#include #include #include #include #include #include #include #include #include #include #include "library.h" #include "maps.h" #include "sandbox_impl.h" namespace playground { Maps::Maps(int proc_self_maps) : proc_self_maps_(proc_self_maps), begin_iter_(this, true, false), end_iter_(this, false, true), vsyscall_(0) { Sandbox::SysCalls sys; if (proc_self_maps_ >= 0 && !sys.lseek(proc_self_maps_, 0, SEEK_SET)) { char buf[256] = { 0 }; int len = 0, rc = 1; bool long_line = false; do { if (rc > 0) { rc = Sandbox::read(sys, proc_self_maps_, buf + len, sizeof(buf) - len - 1); if (rc > 0) { len += rc; } } char *ptr = buf; if (!long_line) { long_line = true; unsigned long start = strtoul(ptr, &ptr, 16); unsigned long stop = strtoul(ptr + 1, &ptr, 16); while (*ptr == ' ' || *ptr == '\t') ++ptr; char *perm_ptr = ptr; while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr; std::string perm(perm_ptr, ptr - perm_ptr); unsigned long offset = strtoul(ptr, &ptr, 16); while (*ptr == ' ' || *ptr == '\t') ++ptr; char *id_ptr = ptr; while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr; while (*ptr == ' ' || *ptr == '\t') ++ptr; while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr; std::string id(id_ptr, ptr - id_ptr); while (*ptr == ' ' || *ptr == '\t') ++ptr; char *library_ptr = ptr; while (*ptr && *ptr != ' ' && *ptr != '\t' && *ptr != '\n') ++ptr; std::string library(library_ptr, ptr - library_ptr); bool isVDSO = false; if (library == "[vdso]") { // /proc/self/maps has a misleading file offset in the [vdso] entry. // Override it with a sane value. offset = 0; isVDSO = true; } else if (library == "[vsyscall]") { vsyscall_ = reinterpret_cast(start); } else if (library.empty() || library[0] == '[') { goto skip_entry; } int prot = 0; if (perm.find('r') != std::string::npos) { prot |= PROT_READ; } if (perm.find('w') != std::string::npos) { prot |= PROT_WRITE; } if (perm.find('x') != std::string::npos) { prot |= PROT_EXEC; } if ((prot & (PROT_EXEC | PROT_READ)) == 0) { goto skip_entry; } Library* lib = &libs_[id + ' ' + library]; lib->setLibraryInfo(this); lib->addMemoryRange(reinterpret_cast(start), reinterpret_cast(stop), Elf_Addr(offset), prot, isVDSO); } skip_entry: for (;;) { if (!*ptr || *ptr++ == '\n') { long_line = false; memmove(buf, ptr, len - (ptr - buf)); memset(buf + len - (ptr - buf), 0, ptr - buf); len -= (ptr - buf); break; } } } while (len || long_line); } } Maps::Iterator::Iterator(Maps* maps, bool at_beginning, bool at_end) : maps_(maps), at_beginning_(at_beginning), at_end_(at_end) { } Maps::LibraryMap::iterator& Maps::Iterator::getIterator() const { if (at_beginning_) { iter_ = maps_->libs_.begin(); } else if (at_end_) { iter_ = maps_->libs_.end(); } return iter_; } Maps::Iterator Maps::Iterator::begin() { return maps_->begin_iter_; } Maps::Iterator Maps::Iterator::end() { return maps_->end_iter_; } Maps::Iterator& Maps::Iterator::operator++() { getIterator().operator++(); at_beginning_ = false; return *this; } Maps::Iterator Maps::Iterator::operator++(int i) { getIterator().operator++(i); at_beginning_ = false; return *this; } Library* Maps::Iterator::operator*() const { return &getIterator().operator*().second; } bool Maps::Iterator::operator==(const Maps::Iterator& iter) const { return getIterator().operator==(iter.getIterator()); } bool Maps::Iterator::operator!=(const Maps::Iterator& iter) const { return !operator==(iter); } std::string Maps::Iterator::name() const { return getIterator()->first; } // Test whether a line ends with "[stack]"; used for identifying the // stack entry of /proc/self/maps. static bool isStackLine(char* buf, char* end) { char* ptr = buf; for ( ; *ptr != '\n' && ptr < end; ++ptr) ; if (ptr < end && ptr - 7 > buf) { return (memcmp(ptr - 7, "[stack]", 7) == 0); } return false; } char* Maps::allocNearAddr(char* addr_target, size_t size, int prot) const { // We try to allocate memory within 1.5GB of a target address. This means, // we will be able to perform relative 32bit jumps from the target address. const unsigned long kMaxDistance = 1536 << 20; // In most of the code below, we just care about the numeric value of // the address. const long addr = reinterpret_cast(addr_target); size = (size + 4095) & ~4095; Sandbox::SysCalls sys; if (sys.lseek(proc_self_maps_, 0, SEEK_SET)) { return NULL; } // Iterate through lines of /proc/self/maps to consider each mapped // region one at a time, looking for a gap between regions to allocate. char buf[256] = { 0 }; int len = 0, rc = 1; bool long_line = false; unsigned long gap_start = 0x10000; void* new_addr; do { if (rc > 0) { do { rc = Sandbox::read(sys, proc_self_maps_, buf + len, sizeof(buf) - len - 1); if (rc > 0) { len += rc; } } while (rc > 0 && len < (int)sizeof(buf) - 1); } char *ptr = buf; if (!long_line) { long_line = true; // Maps lines have the form "- ... ". unsigned long gap_end = strtoul(ptr, &ptr, 16); unsigned long map_end = strtoul(ptr + 1, &ptr, 16); // gap_start to gap_end now covers the region of empty space before // the current line. Now we try to see if there's a place within the // gap we can use. if (gap_end - gap_start >= size) { // Is the gap before our target address? if (addr - static_cast(gap_end) >= 0) { if (addr - (gap_end - size) < kMaxDistance) { unsigned long position; if (isStackLine(ptr, buf + len)) { // If we're adjacent to the stack, try to stay away from // the GROWS_DOWN region. Pick the farthest away region that // is still within the gap. if (static_cast(addr) < kMaxDistance || // Underflow protection. static_cast(addr) - kMaxDistance < gap_start) { position = gap_start; } else { position = addr - kMaxDistance; } } else { // Otherwise, take the end of the region. position = gap_end - size; } new_addr = reinterpret_cast(sys.MMAP (reinterpret_cast(position), size, prot, MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0)); if (new_addr != MAP_FAILED) { goto done; } } } else if (gap_start + size - addr < kMaxDistance) { // Gap is after the address. Above checks that we can wrap around // through 0 to a space we'd use. new_addr = reinterpret_cast(sys.MMAP (reinterpret_cast(gap_start), size, prot, MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1 ,0)); if (new_addr != MAP_FAILED) { goto done; } } } gap_start = map_end; } for (;;) { if (!*ptr || *ptr++ == '\n') { long_line = false; memmove(buf, ptr, len - (ptr - buf)); memset(buf + len - (ptr - buf), 0, ptr - buf); len -= (ptr - buf); break; } } } while (len || long_line); new_addr = NULL; done: return reinterpret_cast(new_addr); } } // namespace