// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include "base/files/scoped_file.h" #include "base/logging.h" #include "base/memory/scoped_vector.h" #include "base/posix/eintr_wrapper.h" #include "base/posix/unix_domain_socket_linux.h" #include "base/process/process.h" #include "sandbox/linux/services/syscall_wrappers.h" #include "sandbox/linux/tests/unit_tests.h" // Additional tests for base's UnixDomainSocket to make sure it behaves // correctly in the presence of sandboxing functionality (e.g., receiving // PIDs across namespaces). namespace sandbox { namespace { const char kHello[] = "hello"; // If the calling process isn't root, then try using unshare(CLONE_NEWUSER) // to fake it. void FakeRoot() { // If we're already root, then allow test to proceed. if (geteuid() == 0) return; // Otherwise hope the kernel supports unprivileged namespaces. if (unshare(CLONE_NEWUSER) == 0) return; printf("Permission to use CLONE_NEWPID missing; skipping test.\n"); UnitTests::IgnoreThisTest(); } void WaitForExit(pid_t pid) { int status; CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0))); CHECK(WIFEXITED(status)); CHECK_EQ(0, WEXITSTATUS(status)); } base::ProcessId GetParentProcessId(base::ProcessId pid) { // base::GetParentProcessId() is defined as taking a ProcessHandle instead of // a ProcessId, even though it's a POSIX-only function and IDs and Handles // are both simply pid_t on POSIX... :/ base::Process process = base::Process::Open(pid); CHECK(process.IsValid()); base::ProcessId ret = base::GetParentProcessId(process.Handle()); return ret; } // SendHello sends a "hello" to socket fd, and then blocks until the recipient // acknowledges it by calling RecvHello. void SendHello(int fd) { int pipe_fds[2]; CHECK_EQ(0, pipe(pipe_fds)); base::ScopedFD read_pipe(pipe_fds[0]); base::ScopedFD write_pipe(pipe_fds[1]); std::vector send_fds; send_fds.push_back(write_pipe.get()); CHECK(base::UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds)); write_pipe.reset(); // Block until receiver closes their end of the pipe. char ch; CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1))); } // RecvHello receives and acknowledges a "hello" on socket fd, and returns the // process ID of the sender in sender_pid. Optionally, write_pipe can be used // to return a file descriptor, and the acknowledgement will be delayed until // the descriptor is closed. // (Implementation details: SendHello allocates a new pipe, sends us the writing // end alongside the "hello" message, and then blocks until we close the writing // end of the pipe.) void RecvHello(int fd, base::ProcessId* sender_pid, base::ScopedFD* write_pipe = NULL) { // Extra receiving buffer space to make sure we really received only // sizeof(kHello) bytes and it wasn't just truncated to fit the buffer. char buf[sizeof(kHello) + 1]; ScopedVector message_fds; ssize_t n = base::UnixDomainSocket::RecvMsgWithPid( fd, buf, sizeof(buf), &message_fds, sender_pid); CHECK_EQ(sizeof(kHello), static_cast(n)); CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello))); CHECK_EQ(1U, message_fds.size()); if (write_pipe) write_pipe->swap(*message_fds[0]); } // Check that receiving PIDs works across a fork(). SANDBOX_TEST(UnixDomainSocketTest, Fork) { int fds[2]; CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); base::ScopedFD recv_sock(fds[0]); base::ScopedFD send_sock(fds[1]); CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); const pid_t pid = fork(); CHECK_NE(-1, pid); if (pid == 0) { // Child process. recv_sock.reset(); SendHello(send_sock.get()); _exit(0); } // Parent process. send_sock.reset(); base::ProcessId sender_pid; RecvHello(recv_sock.get(), &sender_pid); CHECK_EQ(pid, sender_pid); WaitForExit(pid); } // Similar to Fork above, but forking the child into a new pid namespace. SANDBOX_TEST(UnixDomainSocketTest, Namespace) { FakeRoot(); int fds[2]; CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); base::ScopedFD recv_sock(fds[0]); base::ScopedFD send_sock(fds[1]); CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); CHECK_NE(-1, pid); if (pid == 0) { // Child process. recv_sock.reset(); // Check that we think we're pid 1 in our new namespace. CHECK_EQ(1, sys_getpid()); SendHello(send_sock.get()); _exit(0); } // Parent process. send_sock.reset(); base::ProcessId sender_pid; RecvHello(recv_sock.get(), &sender_pid); CHECK_EQ(pid, sender_pid); WaitForExit(pid); } // Again similar to Fork, but now with nested PID namespaces. SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) { FakeRoot(); int fds[2]; CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); base::ScopedFD recv_sock(fds[0]); base::ScopedFD send_sock(fds[1]); CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); CHECK_NE(-1, pid); if (pid == 0) { // Child process. recv_sock.reset(); const pid_t pid2 = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); CHECK_NE(-1, pid2); if (pid2 != 0) { // Wait for grandchild to run to completion; see comments below. WaitForExit(pid2); // Fallthrough once grandchild has sent its hello and exited. } // Check that we think we're pid 1. CHECK_EQ(1, sys_getpid()); SendHello(send_sock.get()); _exit(0); } // Parent process. send_sock.reset(); // We have two messages to receive: first from the grand-child, // then from the child. for (unsigned iteration = 0; iteration < 2; ++iteration) { base::ProcessId sender_pid; base::ScopedFD pipe_fd; RecvHello(recv_sock.get(), &sender_pid, &pipe_fd); // We need our child and grandchild processes to both be alive for // GetParentProcessId() to return a valid pid, hence the pipe trickery. // (On the first iteration, grandchild is blocked reading from the pipe // until we close it, and child is blocked waiting for grandchild to exit.) switch (iteration) { case 0: // Grandchild's message // Check that sender_pid refers to our grandchild by checking that pid // (our child) is its parent. CHECK_EQ(pid, GetParentProcessId(sender_pid)); break; case 1: // Child's message CHECK_EQ(pid, sender_pid); break; default: NOTREACHED(); } } WaitForExit(pid); } // Tests that GetPeerPid() returns 0 if the peer does not exist in caller's // namespace. SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) { FakeRoot(); int fds[2]; CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); base::ScopedFD send_sock(fds[0]); base::ScopedFD recv_sock(fds[1]); CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get())); const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0); CHECK_NE(-1, pid); if (pid == 0) { // Child process. send_sock.reset(); base::ProcessId sender_pid; RecvHello(recv_sock.get(), &sender_pid); CHECK_EQ(0, sender_pid); _exit(0); } // Parent process. recv_sock.reset(); SendHello(send_sock.get()); WaitForExit(pid); } } // namespace } // namespace sandbox