// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/win/src/sandbox_types.h" #include "sandbox/win/src/sandbox_nt_types.h" #include "sandbox/win/src/policy_engine_params.h" #include "sandbox/win/src/policy_engine_opcodes.h" #include "testing/gtest/include/gtest/gtest.h" #define INIT_GLOBAL_RTL(member) \ g_nt.member = reinterpret_cast( \ ::GetProcAddress(ntdll, #member)); \ if (NULL == g_nt.member) \ return false namespace sandbox { const size_t kOpcodeMemory = 1024; SANDBOX_INTERCEPT NtExports g_nt; bool SetupNtdllImports() { HMODULE ntdll = ::GetModuleHandle(kNtdllName); INIT_GLOBAL_RTL(RtlAllocateHeap); INIT_GLOBAL_RTL(RtlAnsiStringToUnicodeString); INIT_GLOBAL_RTL(RtlCompareUnicodeString); INIT_GLOBAL_RTL(RtlCreateHeap); INIT_GLOBAL_RTL(RtlDestroyHeap); INIT_GLOBAL_RTL(RtlFreeHeap); INIT_GLOBAL_RTL(_strnicmp); INIT_GLOBAL_RTL(strlen); INIT_GLOBAL_RTL(wcslen); return true; } TEST(PolicyEngineTest, ParameterSetTest) { void* pv1 = reinterpret_cast(0x477EAA5); const void* pv2 = reinterpret_cast(0x987654); ParameterSet pset1 = ParamPickerMake(pv1); ParameterSet pset2 = ParamPickerMake(pv2); // Test that we can store and retrieve a void pointer: const void* result1 =0; uint32 result2 = 0; EXPECT_TRUE(pset1.Get(&result1)); EXPECT_TRUE(pv1 == result1); EXPECT_FALSE(pset1.Get(&result2)); EXPECT_TRUE(pset2.Get(&result1)); EXPECT_TRUE(pv2 == result1); EXPECT_FALSE(pset2.Get(&result2)); // Test that we can store and retrieve a uint32: uint32 number = 12747; ParameterSet pset3 = ParamPickerMake(number); EXPECT_FALSE(pset3.Get(&result1)); EXPECT_TRUE(pset3.Get(&result2)); EXPECT_EQ(number, result2); // Test that we can store and retrieve a string: const wchar_t* txt = L"S231L"; ParameterSet pset4 = ParamPickerMake(txt); const wchar_t* result3 = NULL; EXPECT_TRUE(pset4.Get(&result3)); EXPECT_EQ(0, wcscmp(txt, result3)); } TEST(PolicyEngineTest, OpcodeConstraints) { // Test that PolicyOpcode has no virtual functions // because these objects are copied over to other processes // so they cannot have vtables. EXPECT_FALSE(__is_polymorphic(PolicyOpcode)); // Keep developers from adding smarts to the opcodes which should // be pretty much a bag of bytes with a OO interface. EXPECT_TRUE(__has_trivial_destructor(PolicyOpcode)); EXPECT_TRUE(__has_trivial_constructor(PolicyOpcode)); EXPECT_TRUE(__has_trivial_copy(PolicyOpcode)); } TEST(PolicyEngineTest, TrueFalseOpcodes) { void* dummy = NULL; ParameterSet ppb1 = ParamPickerMake(dummy); char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); // This opcode always evaluates to true. PolicyOpcode* op1 = opcode_maker.MakeOpAlwaysFalse(kPolNone); ASSERT_NE(nullptr, op1); EXPECT_EQ(EVAL_FALSE, op1->Evaluate(&ppb1, 1, NULL)); EXPECT_FALSE(op1->IsAction()); // This opcode always evaluates to false. PolicyOpcode* op2 = opcode_maker.MakeOpAlwaysTrue(kPolNone); ASSERT_NE(nullptr, op2); EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 1, NULL)); // Nulls not allowed on the params. EXPECT_EQ(EVAL_ERROR, op2->Evaluate(NULL, 0, NULL)); EXPECT_EQ(EVAL_ERROR, op2->Evaluate(NULL, 1, NULL)); // True and False opcodes do not 'require' a number of parameters EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 0, NULL)); EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 1, NULL)); // Test Inverting the logic. Note that inversion is done outside // any particular opcode evaluation so no need to repeat for all // opcodes. PolicyOpcode* op3 = opcode_maker.MakeOpAlwaysFalse(kPolNegateEval); ASSERT_NE(nullptr, op3); EXPECT_EQ(EVAL_TRUE, op3->Evaluate(&ppb1, 1, NULL)); PolicyOpcode* op4 = opcode_maker.MakeOpAlwaysTrue(kPolNegateEval); ASSERT_NE(nullptr, op4); EXPECT_EQ(EVAL_FALSE, op4->Evaluate(&ppb1, 1, NULL)); // Test that we clear the match context PolicyOpcode* op5 = opcode_maker.MakeOpAlwaysTrue(kPolClearContext); ASSERT_NE(nullptr, op5); MatchContext context; context.position = 1; context.options = kPolUseOREval; EXPECT_EQ(EVAL_TRUE, op5->Evaluate(&ppb1, 1, &context)); EXPECT_EQ(0, context.position); MatchContext context2; EXPECT_EQ(context2.options, context.options); } TEST(PolicyEngineTest, OpcodeMakerCase1) { // Testing that the opcode maker does not overrun the // supplied buffer. It should only be able to make 'count' opcodes. void* dummy = NULL; ParameterSet ppb1 = ParamPickerMake(dummy); char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); size_t count = sizeof(memory) / sizeof(PolicyOpcode); for (size_t ix =0; ix != count; ++ix) { PolicyOpcode* op = opcode_maker.MakeOpAlwaysFalse(kPolNone); ASSERT_NE(nullptr, op); EXPECT_EQ(EVAL_FALSE, op->Evaluate(&ppb1, 1, NULL)); } // There should be no room more another opcode: PolicyOpcode* op1 = opcode_maker.MakeOpAlwaysFalse(kPolNone); ASSERT_EQ(nullptr, op1); } TEST(PolicyEngineTest, OpcodeMakerCase2) { SetupNtdllImports(); // Testing that the opcode maker does not overrun the // supplied buffer. It should only be able to make 'count' opcodes. // The difference with the previous test is that this opcodes allocate // the string 'txt2' inside the same buffer. const wchar_t* txt1 = L"1234"; const wchar_t txt2[] = L"123"; ParameterSet ppb1 = ParamPickerMake(txt1); MatchContext mc1; char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); size_t count = sizeof(memory) / (sizeof(PolicyOpcode) + sizeof(txt2)); // Test that it does not overrun the buffer. for (size_t ix =0; ix != count; ++ix) { PolicyOpcode* op = opcode_maker.MakeOpWStringMatch(0, txt2, 0, CASE_SENSITIVE, kPolClearContext); ASSERT_NE(nullptr, op); EXPECT_EQ(EVAL_TRUE, op->Evaluate(&ppb1, 1, &mc1)); } // There should be no room more another opcode: PolicyOpcode* op1 = opcode_maker.MakeOpWStringMatch(0, txt2, 0, CASE_SENSITIVE, kPolNone); ASSERT_EQ(nullptr, op1); } TEST(PolicyEngineTest, IntegerOpcodes) { const wchar_t* txt = L"abcdef"; uint32 num1 = 42; uint32 num2 = 113377; ParameterSet pp_wrong1 = ParamPickerMake(txt); ParameterSet pp_num1 = ParamPickerMake(num1); ParameterSet pp_num2 = ParamPickerMake(num2); char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); // Test basic match for uint32s 42 == 42 and 42 != 113377. PolicyOpcode* op_m42 = opcode_maker.MakeOpNumberMatch(0, 42UL, kPolNone); ASSERT_NE(nullptr, op_m42); EXPECT_EQ(EVAL_TRUE, op_m42->Evaluate(&pp_num1, 1, NULL)); EXPECT_EQ(EVAL_FALSE, op_m42->Evaluate(&pp_num2, 1, NULL)); EXPECT_EQ(EVAL_ERROR, op_m42->Evaluate(&pp_wrong1, 1, NULL)); // Test basic match for void pointers. const void* vp = NULL; ParameterSet pp_num3 = ParamPickerMake(vp); PolicyOpcode* op_vp_null = opcode_maker.MakeOpVoidPtrMatch(0, NULL, kPolNone); ASSERT_NE(nullptr, op_vp_null); EXPECT_EQ(EVAL_TRUE, op_vp_null->Evaluate(&pp_num3, 1, NULL)); EXPECT_EQ(EVAL_FALSE, op_vp_null->Evaluate(&pp_num1, 1, NULL)); EXPECT_EQ(EVAL_ERROR, op_vp_null->Evaluate(&pp_wrong1, 1, NULL)); // Basic range test [41 43] (inclusive). PolicyOpcode* op_range1 = opcode_maker.MakeOpNumberMatchRange(0, 41, 43, kPolNone); ASSERT_NE(nullptr, op_range1); EXPECT_EQ(EVAL_TRUE, op_range1->Evaluate(&pp_num1, 1, NULL)); EXPECT_EQ(EVAL_FALSE, op_range1->Evaluate(&pp_num2, 1, NULL)); EXPECT_EQ(EVAL_ERROR, op_range1->Evaluate(&pp_wrong1, 1, NULL)); } TEST(PolicyEngineTest, LogicalOpcodes) { char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); uint32 num1 = 0x10100702; ParameterSet pp_num1 = ParamPickerMake(num1); PolicyOpcode* op_and1 = opcode_maker.MakeOpNumberAndMatch(0, 0x00100000, kPolNone); ASSERT_NE(nullptr, op_and1); EXPECT_EQ(EVAL_TRUE, op_and1->Evaluate(&pp_num1, 1, NULL)); PolicyOpcode* op_and2 = opcode_maker.MakeOpNumberAndMatch(0, 0x00000001, kPolNone); ASSERT_NE(nullptr, op_and2); EXPECT_EQ(EVAL_FALSE, op_and2->Evaluate(&pp_num1, 1, NULL)); } TEST(PolicyEngineTest, WCharOpcodes1) { SetupNtdllImports(); const wchar_t* txt1 = L"the quick fox jumps over the lazy dog"; const wchar_t txt2[] = L"the quick"; const wchar_t txt3[] = L" fox jumps"; const wchar_t txt4[] = L"the lazy dog"; const wchar_t txt5[] = L"jumps over"; const wchar_t txt6[] = L"g"; ParameterSet pp_tc1 = ParamPickerMake(txt1); char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); PolicyOpcode* op1 = opcode_maker.MakeOpWStringMatch(0, txt2, 0, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op1); // Simplest substring match from pos 0. It should be a successful match // and the match context should be updated. MatchContext mc1; EXPECT_EQ(EVAL_TRUE, op1->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_TRUE(_countof(txt2) == mc1.position + 1); // Matching again should fail and the context should be unmodified. EXPECT_EQ(EVAL_FALSE, op1->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_TRUE(_countof(txt2) == mc1.position + 1); // Using the same match context we should continue where we left // in the previous successful match, PolicyOpcode* op3 = opcode_maker.MakeOpWStringMatch(0, txt3, 0, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op3); EXPECT_EQ(EVAL_TRUE, op3->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_TRUE(_countof(txt3) + _countof(txt2) == mc1.position + 2); // We now keep on matching but now we skip 6 characters which means // we skip the string ' over '. And we zero the match context. This is // the primitive that we use to build '??'. PolicyOpcode* op4 = opcode_maker.MakeOpWStringMatch(0, txt4, 6, CASE_SENSITIVE, kPolClearContext); ASSERT_NE(nullptr, op4); EXPECT_EQ(EVAL_TRUE, op4->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(0, mc1.position); // Test that we can properly match the last part of the string PolicyOpcode* op4b = opcode_maker.MakeOpWStringMatch(0, txt4, kSeekToEnd, CASE_SENSITIVE, kPolClearContext); ASSERT_NE(nullptr, op4b); EXPECT_EQ(EVAL_TRUE, op4b->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(0, mc1.position); // Test matching 'jumps over' over the entire string. This is the // primitive we build '*' from. PolicyOpcode* op5 = opcode_maker.MakeOpWStringMatch(0, txt5, kSeekForward, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op5); EXPECT_EQ(EVAL_TRUE, op5->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(24, mc1.position); // Test that we don't match because it is not at the end of the string PolicyOpcode* op5b = opcode_maker.MakeOpWStringMatch(0, txt5, kSeekToEnd, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op5b); EXPECT_EQ(EVAL_FALSE, op5b->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(24, mc1.position); // Test that we function if the string does not fit. In this case we // try to match 'the lazy dog' against 'he lazy dog'. PolicyOpcode* op6 = opcode_maker.MakeOpWStringMatch(0, txt4, 2, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op6); EXPECT_EQ(EVAL_FALSE, op6->Evaluate(&pp_tc1, 1, &mc1)); // Testing matching against 'g' which should be the last char. MatchContext mc2; PolicyOpcode* op7 = opcode_maker.MakeOpWStringMatch(0, txt6, kSeekForward, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op7); EXPECT_EQ(EVAL_TRUE, op7->Evaluate(&pp_tc1, 1, &mc2)); EXPECT_EQ(37, mc2.position); // Trying to match again should fail since we are in the last char. // This also covers a couple of boundary conditions. EXPECT_EQ(EVAL_FALSE, op7->Evaluate(&pp_tc1, 1, &mc2)); EXPECT_EQ(37, mc2.position); } TEST(PolicyEngineTest, WCharOpcodes2) { SetupNtdllImports(); const wchar_t* path1 = L"c:\\documents and settings\\Microsoft\\BLAH.txt"; const wchar_t txt1[] = L"Settings\\microsoft"; ParameterSet pp_tc1 = ParamPickerMake(path1); char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); MatchContext mc1; // Testing case-insensitive does not buy us much since it this option // is just passed to the Microsoft API that we use normally, but just for // coverage, here it is: PolicyOpcode* op1s = opcode_maker.MakeOpWStringMatch(0, txt1, kSeekForward, CASE_SENSITIVE, kPolNone); ASSERT_NE(nullptr, op1s); PolicyOpcode* op1i = opcode_maker.MakeOpWStringMatch(0, txt1, kSeekForward, CASE_INSENSITIVE, kPolNone); ASSERT_NE(nullptr, op1i); EXPECT_EQ(EVAL_FALSE, op1s->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(EVAL_TRUE, op1i->Evaluate(&pp_tc1, 1, &mc1)); EXPECT_EQ(35, mc1.position); } TEST(PolicyEngineTest, ActionOpcodes) { char memory[kOpcodeMemory]; OpcodeFactory opcode_maker(memory, sizeof(memory)); MatchContext mc1; void* dummy = NULL; ParameterSet ppb1 = ParamPickerMake(dummy); PolicyOpcode* op1 = opcode_maker.MakeOpAction(ASK_BROKER, kPolNone); ASSERT_NE(nullptr, op1); EXPECT_TRUE(op1->IsAction()); EXPECT_EQ(ASK_BROKER, op1->Evaluate(&ppb1, 1, &mc1)); } } // namespace sandbox