// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SANDBOX_SRC_POLICY_ENGINE_OPCODES_H__ #define SANDBOX_SRC_POLICY_ENGINE_OPCODES_H__ #include "sandbox/src/policy_engine_params.h" #include "base/basictypes.h" // The low-level policy is implemented using the concept of policy 'opcodes'. // An opcode is a structure that contains enough information to perform one // comparison against one single input parameter. For example, an opcode can // encode just one of the following comparison: // // - Is input parameter 3 not equal to NULL? // - Does input parameter 2 start with L"c:\\"? // - Is input parameter 5, bit 3 is equal 1? // // Each opcode is in fact equivalent to a function invocation where all // the parameters are known by the opcode except one. So say you have a // function of this form: // bool fn(a, b, c, d) with 4 arguments // // Then an opcode is: // op(fn, b, c, d) // Which stores the function to call and its 3 last arguments // // Then and opcode evaluation is: // op.eval(a) ------------------------> fn(a,b,c,d) // internally calls // // The idea is that complex policy rules can be split into streams of // opcodes which are evaluated in sequence. The evaluation is done in // groups of opcodes that have N comparison opcodes plus 1 action opcode: // // [comparison 1][comparison 2]...[comparison N][action][comparison 1]... // ----- evaluation order-----------> // // Each opcode group encodes one high-level policy rule. The rule applies // only if all the conditions on the group evaluate to true. The action // opcode contains the policy outcome for that particular rule. // // Note that this header contains the main building blocks of low-level policy // but not the low level policy class. namespace sandbox { // These are the possible policy outcomes. Note that some of them might // not apply and can be removed. Also note that The following values only // specify what to do, not how to do it and it is acceptable given specific // cases to ignore the policy outcome. enum EvalResult { // Comparison opcode values: EVAL_TRUE, // Opcode condition evaluated true. EVAL_FALSE, // Opcode condition evaluated false. EVAL_ERROR, // Opcode condition generated an error while evaluating. // Action opcode values: ASK_BROKER, // The target must generate an IPC to the broker. On the broker // side, this means grant access to the resource. DENY_ACCESS, // No access granted to the resource. GIVE_READONLY, // Give readonly access to the resource. GIVE_ALLACCESS, // Give full access to the resource. GIVE_CACHED, // IPC is not required. Target can return a cached handle. GIVE_FIRST, // TODO(cpu) SIGNAL_ALARM, // Unusual activity. Generate an alarm. FAKE_SUCCESS, // Do not call original function. Just return 'success'. FAKE_ACCESS_DENIED, // Do not call original function. Just return 'denied' // and do not do IPC. TERMINATE_PROCESS, // Destroy target process. Do IPC as well. }; // The following are the implemented opcodes. enum OpcodeID { OP_ALWAYS_FALSE, // Evaluates to false (EVAL_FALSE). OP_ALWAYS_TRUE, // Evaluates to true (EVAL_TRUE). OP_NUMBER_MATCH, // Match a 32-bit integer as n == a. OP_ULONG_MATCH_RANGE, // Match an ulong integer as a <= n <= b. OP_ULONG_AND_MATCH, // Match using bitwise AND; as in: n & a != 0. OP_WSTRING_MATCH, // Match a string for equality. OP_ACTION // Evaluates to an action opcode. }; // Options that apply to every opcode. They are specified when creating // each opcode using OpcodeFactory::MakeOpXXXXX() family of functions // Do nothing special. const uint32 kPolNone = 0; // Convert EVAL_TRUE into EVAL_FALSE and vice-versa. This allows to express // negated conditions such as if ( a && !b). const uint32 kPolNegateEval = 1; // Zero the MatchContext context structure. This happens after the opcode // is evaluated. const uint32 kPolClearContext = 2; // Use OR when evaluating this set of opcodes. The policy evaluator by default // uses AND when evaluating. Very helpful when // used with kPolNegateEval. For example if you have a condition best expressed // as if(! (a && b && c)), the use of this flags allows it to be expressed as // if ((!a) || (!b) || (!c)). const uint32 kPolUseOREval = 4; // Keeps the evaluation state between opcode evaluations. This is used // for string matching where the next opcode needs to continue matching // from the last character position from the current opcode. The match // context is preserved across opcode evaluation unless an opcode specifies // as an option kPolClearContext. struct MatchContext { size_t position; uint32 options; MatchContext() { Clear(); } void Clear() { position = 0; options = 0; } }; // Models a policy opcode; that is a condition evaluation were all the // arguments but one are stored in objects of this class. Use OpcodeFactory // to create objects of this type. // This class is just an implementation artifact and not exposed to the // API clients or visible in the intercepted service. Internally, an // opcode is just: // - An integer that identifies the actual opcode. // - An index to indicate which one is the input argument // - An array of arguments. // While an OO hierarchy of objects would have been a natural choice, the fact // that 1) this code can execute before the CRT is loaded, presents serious // problems in terms of guarantees about the actual state of the vtables and // 2) because the opcode objects are generated in the broker process, we need to // use plain objects. To preserve some minimal type safety templates are used // when possible. class PolicyOpcode { friend class OpcodeFactory; public: // Evaluates the opcode. For a typical comparison opcode the return value // is EVAL_TRUE or EVAL_FALSE. If there was an error in the evaluation the // the return is EVAL_ERROR. If the opcode is an action opcode then the // return can take other values such as ASK_BROKER. // parameters: An array of all input parameters. This argument is normally // created by the macros POLPARAMS_BEGIN() POLPARAMS_END. // count: The number of parameters passed as first argument. // match: The match context that is persisted across the opcode evaluation // sequence. EvalResult Evaluate(const ParameterSet* parameters, size_t count, MatchContext* match); // Retrieves a stored argument by index. Valid index values are // from 0 to < kArgumentCount. template void GetArgument(size_t index, T* argument) const { COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size); *argument = *reinterpret_cast(&arguments_[index].mem); } // Sets a stored argument by index. Valid index values are // from 0 to < kArgumentCount. template void SetArgument(size_t index, const T& argument) { COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size); *reinterpret_cast(&arguments_[index].mem) = argument; } // Retrieves the actual address of an string argument. When using // GetArgument() to retrieve an index that contains a string, the returned // value is just an offset to the actual string. // index: the stored string index. Valid values are from 0 // to < kArgumentCount. const wchar_t* GetRelativeString(size_t index) const { ptrdiff_t str_delta = 0; GetArgument(index, &str_delta); const char* delta = reinterpret_cast(this) + str_delta; return reinterpret_cast(delta); } // Returns true if this opcode is an action opcode without actually // evaluating it. Used to do a quick scan forward to the next opcode group. bool IsAction() const { return (OP_ACTION == opcode_id_); }; // Returns the opcode type. OpcodeID GetID() const { return opcode_id_; } // Returns the stored options such as kPolNegateEval and others. uint32 GetOptions() const { return options_; } // Sets the stored options such as kPolNegateEval. void SetOptions(int16 options) { options_ = options; } private: static const size_t kArgumentCount = 4; // The number of supported argument. struct OpcodeArgument { UINT_PTR mem; }; // Better define placement new in the class instead of relying on the // global definition which seems to be fubared. void* operator new(size_t, void* location) { return location; } // Helper function to evaluate the opcode. The parameters have the same // meaning that in Evaluate(). EvalResult EvaluateHelper(const ParameterSet* parameters, MatchContext* match); OpcodeID opcode_id_; int16 parameter_; int16 options_; OpcodeArgument arguments_[PolicyOpcode::kArgumentCount]; }; enum StringMatchOptions { CASE_SENSITIVE = 0, // Pay or Not attention to the case as defined by CASE_INSENSITIVE = 1, // RtlCompareUnicodeString windows API. EXACT_LENGHT = 2 // Don't do substring match. Do full string match. }; // Opcodes that do string comparisons take a parameter that is the starting // position to perform the comparison so we can do substring matching. There // are two special values: // // Start from the current position and compare strings advancing forward until // a match is found if any. Similar to CRT strstr(). const int kSeekForward = -1; // Perform a match with the end of the string. It only does a single comparison. const int kSeekToEnd = 0xfffff; // A PolicyBuffer is a variable size structure that contains all the opcodes // that are to be created or evaluated in sequence. struct PolicyBuffer { size_t opcode_count; PolicyOpcode opcodes[1]; }; // Helper class to create any opcode sequence. This class is normally invoked // only by the high level policy module or when you need to handcraft a special // policy. // The factory works by creating the opcodes using a chunk of memory given // in the constructor. The opcodes themselves are allocated from the beginning // (top) of the memory, while any string that an opcode needs is allocated from // the end (bottom) of the memory. // // In essence: // // low address ---> [opcode 1] // [opcode 2] // [opcode 3] // | | <--- memory_top_ // | free | // | | // | | <--- memory_bottom_ // [string 1] // high address --> [string 2] // // Note that this class does not keep track of the number of opcodes made and // it is designed to be a building block for low-level policy. // // Note that any of the MakeOpXXXXX member functions below can return NULL on // failure. When that happens opcode sequence creation must be aborted. class OpcodeFactory { public: // memory: base pointer to a chunk of memory where the opcodes are created. // memory_size: the size in bytes of the memory chunk. OpcodeFactory(char* memory, size_t memory_size) : memory_top_(memory) { memory_bottom_ = &memory_top_[memory_size]; } // policy: contains the raw memory where the opcodes are created. // memory_size: contains the actual size of the policy argument. OpcodeFactory(PolicyBuffer* policy, size_t memory_size) { memory_top_ = reinterpret_cast(&policy->opcodes[0]); memory_bottom_ = &memory_top_[memory_size]; } // Creates an OpAlwaysFalse opcode. PolicyOpcode* MakeOpAlwaysFalse(uint32 options); // Creates an OpAlwaysFalse opcode. PolicyOpcode* MakeOpAlwaysTrue(uint32 options); // Creates an OpAction opcode. // action: The action to return when Evaluate() is called. PolicyOpcode* MakeOpAction(EvalResult action, uint32 options); // Creates an OpNumberMatch opcode. // selected_param: index of the input argument. It must be a ulong or the // evaluation result will generate a EVAL_ERROR. // match: the number to compare against the selected_param. PolicyOpcode* MakeOpNumberMatch(int16 selected_param, unsigned long match, uint32 options); // Creates an OpNumberMatch opcode (void pointers are cast to numbers). // selected_param: index of the input argument. It must be an void* or the // evaluation result will generate a EVAL_ERROR. // match: the pointer numeric value to compare against selected_param. PolicyOpcode* MakeOpVoidPtrMatch(int16 selected_param, const void* match, uint32 options); // Creates an OpUlongMatchRange opcode using the memory passed in the ctor. // selected_param: index of the input argument. It must be a ulong or the // evaluation result will generate a EVAL_ERROR. // lower_bound, upper_bound: the range to compare against selected_param. PolicyOpcode* MakeOpUlongMatchRange(int16 selected_param, unsigned long lower_bound, unsigned long upper_bound, uint32 options); // Creates an OpWStringMatch opcode using the raw memory passed in the ctor. // selected_param: index of the input argument. It must be a wide string // pointer or the evaluation result will generate a EVAL_ERROR. // match_str: string to compare against selected_param. // start_position: when its value is from 0 to < 0x7fff it indicates an // offset from the selected_param string where to perform the comparison. If // the value is SeekForward then a substring search is performed. If the // value is SeekToEnd the comparison is performed against the last part of // the selected_param string. // Note that the range in the position (0 to 0x7fff) is dictated by the // current implementation. // match_opts: Indicates additional matching flags. Currently CaseInsensitive // is supported. PolicyOpcode* MakeOpWStringMatch(int16 selected_param, const wchar_t* match_str, int start_position, StringMatchOptions match_opts, uint32 options); // Creates an OpUlongAndMatch opcode using the raw memory passed in the ctor. // selected_param: index of the input argument. It must be ulong or the // evaluation result will generate a EVAL_ERROR. // match: the value to bitwise AND against selected_param. PolicyOpcode* MakeOpUlongAndMatch(int16 selected_param, unsigned long match, uint32 options); private: // Constructs the common part of every opcode. selected_param is the index // of the input param to use when evaluating the opcode. Pass -1 in // selected_param to indicate that no input parameter is required. PolicyOpcode* MakeBase(OpcodeID opcode_id, uint32 options, int16 selected_param); // Allocates (and copies) a string (of size length) inside the buffer and // returns the displacement with respect to start. ptrdiff_t AllocRelative(void* start, const wchar_t* str, size_t lenght); // Returns the available memory to make opcodes. size_t memory_size() const { return memory_bottom_ - memory_top_; } // Points to the lowest currently available address of the memory // used to make the opcodes. This pointer increments as opcodes are made. char* memory_top_; // Points to the highest currently available address of the memory // used to make the opcodes. This pointer decrements as opcode strings are // allocated. char* memory_bottom_; DISALLOW_COPY_AND_ASSIGN(OpcodeFactory); }; } // namespace sandbox #endif // SANDBOX_SRC_POLICY_ENGINE_OPCODES_H__