_bitrate / config->g_w / config->g_h; config->g_w = size.width(); config->g_h = size.height(); config->g_pass = VPX_RC_ONE_PASS; // Start emitting packets immediately. config->g_lag_in_frames = 0; // Using 2 threads gives a great boost in performance for most systems with // adequate processing power. NB: Going to multiple threads on low end // windows systems can really hurt performance. // http://crbug.com/99179 config->g_threads = (base::SysInfo::NumberOfProcessors() > 2) ? 2 : 1; } ScopedVpxCodec CreateVP8Codec(const webrtc::DesktopSize& size) { ScopedVpxCodec codec(new vpx_codec_ctx_t); // Configure the encoder. vpx_codec_enc_cfg_t config; const vpx_codec_iface_t* algo = vpx_codec_vp8_cx(); CHECK(algo); vpx_codec_err_t ret = vpx_codec_enc_config_default(algo, &config, 0); if (ret != VPX_CODEC_OK) return ScopedVpxCodec(); SetCommonCodecParameters(size, &config); // Value of 2 means using the real time profile. This is basically a // redundant option since we explicitly select real time mode when doing // encoding. config.g_profile = 2; // Clamping the quantizer constrains the worst-case quality and CPU usage. config.rc_min_quantizer = 20; config.rc_max_quantizer = 30; if (vpx_codec_enc_init(codec.get(), algo, &config, 0)) return ScopedVpxCodec(); // Value of 16 will have the smallest CPU load. This turns off subpixel // motion search. if (vpx_codec_control(codec.get(), VP8E_SET_CPUUSED, 16)) return ScopedVpxCodec(); // Use the lowest level of noise sensitivity so as to spend less time // on motion estimation and inter-prediction mode. if (vpx_codec_control(codec.get(), VP8E_SET_NOISE_SENSITIVITY, 0)) return ScopedVpxCodec(); return codec.Pass(); } ScopedVpxCodec CreateVP9Codec(const webrtc::DesktopSize& size, bool lossless_color, bool lossless_encode) { ScopedVpxCodec codec(new vpx_codec_ctx_t); // Configure the encoder. vpx_codec_enc_cfg_t config; const vpx_codec_iface_t* algo = vpx_codec_vp9_cx(); CHECK(algo); vpx_codec_err_t ret = vpx_codec_enc_config_default(algo, &config, 0); if (ret != VPX_CODEC_OK) return ScopedVpxCodec(); SetCommonCodecParameters(size, &config); // Configure VP9 for I420 or I444 source frames. config.g_profile = lossless_color ? kVp9I444ProfileNumber : kVp9I420ProfileNumber; if (lossless_encode) { // Disable quantization entirely, putting the encoder in "lossless" mode. config.rc_min_quantizer = 0; config.rc_max_quantizer = 0; } else { // Lossy encode using the same settings as for VP8. config.rc_min_quantizer = 20; config.rc_max_quantizer = 30; } if (vpx_codec_enc_init(codec.get(), algo, &config, 0)) return ScopedVpxCodec(); // Request the lowest-CPU usage that VP9 supports, which depends on whether // we are encoding lossy or lossless. // Note that this is configured via the same parameter as for VP8. int cpu_used = lossless_encode ? 5 : 6; if (vpx_codec_control(codec.get(), VP8E_SET_CPUUSED, cpu_used)) return ScopedVpxCodec(); // Use the lowest level of noise sensitivity so as to spend less time // on motion estimation and inter-prediction mode. if (vpx_codec_control(codec.get(), VP9E_SET_NOISE_SENSITIVITY, 0)) return ScopedVpxCodec(); return codec.Pass(); } void CreateImage(bool use_i444, const webrtc::DesktopSize& size, scoped_ptr* out_image, scoped_ptr* out_image_buffer) { DCHECK(!size.is_empty()); scoped_ptr image(new vpx_image_t()); memset(image.get(), 0, sizeof(vpx_image_t)); // libvpx seems to require both to be assigned. image->d_w = size.width(); image->w = size.width(); image->d_h = size.height(); image->h = size.height(); // libvpx should derive chroma shifts from|fmt| but currently has a bug: // https://code.google.com/p/webm/issues/detail?id=627 if (use_i444) { image->fmt = VPX_IMG_FMT_I444; image->x_chroma_shift = 0; image->y_chroma_shift = 0; } else { // I420 image->fmt = VPX_IMG_FMT_YV12; image->x_chroma_shift = 1; image->y_chroma_shift = 1; } // libyuv's fast-path requires 16-byte aligned pointers and strides, so pad // the Y, U and V planes' strides to multiples of 16 bytes. const int y_stride = ((image->w - 1) & ~15) + 16; const int uv_unaligned_stride = y_stride >> image->x_chroma_shift; const int uv_stride = ((uv_unaligned_stride - 1) & ~15) + 16; // libvpx accesses the source image in macro blocks, and will over-read // if the image is not padded out to the next macroblock: crbug.com/119633. // Pad the Y, U and V planes' height out to compensate. // Assuming macroblocks are 16x16, aligning the planes' strides above also // macroblock aligned them. DCHECK_EQ(16, kMacroBlockSize); const int y_rows = ((image->h - 1) & ~(kMacroBlockSize-1)) + kMacroBlockSize; const int uv_rows = y_rows >> image->y_chroma_shift; // Allocate a YUV buffer large enough for the aligned data & padding. const int buffer_size = y_stride * y_rows + 2*uv_stride * uv_rows; scoped_ptr image_buffer(new uint8[buffer_size]); // Reset image value to 128 so we just need to fill in the y plane. memset(image_buffer.get(), 128, buffer_size); // Fill in the information for |image_|. unsigned char* uchar_buffer = reinterpret_cast(image_buffer.get()); image->planes[0] = uchar_buffer; image->planes[1] = image->planes[0] + y_stride * y_rows; image->planes[2] = image->planes[1] + uv_stride * uv_rows; image->stride[0] = y_stride; image->stride[1] = uv_stride; image->stride[2] = uv_stride; *out_image = image.Pass(); *out_image_buffer = image_buffer.Pass(); } } // namespace // static scoped_ptr VideoEncoderVpx::CreateForVP8() { return make_scoped_ptr(new VideoEncoderVpx(false)); } // static scoped_ptr VideoEncoderVpx::CreateForVP9() { return make_scoped_ptr(new VideoEncoderVpx(true)); } VideoEncoderVpx::~VideoEncoderVpx() {} void VideoEncoderVpx::SetLosslessEncode(bool want_lossless) { if (use_vp9_ && (want_lossless != lossless_encode_)) { lossless_encode_ = want_lossless; codec_.reset(); // Force encoder re-initialization. } } void VideoEncoderVpx::SetLosslessColor(bool want_lossless) { if (use_vp9_ && (want_lossless != lossless_color_)) { lossless_color_ = want_lossless; codec_.reset(); // Force encoder re-initialization. } } scoped_ptr VideoEncoderVpx::Encode( const webrtc::DesktopFrame& frame) { DCHECK_LE(32, frame.size().width()); DCHECK_LE(32, frame.size().height()); base::TimeTicks encode_start_time = base::TimeTicks::Now(); if (!codec_ || !frame.size().equals(webrtc::DesktopSize(image_->w, image_->h))) { bool ret = Initialize(frame.size()); // TODO(hclam): Handle error better. CHECK(ret) << "Initialization of encoder failed"; // Set now as the base for timestamp calculation. timestamp_base_ = encode_start_time; } // Convert the updated capture data ready for encode. webrtc::DesktopRegion updated_region; PrepareImage(frame, &updated_region); // Update active map based on updated region. PrepareActiveMap(updated_region); // Apply active map to the encoder. vpx_active_map_t act_map; act_map.rows = active_map_height_; act_map.cols = active_map_width_; act_map.active_map = active_map_.get(); if (vpx_codec_control(codec_.get(), VP8E_SET_ACTIVEMAP, &act_map)) { LOG(ERROR) << "Unable to apply active map"; } // Do the actual encoding. int timestamp = (encode_start_time - timestamp_base_).InMilliseconds(); vpx_codec_err_t ret = vpx_codec_encode( codec_.get(), image_.get(), timestamp, 1, 0, VPX_DL_REALTIME); DCHECK_EQ(ret, VPX_CODEC_OK) << "Encoding error: " << vpx_codec_err_to_string(ret) << "\n" << "Details: " << vpx_codec_error(codec_.get()) << "\n" << vpx_codec_error_detail(codec_.get()); // Read the encoded data. vpx_codec_iter_t iter = NULL; bool got_data = false; // TODO(hclam): Make sure we get exactly one frame from the packet. // TODO(hclam): We should provide the output buffer to avoid one copy. scoped_ptr packet( helper_.CreateVideoPacketWithUpdatedRegion(frame, updated_region)); packet->mutable_format()->set_encoding(VideoPacketFormat::ENCODING_VP8); while (!got_data) { const vpx_codec_cx_pkt_t* vpx_packet = vpx_codec_get_cx_data(codec_.get(), &iter); if (!vpx_packet) continue; switch (vpx_packet->kind) { case VPX_CODEC_CX_FRAME_PKT: got_data = true; packet->set_data(vpx_packet->data.frame.buf, vpx_packet->data.frame.sz); break; default: break; } } // Note the time taken to encode the pixel data. packet->set_encode_time_ms( (base::TimeTicks::Now() - encode_start_time).InMillisecondsRoundedUp()); return packet.Pass(); } VideoEncoderVpx::VideoEncoderVpx(bool use_vp9) : use_vp9_(use_vp9), lossless_encode_(false), lossless_color_(false), active_map_width_(0), active_map_height_(0) { if (use_vp9_) { // Use I444 colour space, by default, if specified on the command-line. if (CommandLine::ForCurrentProcess()->HasSwitch(kEnableI444SwitchName)) { SetLosslessColor(true); } } } bool VideoEncoderVpx::Initialize(const webrtc::DesktopSize& size) { DCHECK(use_vp9_ || !lossless_color_); DCHECK(use_vp9_ || !lossless_encode_); codec_.reset(); // (Re)Create the VPX image structure and pixel buffer. CreateImage(lossless_color_, size, &image_, &image_buffer_); // Initialize active map. active_map_width_ = (image_->w + kMacroBlockSize - 1) / kMacroBlockSize; active_map_height_ = (image_->h + kMacroBlockSize - 1) / kMacroBlockSize; active_map_.reset(new uint8[active_map_width_ * active_map_height_]); // (Re)Initialize the codec. if (use_vp9_) { codec_ = CreateVP9Codec(size, lossless_color_, lossless_encode_); } else { codec_ = CreateVP8Codec(size); } return codec_; } void VideoEncoderVpx::PrepareImage(const webrtc::DesktopFrame& frame, webrtc::DesktopRegion* updated_region) { if (frame.updated_region().is_empty()) { updated_region->Clear(); return; } // Align the region to macroblocks, to avoid encoding artefacts. // This also ensures that all rectangles have even-aligned top-left, which // is required for ConvertRGBToYUVWithRect() to work. std::vector aligned_rects; for (webrtc::DesktopRegion::Iterator r(frame.updated_region()); !r.IsAtEnd(); r.Advance()) { const webrtc::DesktopRect& rect = r.rect(); aligned_rects.push_back(AlignRect(webrtc::DesktopRect::MakeLTRB( rect.left(), rect.top(), rect.right(), rect.bottom()))); } DCHECK(!aligned_rects.empty()); updated_region->Clear(); updated_region->AddRects(&aligned_rects[0], aligned_rects.size()); // Clip back to the screen dimensions, in case they're not macroblock aligned. // The conversion routines don't require even width & height, so this is safe // even if the source dimensions are not even. updated_region->IntersectWith( webrtc::DesktopRect::MakeWH(image_->w, image_->h)); // Convert the updated region to YUV ready for encoding. const uint8* rgb_data = frame.data(); const int rgb_stride = frame.stride(); const int y_stride = image_->stride[0]; DCHECK_EQ(image_->stride[1], image_->stride[2]); const int uv_stride = image_->stride[1]; uint8* y_data = image_->planes[0]; uint8* u_data = image_->planes[1]; uint8* v_data = image_->planes[2]; switch (image_->fmt) { case VPX_IMG_FMT_I444: for (webrtc::DesktopRegion::Iterator r(*updated_region); !r.IsAtEnd(); r.Advance()) { const webrtc::DesktopRect& rect = r.rect(); int rgb_offset = rgb_stride * rect.top() + rect.left() * kBytesPerRgbPixel; int yuv_offset = uv_stride * rect.top() + rect.left(); libyuv::ARGBToI444(rgb_data + rgb_offset, rgb_stride, y_data + yuv_offset, y_stride, u_data + yuv_offset, uv_stride, v_data + yuv_offset, uv_stride, rect.width(), rect.height()); } break; case VPX_IMG_FMT_YV12: for (webrtc::DesktopRegion::Iterator r(*updated_region); !r.IsAtEnd(); r.Advance()) { const webrtc::DesktopRect& rect = r.rect(); int rgb_offset = rgb_stride * rect.top() + rect.left() * kBytesPerRgbPixel; int y_offset = y_stride * rect.top() + rect.left(); int uv_offset = uv_stride * rect.top() / 2 + rect.left() / 2; libyuv::ARGBToI420(rgb_data + rgb_offset, rgb_stride, y_data + y_offset, y_stride, u_data + uv_offset, uv_stride, v_data + uv_offset, uv_stride, rect.width(), rect.height()); } break; default: NOTREACHED(); break; } } void VideoEncoderVpx::PrepareActiveMap( const webrtc::DesktopRegion& updated_region) { // Clear active map first. memset(active_map_.get(), 0, active_map_width_ * active_map_height_); // Mark updated areas active. for (webrtc::DesktopRegion::Iterator r(updated_region); !r.IsAtEnd(); r.Advance()) { const webrtc::DesktopRect& rect = r.rect(); int left = rect.left() / kMacroBlockSize; int right = (rect.right() - 1) / kMacroBlockSize; int top = rect.top() / kMacroBlockSize; int bottom = (rect.bottom() - 1) / kMacroBlockSize; DCHECK_LT(right, active_map_width_); DCHECK_LT(bottom, active_map_height_); uint8* map = active_map_.get() + top * active_map_width_; for (int y = top; y <= bottom; ++y) { for (int x = left; x <= right; ++x) map[x] = 1; map += active_map_width_; } } } } // namespace remoting