// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "skia/ext/convolver.h" #include "third_party/skia/include/core/SkTypes.h" namespace skia { namespace { // Converts the argument to an 8-bit unsigned value by clamping to the range // 0-255. inline unsigned char ClampTo8(int a) { if (static_cast(a) < 256) return a; // Avoid the extra check in the common case. if (a < 0) return 0; return 255; } // Stores a list of rows in a circular buffer. The usage is you write into it // by calling AdvanceRow. It will keep track of which row in the buffer it // should use next, and the total number of rows added. class CircularRowBuffer { public: // The number of pixels in each row is given in |source_row_pixel_width|. // The maximum number of rows needed in the buffer is |max_y_filter_size| // (we only need to store enough rows for the biggest filter). // // We use the |first_input_row| to compute the coordinates of all of the // following rows returned by Advance(). CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, int first_input_row) : row_byte_width_(dest_row_pixel_width * 4), num_rows_(max_y_filter_size), next_row_(0), next_row_coordinate_(first_input_row) { buffer_.resize(row_byte_width_ * max_y_filter_size); row_addresses_.resize(num_rows_); } // Moves to the next row in the buffer, returning a pointer to the beginning // of it. unsigned char* AdvanceRow() { unsigned char* row = &buffer_[next_row_ * row_byte_width_]; next_row_coordinate_++; // Set the pointer to the next row to use, wrapping around if necessary. next_row_++; if (next_row_ == num_rows_) next_row_ = 0; return row; } // Returns a pointer to an "unrolled" array of rows. These rows will start // at the y coordinate placed into |*first_row_index| and will continue in // order for the maximum number of rows in this circular buffer. // // The |first_row_index_| may be negative. This means the circular buffer // starts before the top of the image (it hasn't been filled yet). unsigned char* const* GetRowAddresses(int* first_row_index) { // Example for a 4-element circular buffer holding coords 6-9. // Row 0 Coord 8 // Row 1 Coord 9 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. // Row 3 Coord 7 // // The "next" row is also the first (lowest) coordinate. This computation // may yield a negative value, but that's OK, the math will work out // since the user of this buffer will compute the offset relative // to the first_row_index and the negative rows will never be used. *first_row_index = next_row_coordinate_ - num_rows_; int cur_row = next_row_; for (int i = 0; i < num_rows_; i++) { row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; // Advance to the next row, wrapping if necessary. cur_row++; if (cur_row == num_rows_) cur_row = 0; } return &row_addresses_[0]; } private: // The buffer storing the rows. They are packed, each one row_byte_width_. std::vector buffer_; // Number of bytes per row in the |buffer_|. int row_byte_width_; // The number of rows available in the buffer. int num_rows_; // The next row index we should write into. This wraps around as the // circular buffer is used. int next_row_; // The y coordinate of the |next_row_|. This is incremented each time a // new row is appended and does not wrap. int next_row_coordinate_; // Buffer used by GetRowAddresses(). std::vector row_addresses_; }; // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the num_values() of the filter. template void ConvolveHorizontally(const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row) { // Loop over each pixel on this row in the output image. int num_values = filter.num_values(); for (int out_x = 0; out_x < num_values; out_x++) { // Get the filter that determines the current output pixel. int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const unsigned char* row_to_filter = &src_data[filter_offset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int accum[4] = {0}; for (int filter_x = 0; filter_x < filter_length; filter_x++) { ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; if (has_alpha) accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. accum[0] >>= ConvolutionFilter1D::kShiftBits; accum[1] >>= ConvolutionFilter1D::kShiftBits; accum[2] >>= ConvolutionFilter1D::kShiftBits; if (has_alpha) accum[3] >>= ConvolutionFilter1D::kShiftBits; // Store the new pixel. out_row[out_x * 4 + 0] = ClampTo8(accum[0]); out_row[out_x * 4 + 1] = ClampTo8(accum[1]); out_row[out_x * 4 + 2] = ClampTo8(accum[2]); if (has_alpha) out_row[out_x * 4 + 3] = ClampTo8(accum[3]); } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |pixel_width| wide. // // The output must have room for |pixel_width * 4| bytes. template void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row) { // We go through each column in the output and do a vertical convolution, // generating one output pixel each time. for (int out_x = 0; out_x < pixel_width; out_x++) { // Compute the number of bytes over in each row that the current column // we're convolving starts at. The pixel will cover the next 4 bytes. int byte_offset = out_x * 4; // Apply the filter to one column of pixels. int accum[4] = {0}; for (int filter_y = 0; filter_y < filter_length; filter_y++) { ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; if (has_alpha) accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of precision. accum[0] >>= ConvolutionFilter1D::kShiftBits; accum[1] >>= ConvolutionFilter1D::kShiftBits; accum[2] >>= ConvolutionFilter1D::kShiftBits; if (has_alpha) accum[3] >>= ConvolutionFilter1D::kShiftBits; // Store the new pixel. out_row[byte_offset + 0] = ClampTo8(accum[0]); out_row[byte_offset + 1] = ClampTo8(accum[1]); out_row[byte_offset + 2] = ClampTo8(accum[2]); if (has_alpha) { unsigned char alpha = ClampTo8(accum[3]); // Make sure the alpha channel doesn't come out larger than any of the // color channels. We use premultipled alpha channels, so this should // never happen, but rounding errors will cause this from time to time. // These "impossible" colors will cause overflows (and hence random pixel // values) when the resulting bitmap is drawn to the screen. // // We only need to do this when generating the final output row (here). int max_color_channel = std::max(out_row[byte_offset + 0], std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); if (alpha < max_color_channel) out_row[byte_offset + 3] = max_color_channel; else out_row[byte_offset + 3] = alpha; } else { // No alpha channel, the image is opaque. out_row[byte_offset + 3] = 0xff; } } } } // namespace // ConvolutionFilter1D --------------------------------------------------------- void ConvolutionFilter1D::AddFilter(int filter_offset, const float* filter_values, int filter_length) { FilterInstance instance; instance.data_location = static_cast(filter_values_.size()); instance.offset = filter_offset; instance.length = filter_length; filters_.push_back(instance); SkASSERT(filter_length > 0); for (int i = 0; i < filter_length; i++) filter_values_.push_back(FloatToFixed(filter_values[i])); max_filter_ = std::max(max_filter_, filter_length); } void ConvolutionFilter1D::AddFilter(int filter_offset, const Fixed* filter_values, int filter_length) { FilterInstance instance; instance.data_location = static_cast(filter_values_.size()); instance.offset = filter_offset; instance.length = filter_length; filters_.push_back(instance); SkASSERT(filter_length > 0); for (int i = 0; i < filter_length; i++) filter_values_.push_back(filter_values[i]); max_filter_ = std::max(max_filter_, filter_length); } // BGRAConvolve2D ------------------------------------------------------------- void BGRAConvolve2D(const unsigned char* source_data, int source_byte_row_stride, bool source_has_alpha, const ConvolutionFilter1D& filter_x, const ConvolutionFilter1D& filter_y, unsigned char* output) { int max_y_filter_size = filter_y.max_filter(); // The next row in the input that we will generate a horizontally // convolved row for. If the filter doesn't start at the beginning of the // image (this is the case when we are only resizing a subset), then we // don't want to generate any output rows before that. Compute the starting // row for convolution as the first pixel for the first vertical filter. int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter_y.FilterForValue(0, &filter_offset, &filter_length); int next_x_row = filter_offset; // We loop over each row in the input doing a horizontal convolution. This // will result in a horizontally convolved image. We write the results into // a circular buffer of convolved rows and do vertical convolution as rows // are available. This prevents us from having to store the entire // intermediate image and helps cache coherency. CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, filter_offset); // Loop over every possible output row, processing just enough horizontal // convolutions to run each subsequent vertical convolution. int output_row_byte_width = filter_x.num_values() * 4; int num_output_rows = filter_y.num_values(); for (int out_y = 0; out_y < num_output_rows; out_y++) { filter_values = filter_y.FilterForValue(out_y, &filter_offset, &filter_length); // Generate output rows until we have enough to run the current filter. while (next_x_row < filter_offset + filter_length) { if (source_has_alpha) { ConvolveHorizontally( &source_data[next_x_row * source_byte_row_stride], filter_x, row_buffer.AdvanceRow()); } else { ConvolveHorizontally( &source_data[next_x_row * source_byte_row_stride], filter_x, row_buffer.AdvanceRow()); } next_x_row++; } // Compute where in the output image this row of final data will go. unsigned char* cur_output_row = &output[out_y * output_row_byte_width]; // Get the list of rows that the circular buffer has, in order. int first_row_in_circular_buffer; unsigned char* const* rows_to_convolve = row_buffer.GetRowAddresses(&first_row_in_circular_buffer); // Now compute the start of the subset of those rows that the filter // needs. unsigned char* const* first_row_for_filter = &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; if (source_has_alpha) { ConvolveVertically(filter_values, filter_length, first_row_for_filter, filter_x.num_values(), cur_output_row); } else { ConvolveVertically(filter_values, filter_length, first_row_for_filter, filter_x.num_values(), cur_output_row); } } } } // namespace skia