// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/src/service_resolver.h" #include "base/logging.h" #include "base/scoped_ptr.h" #include "sandbox/src/sandbox_utils.h" #include "sandbox/src/win_utils.h" namespace { #pragma pack(push, 1) const BYTE kMovEax = 0xB8; const BYTE kMovEdx = 0xBA; const USHORT kCallPtrEdx = 0x12FF; const USHORT kCallEdx = 0xD2FF; const BYTE kRet = 0xC2; const BYTE kNop = 0x90; const USHORT kJmpEdx = 0xE2FF; const USHORT kXorEcx = 0xC933; const ULONG kLeaEdx = 0x0424548D; const ULONG kCallFs1 = 0xC015FF64; const USHORT kCallFs2 = 0; const BYTE kCallFs3 = 0; const BYTE kAddEsp1 = 0x83; const USHORT kAddEsp2 = 0x4C4; const BYTE kJmp32 = 0xE9; const int kMaxService = 1000; // Service code for 32 bit systems. // NOTE: on win2003 "call dword ptr [edx]" is "call edx". struct ServiceEntry { // this struct contains roughly the following code: // 00 mov eax,25h // 05 mov edx,offset SharedUserData!SystemCallStub (7ffe0300) // 0a call dword ptr [edx] // 0c ret 2Ch // 0f nop BYTE mov_eax; // = B8 ULONG service_id; BYTE mov_edx; // = BA ULONG stub; USHORT call_ptr_edx; // = FF 12 BYTE ret; // = C2 USHORT num_params; BYTE nop; ULONG pad1; // Extend the structure to be the same size as the ULONG pad2; // 64 version (Wow64Entry) }; // Service code for a 32 bit process running on a 64 bit os. struct Wow64Entry { // This struct may contain one of two versions of code: // 1. For XP, Vista and 2K3: // 00 b852000000 mov eax, 25h // 05 33c9 xor ecx, ecx // 07 8d542404 lea edx, [esp + 4] // 0b 64ff15c0000000 call dword ptr fs:[0C0h] // 12 c22c00 ret 2Ch // // 2. For Windows 7: // 00 b852000000 mov eax, 25h // 05 33c9 xor ecx, ecx // 07 8d542404 lea edx, [esp + 4] // 0b 64ff15c0000000 call dword ptr fs:[0C0h] // 12 83c404 add esp, 4 // 15 c22c00 ret 2Ch // // So we base the structure on the bigger one: BYTE mov_eax; // = B8 ULONG service_id; USHORT xor_ecx; // = 33 C9 ULONG lea_edx; // = 8D 54 24 04 ULONG call_fs1; // = 64 FF 15 C0 USHORT call_fs2; // = 00 00 BYTE call_fs3; // = 00 BYTE add_esp1; // = 83 or ret USHORT add_esp2; // = C4 04 or num_params BYTE ret; // = C2 USHORT num_params; }; // Make sure that relaxed patching works as expected. COMPILE_ASSERT(sizeof(ServiceEntry) == sizeof(Wow64Entry), wrong_service_len); struct ServiceFullThunk { union { ServiceEntry original; Wow64Entry wow_64; }; int internal_thunk; // Dummy member to the beginning of the internal thunk. }; #pragma pack(pop) }; // namespace namespace sandbox { NTSTATUS ServiceResolverThunk::Setup(const void* target_module, const void* interceptor_module, const char* target_name, const char* interceptor_name, const void* interceptor_entry_point, void* thunk_storage, size_t storage_bytes, size_t* storage_used) { NTSTATUS ret = Init(target_module, interceptor_module, target_name, interceptor_name, interceptor_entry_point, thunk_storage, storage_bytes); if (!NT_SUCCESS(ret)) return ret; size_t thunk_bytes = GetThunkSize(); scoped_array thunk_buffer(new char[thunk_bytes]); ServiceFullThunk* thunk = reinterpret_cast( thunk_buffer.get()); if (!IsFunctionAService(&thunk->original) && (!relaxed_ || !SaveOriginalFunction(&thunk->original, thunk_storage))) return STATUS_UNSUCCESSFUL; ret = PerformPatch(thunk, thunk_storage); if (NULL != storage_used) *storage_used = thunk_bytes; return ret; } size_t ServiceResolverThunk::GetThunkSize() const { return offsetof(ServiceFullThunk, internal_thunk) + GetInternalThunkSize(); } bool ServiceResolverThunk::IsFunctionAService(void* local_thunk) const { ServiceEntry function_code; SIZE_T read; if (!::ReadProcessMemory(process_, target_, &function_code, sizeof(function_code), &read)) return false; if (sizeof(function_code) != read) return false; if (kMovEax != function_code.mov_eax || kMovEdx != function_code.mov_edx || (kCallPtrEdx != function_code.call_ptr_edx && kCallEdx != function_code.call_ptr_edx) || kRet != function_code.ret) return false; // Find the system call pointer if we don't already have it. if (kCallEdx != function_code.call_ptr_edx) { DWORD ki_system_call; if (!::ReadProcessMemory(process_, bit_cast(function_code.stub), &ki_system_call, sizeof(ki_system_call), &read)) return false; if (sizeof(ki_system_call) != read) return false; HMODULE module_1, module_2; // last check, call_stub should point to a KiXXSystemCall function on ntdll if (!GetModuleHandleHelper(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, bit_cast(ki_system_call), &module_1)) return false; if (NULL != ntdll_base_) { // This path is only taken when running the unit tests. We want to be // able to patch a buffer in memory, so target_ is not inside ntdll. module_2 = ntdll_base_; } else { if (!GetModuleHandleHelper( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, reinterpret_cast(target_), &module_2)) { return false; } } if (module_1 != module_2) return false; } // Save the verified code memcpy(local_thunk, &function_code, sizeof(function_code)); return true; } NTSTATUS ServiceResolverThunk::PerformPatch(void* local_thunk, void* remote_thunk) { ServiceEntry intercepted_code; size_t bytes_to_write = sizeof(intercepted_code); ServiceFullThunk *full_local_thunk = reinterpret_cast( local_thunk); ServiceFullThunk *full_remote_thunk = reinterpret_cast( remote_thunk); // patch the original code memcpy(&intercepted_code, &full_local_thunk->original, sizeof(intercepted_code)); intercepted_code.mov_eax = kMovEax; intercepted_code.service_id = full_local_thunk->original.service_id; intercepted_code.mov_edx = kMovEdx; intercepted_code.stub = bit_cast(&full_remote_thunk->internal_thunk); intercepted_code.call_ptr_edx = kJmpEdx; if (!win2k_) { intercepted_code.ret = kRet; intercepted_code.num_params = full_local_thunk->original.num_params; intercepted_code.nop = kNop; } else { bytes_to_write = offsetof(ServiceEntry, ret); } if (relative_jump_) { intercepted_code.mov_eax = kJmp32; intercepted_code.service_id = relative_jump_; bytes_to_write = offsetof(ServiceEntry, mov_edx); } // setup the thunk SetInternalThunk(&full_local_thunk->internal_thunk, GetInternalThunkSize(), remote_thunk, interceptor_); size_t thunk_size = GetThunkSize(); // copy the local thunk buffer to the child SIZE_T written; if (!::WriteProcessMemory(process_, remote_thunk, local_thunk, thunk_size, &written)) return STATUS_UNSUCCESSFUL; if (thunk_size != written) return STATUS_UNSUCCESSFUL; // and now change the function to intercept, on the child if (NULL != ntdll_base_) { // running a unit test if (!::WriteProcessMemory(process_, target_, &intercepted_code, bytes_to_write, &written)) return STATUS_UNSUCCESSFUL; } else { if (!WriteProtectedChildMemory(process_, target_, &intercepted_code, bytes_to_write)) return STATUS_UNSUCCESSFUL; } return STATUS_SUCCESS; } bool ServiceResolverThunk::SaveOriginalFunction(void* local_thunk, void* remote_thunk) { ServiceEntry function_code; SIZE_T read; if (!::ReadProcessMemory(process_, target_, &function_code, sizeof(function_code), &read)) return false; if (sizeof(function_code) != read) return false; if (kJmp32 == function_code.mov_eax) { // Plain old entry point patch. The relative jump address follows it. ULONG relative = function_code.service_id; // First, fix our copy of their patch. relative += bit_cast(target_) - bit_cast(remote_thunk); function_code.service_id = relative; // And now, remember how to re-patch it. ServiceFullThunk *full_thunk = reinterpret_cast(remote_thunk); const ULONG kJmp32Size = 5; relative_jump_ = bit_cast(&full_thunk->internal_thunk) - bit_cast(target_) - kJmp32Size; } // Save the verified code memcpy(local_thunk, &function_code, sizeof(function_code)); return true; } bool Wow64ResolverThunk::IsFunctionAService(void* local_thunk) const { Wow64Entry function_code; SIZE_T read; if (!::ReadProcessMemory(process_, target_, &function_code, sizeof(function_code), &read)) return false; if (sizeof(function_code) != read) return false; if (kMovEax != function_code.mov_eax || kXorEcx != function_code.xor_ecx || kLeaEdx != function_code.lea_edx || kCallFs1 != function_code.call_fs1 || kCallFs2 != function_code.call_fs2 || kCallFs3 != function_code.call_fs3) return false; if ((kAddEsp1 == function_code.add_esp1 && kAddEsp2 == function_code.add_esp2 && kRet == function_code.ret) || kRet == function_code.add_esp1) { // Save the verified code memcpy(local_thunk, &function_code, sizeof(function_code)); return true; } return false; } bool Win2kResolverThunk::IsFunctionAService(void* local_thunk) const { ServiceEntry function_code; SIZE_T read; if (!::ReadProcessMemory(process_, target_, &function_code, sizeof(function_code), &read)) return false; if (sizeof(function_code) != read) return false; if (kMovEax != function_code.mov_eax || function_code.service_id > kMaxService) return false; // Save the verified code memcpy(local_thunk, &function_code, sizeof(function_code)); return true; } } // namespace sandbox