// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/logging.h" #include "base/scoped_ptr.h" #include "sandbox/src/sharedmem_ipc_server.h" #include "sandbox/src/sharedmem_ipc_client.h" #include "sandbox/src/sandbox.h" #include "sandbox/src/sandbox_types.h" #include "sandbox/src/crosscall_params.h" #include "sandbox/src/crosscall_server.h" namespace sandbox { SharedMemIPCServer::SharedMemIPCServer(HANDLE target_process, DWORD target_process_id, HANDLE target_job, ThreadProvider* thread_provider, Dispatcher* dispatcher) : client_control_(NULL), thread_provider_(thread_provider), target_process_(target_process), target_process_id_(target_process_id), target_job_object_(target_job), call_dispatcher_(dispatcher) { } SharedMemIPCServer::~SharedMemIPCServer() { // Free the wait handles associated with the thread pool. if (!thread_provider_->UnRegisterWaits(this)) { // Better to leak than to crash. return; } // Free the IPC signal events. ServerContexts::iterator it; for (it = server_contexts_.begin(); it != server_contexts_.end(); ++it) { ServerControl* context = (*it); ::CloseHandle(context->ping_event); ::CloseHandle(context->pong_event); delete context; } } bool SharedMemIPCServer::Init(void* shared_mem, size_t shared_size, size_t channel_size) { // The shared memory needs to be at least as big as a channel. if (shared_size < channel_size) { return false; } // The channel size should be aligned. if (0 != (channel_size % 32)) { return false; } // Calculate how many channels we can fit in the shared memory. shared_size -= offsetof(IPCControl, channels); size_t channel_count = shared_size / (sizeof(ChannelControl) + channel_size); // If we cannot fit even one channel we bail out. if (0 == channel_count) { return false; } // Calculate the start of the first channel. size_t base_start = (sizeof(ChannelControl)* channel_count) + offsetof(IPCControl, channels); client_control_ = reinterpret_cast(shared_mem); client_control_->channels_count = 0; // This is the initialization that we do per-channel. Basically: // 1) make two events (ping & pong) // 2) create handles to the events for the client and the server. // 3) initialize the channel (client_context) with the state. // 4) initialize the server side of the channel (service_context). // 5) call the thread provider RegisterWait to register the ping events. for (size_t ix = 0; ix != channel_count; ++ix) { ChannelControl* client_context = &client_control_->channels[ix]; ServerControl* service_context = new ServerControl; server_contexts_.push_back(service_context); if (!MakeEvents(&service_context->ping_event, &service_context->pong_event, &client_context->ping_event, &client_context->pong_event)) { return false; } client_context->channel_base = base_start; client_context->state = kFreeChannel; // Note that some of these values are available as members of this // object but we put them again into the service_context because we // will be called on a static method (ThreadPingEventReady) service_context->shared_base = reinterpret_cast(shared_mem); service_context->channel_size = channel_size; service_context->channel = client_context; service_context->channel_buffer = service_context->shared_base + client_context->channel_base; service_context->dispatcher = call_dispatcher_; service_context->target_info.process = target_process_; service_context->target_info.process_id = target_process_id_; service_context->target_info.job_object = target_job_object_; // Advance to the next channel. base_start += channel_size; // Register the ping event with the threadpool. thread_provider_->RegisterWait(this, service_context->ping_event, ThreadPingEventReady, service_context); } // We create a mutex that the server locks. If the server dies unexpectedly, // the thread that owns it will fail to release the lock and windows will // report to the target (when it tries to acquire it) that the wait was // abandoned. Note: We purposely leak the local handle because we want it to // be closed by Windows itself so it is properly marked as abandoned if the // server dies. if (!::DuplicateHandle(::GetCurrentProcess(), ::CreateMutexW(NULL, TRUE, NULL), target_process_, &client_control_->server_alive, SYNCHRONIZE | EVENT_MODIFY_STATE, FALSE, 0)) { return false; } // This last setting indicates to the client all is setup. client_control_->channels_count = channel_count; return true; } // Releases memory allocated for IPC arguments, if needed. void ReleaseArgs(const IPCParams* ipc_params, void* args[kMaxIpcParams]) { for (size_t i = 0; i < kMaxIpcParams; i++) { if (args[i]) { switch (ipc_params->args[i]) { case WCHAR_TYPE: { delete reinterpret_cast(args[i]); args[i] = NULL; break; } case INOUTPTR_TYPE: { delete reinterpret_cast(args[i]); args[i] = NULL; break; } default: break; } } } } // Fills up the list of arguments (args and ipc_params) for an IPC call. bool GetArgs(CrossCallParamsEx* params, IPCParams* ipc_params, void* args[kMaxIpcParams]) { if (kMaxIpcParams < params->GetParamsCount()) return false; for (size_t i = 0; i < params->GetParamsCount(); i++) { size_t size; ArgType type; args[i] = params->GetRawParameter(i, &size, &type); if (args[i]) { ipc_params->args[i] = type; switch (type) { case WCHAR_TYPE: { std::wstring* data = new std::wstring; if (!params->GetParameterStr(i, data)) { args[i] = 0; ReleaseArgs(ipc_params, args); return false; } args[i] = data; break; } case ULONG_TYPE: { ULONG data; if (!params->GetParameter32(i, &data)) { ReleaseArgs(ipc_params, args); return false; } args[i] = bit_cast(data); break; } case INOUTPTR_TYPE: { if (!args[i]) { ReleaseArgs(ipc_params, args); return false; } CountedBuffer* buffer = new CountedBuffer(args[i] , size); args[i] = buffer; break; } default: break; } } } return true; } bool SharedMemIPCServer::InvokeCallback(const ServerControl* service_context, void* ipc_buffer, CrossCallReturn* call_result) { // Set the default error code; SetCallError(SBOX_ERROR_INVALID_IPC, call_result); size_t output_size = 0; // Parse, verify and copy the message. The handler operates on a copy // of the message so the client cannot play dirty tricks by changing the // data in the channel while the IPC is being processed. scoped_ptr params( CrossCallParamsEx::CreateFromBuffer(ipc_buffer, service_context->channel_size, &output_size)); if (!params.get()) return false; uint32 tag = params->GetTag(); COMPILE_ASSERT(0 == INVALID_TYPE, Incorrect_type_enum); IPCParams ipc_params = {0} ; ipc_params.ipc_tag = tag; void* args[kMaxIpcParams]; if (!GetArgs(params.get(), &ipc_params, args)) return false; IPCInfo ipc_info = {0}; ipc_info.ipc_tag = tag; ipc_info.client_info = &service_context->target_info; Dispatcher* dispatcher = service_context->dispatcher; DCHECK(dispatcher); bool error = true; Dispatcher* handler = NULL; Dispatcher::CallbackGeneric callback_generic; handler = dispatcher->OnMessageReady(&ipc_params, &callback_generic); if (handler) { switch (params->GetParamsCount()) { case 0: { // Ask the IPC dispatcher if she can service this IPC. Dispatcher::Callback0 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info)) break; error = false; break; } case 1: { Dispatcher::Callback1 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0])) break; error = false; break; } case 2: { Dispatcher::Callback2 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1])) break; error = false; break; } case 3: { Dispatcher::Callback3 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2])) break; error = false; break; } case 4: { Dispatcher::Callback4 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3])) break; error = false; break; } case 5: { Dispatcher::Callback5 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3], args[4])) break; error = false; break; } case 6: { Dispatcher::Callback6 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3], args[4], args[5])) break; error = false; break; } case 7: { Dispatcher::Callback7 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3], args[4], args[5], args[6])) break; error = false; break; } case 8: { Dispatcher::Callback8 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7])) break; error = false; break; } case 9: { Dispatcher::Callback9 callback = reinterpret_cast(callback_generic); if (!(handler->*callback)(&ipc_info, args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8])) break; error = false; break; } default: { NOTREACHED(); break; } } } if (error) { if (handler) SetCallError(SBOX_ERROR_FAILED_IPC, call_result); } else { memcpy(call_result, &ipc_info.return_info, sizeof(*call_result)); SetCallSuccess(call_result); if (params->IsInOut()) { // Maybe the params got changed by the broker. We need to upadte the // memory section. memcpy(ipc_buffer, params.get(), output_size); } } ReleaseArgs(&ipc_params, args); return !error; } // This function gets called by a thread from the thread pool when a // ping event fires. The context is the same as passed in the RegisterWait() // call above. void __stdcall SharedMemIPCServer::ThreadPingEventReady(void* context, unsigned char) { if (NULL == context) { DCHECK(false); return; } ServerControl* service_context = reinterpret_cast(context); // Since the event fired, the channel *must* be busy. Change to kAckChannel // while we service it. LONG last_state = ::InterlockedCompareExchange(&service_context->channel->state, kAckChannel, kBusyChannel); if (kBusyChannel != last_state) { DCHECK(false); return; } // Prepare the result structure. At this point we will return some result // even if the IPC is invalid, malformed or has no handler. CrossCallReturn call_result = {0}; void* buffer = service_context->channel_buffer; InvokeCallback(service_context, buffer, &call_result); // Copy the answer back into the channel and signal the pong event. This // should wake up the client so he can finish the the ipc cycle. CrossCallParams* call_params = reinterpret_cast(buffer); memcpy(call_params->GetCallReturn(), &call_result, sizeof(call_result)); ::InterlockedExchange(&service_context->channel->state, kAckChannel); ::SetEvent(service_context->pong_event); } bool SharedMemIPCServer::MakeEvents(HANDLE* server_ping, HANDLE* server_pong, HANDLE* client_ping, HANDLE* client_pong) { // Note that the IPC client has no right to delete the events. That would // cause problems. The server *owns* the events. const DWORD kDesiredAccess = SYNCHRONIZE | EVENT_MODIFY_STATE ; // The events are auto reset, and start not signaled. *server_ping = ::CreateEventW(NULL, FALSE, FALSE, NULL); if (!::DuplicateHandle(::GetCurrentProcess(), *server_ping, target_process_, client_ping, kDesiredAccess, FALSE, 0)) { return false; } *server_pong = ::CreateEventW(NULL, FALSE, FALSE, NULL); if (!::DuplicateHandle(::GetCurrentProcess(), *server_pong, target_process_, client_pong, kDesiredAccess, FALSE, 0)) { return false; } return true; } } // namespace sandbox