// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/time/time.h" #include "skia/ext/convolver.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkRect.h" #include "third_party/skia/include/core/SkTypes.h" namespace skia { namespace { // Fills the given filter with impulse functions for the range 0->num_entries. void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) { float one = 1.0f; for (int i = 0; i < num_entries; i++) filter->AddFilter(i, &one, 1); } // Filters the given input with the impulse function, and verifies that it // does not change. void TestImpulseConvolution(const unsigned char* data, int width, int height) { int byte_count = width * height * 4; ConvolutionFilter1D filter_x; FillImpulseFilter(width, &filter_x); ConvolutionFilter1D filter_y; FillImpulseFilter(height, &filter_y); std::vector output; output.resize(byte_count); BGRAConvolve2D(data, width * 4, true, filter_x, filter_y, filter_x.num_values() * 4, &output[0], false); // Output should exactly match input. EXPECT_EQ(0, memcmp(data, &output[0], byte_count)); } // Fills the destination filter with a box filter averaging every two pixels // to produce the output. void FillBoxFilter(int size, ConvolutionFilter1D* filter) { const float box[2] = { 0.5, 0.5 }; for (int i = 0; i < size; i++) filter->AddFilter(i * 2, box, 2); } } // namespace // Tests that each pixel, when set and run through the impulse filter, does // not change. TEST(Convolver, Impulse) { // We pick an "odd" size that is not likely to fit on any boundaries so that // we can see if all the widths and paddings are handled properly. int width = 15; int height = 31; int byte_count = width * height * 4; std::vector input; input.resize(byte_count); unsigned char* input_ptr = &input[0]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { for (int channel = 0; channel < 3; channel++) { memset(input_ptr, 0, byte_count); input_ptr[(y * width + x) * 4 + channel] = 0xff; // Always set the alpha channel or it will attempt to "fix" it for us. input_ptr[(y * width + x) * 4 + 3] = 0xff; TestImpulseConvolution(input_ptr, width, height); } } } } // Tests that using a box filter to halve an image results in every square of 4 // pixels in the original get averaged to a pixel in the output. TEST(Convolver, Halve) { static const int kSize = 16; int src_width = kSize; int src_height = kSize; int src_row_stride = src_width * 4; int src_byte_count = src_row_stride * src_height; std::vector input; input.resize(src_byte_count); int dest_width = src_width / 2; int dest_height = src_height / 2; int dest_byte_count = dest_width * dest_height * 4; std::vector output; output.resize(dest_byte_count); // First fill the array with a bunch of random data. srand(static_cast(time(NULL))); for (int i = 0; i < src_byte_count; i++) input[i] = rand() * 255 / RAND_MAX; // Compute the filters. ConvolutionFilter1D filter_x, filter_y; FillBoxFilter(dest_width, &filter_x); FillBoxFilter(dest_height, &filter_y); // Do the convolution. BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y, filter_x.num_values() * 4, &output[0], false); // Compute the expected results and check, allowing for a small difference // to account for rounding errors. for (int y = 0; y < dest_height; y++) { for (int x = 0; x < dest_width; x++) { for (int channel = 0; channel < 4; channel++) { int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel; int value = input[src_offset] + // Top left source pixel. input[src_offset + 4] + // Top right source pixel. input[src_offset + src_row_stride] + // Lower left. input[src_offset + src_row_stride + 4]; // Lower right. value /= 4; // Average. int difference = value - output[(y * dest_width + x) * 4 + channel]; EXPECT_TRUE(difference >= -1 || difference <= 1); } } } } // Tests the optimization in Convolver1D::AddFilter that avoids storing // leading/trailing zeroes. TEST(Convolver, AddFilter) { skia::ConvolutionFilter1D filter; const skia::ConvolutionFilter1D::Fixed* values = NULL; int filter_offset = 0; int filter_length = 0; // An all-zero filter is handled correctly, all factors ignored static const float factors1[] = { 0.0f, 0.0f, 0.0f }; filter.AddFilter(11, factors1, arraysize(factors1)); ASSERT_EQ(0, filter.max_filter()); ASSERT_EQ(1, filter.num_values()); values = filter.FilterForValue(0, &filter_offset, &filter_length); ASSERT_TRUE(values == NULL); // No values => NULL. ASSERT_EQ(11, filter_offset); // Same as input offset. ASSERT_EQ(0, filter_length); // But no factors since all are zeroes. // Zeroes on the left are ignored static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }; filter.AddFilter(22, factors2, arraysize(factors2)); ASSERT_EQ(4, filter.max_filter()); ASSERT_EQ(2, filter.num_values()); values = filter.FilterForValue(1, &filter_offset, &filter_length); ASSERT_TRUE(values != NULL); ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero ASSERT_EQ(4, filter_length); // 5 - 1 leading zero // Zeroes on the right are ignored static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; filter.AddFilter(33, factors3, arraysize(factors3)); ASSERT_EQ(5, filter.max_filter()); ASSERT_EQ(3, filter.num_values()); values = filter.FilterForValue(2, &filter_offset, &filter_length); ASSERT_TRUE(values != NULL); ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes // Zeroes in leading & trailing positions static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; filter.AddFilter(44, factors4, arraysize(factors4)); ASSERT_EQ(5, filter.max_filter()); // No change from existing value. ASSERT_EQ(4, filter.num_values()); values = filter.FilterForValue(3, &filter_offset, &filter_length); ASSERT_TRUE(values != NULL); ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes // Zeroes surrounded by non-zero values are ignored static const float factors5[] = { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; filter.AddFilter(55, factors5, arraysize(factors5)); ASSERT_EQ(6, filter.max_filter()); ASSERT_EQ(5, filter.num_values()); values = filter.FilterForValue(4, &filter_offset, &filter_length); ASSERT_TRUE(values != NULL); ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes // All-zero filters after the first one also work static const float factors6[] = { 0.0f }; filter.AddFilter(66, factors6, arraysize(factors6)); ASSERT_EQ(6, filter.max_filter()); ASSERT_EQ(6, filter.num_values()); values = filter.FilterForValue(5, &filter_offset, &filter_length); ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL ASSERT_EQ(66, filter_offset); // value passed in ASSERT_EQ(0, filter_length); } #if defined(THREAD_SANITIZER) // Times out under ThreadSanitizer, http://crbug.com/134400. #define MAYBE_SIMDVerification DISABLED_SIMDVerification #else #define MAYBE_SIMDVerification SIMDVerification #endif TEST(Convolver, MAYBE_SIMDVerification) { int source_sizes[][2] = { {1,1}, {1,2}, {1,3}, {1,4}, {1,5}, {2,1}, {2,2}, {2,3}, {2,4}, {2,5}, {3,1}, {3,2}, {3,3}, {3,4}, {3,5}, {4,1}, {4,2}, {4,3}, {4,4}, {4,5}, {1920, 1080}, {720, 480}, {1377, 523}, {325, 241} }; int dest_sizes[][2] = { {1280, 1024}, {480, 270}, {177, 123} }; float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f }; srand(static_cast(time(0))); // Loop over some specific source and destination dimensions. for (unsigned int i = 0; i < arraysize(source_sizes); ++i) { unsigned int source_width = source_sizes[i][0]; unsigned int source_height = source_sizes[i][1]; for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) { unsigned int dest_width = dest_sizes[j][0]; unsigned int dest_height = dest_sizes[j][1]; // Preparing convolve coefficients. ConvolutionFilter1D x_filter, y_filter; for (unsigned int p = 0; p < dest_width; ++p) { unsigned int offset = source_width * p / dest_width; EXPECT_LT(offset, source_width); x_filter.AddFilter(offset, filter, std::min(arraysize(filter), source_width - offset)); } x_filter.PaddingForSIMD(); for (unsigned int p = 0; p < dest_height; ++p) { unsigned int offset = source_height * p / dest_height; y_filter.AddFilter(offset, filter, std::min(arraysize(filter), source_height - offset)); } y_filter.PaddingForSIMD(); // Allocate input and output skia bitmap. SkBitmap source, result_c, result_sse; source.setConfig(SkBitmap::kARGB_8888_Config, source_width, source_height); source.allocPixels(); result_c.setConfig(SkBitmap::kARGB_8888_Config, dest_width, dest_height); result_c.allocPixels(); result_sse.setConfig(SkBitmap::kARGB_8888_Config, dest_width, dest_height); result_sse.allocPixels(); // Randomize source bitmap for testing. unsigned char* src_ptr = static_cast(source.getPixels()); for (int y = 0; y < source.height(); y++) { for (unsigned int x = 0; x < source.rowBytes(); x++) src_ptr[x] = rand() % 255; src_ptr += source.rowBytes(); } // Test both cases with different has_alpha. for (int alpha = 0; alpha < 2; alpha++) { // Convolve using C code. base::TimeTicks resize_start; base::TimeDelta delta_c, delta_sse; unsigned char* r1 = static_cast(result_c.getPixels()); unsigned char* r2 = static_cast(result_sse.getPixels()); resize_start = base::TimeTicks::Now(); BGRAConvolve2D(static_cast(source.getPixels()), static_cast(source.rowBytes()), (alpha != 0), x_filter, y_filter, static_cast(result_c.rowBytes()), r1, false); delta_c = base::TimeTicks::Now() - resize_start; resize_start = base::TimeTicks::Now(); // Convolve using SSE2 code BGRAConvolve2D(static_cast(source.getPixels()), static_cast(source.rowBytes()), (alpha != 0), x_filter, y_filter, static_cast(result_sse.rowBytes()), r2, true); delta_sse = base::TimeTicks::Now() - resize_start; // Unfortunately I could not enable the performance check now. // Most bots use debug version, and there are great difference between // the code generation for intrinsic, etc. In release version speed // difference was 150%-200% depend on alpha channel presence; // while in debug version speed difference was 96%-120%. // TODO(jiesun): optimize further until we could enable this for // debug version too. // EXPECT_LE(delta_sse, delta_c); int64 c_us = delta_c.InMicroseconds(); int64 sse_us = delta_sse.InMicroseconds(); VLOG(1) << "from:" << source_width << "x" << source_height << " to:" << dest_width << "x" << dest_height << (alpha ? " with alpha" : " w/o alpha"); VLOG(1) << "c:" << c_us << " sse:" << sse_us; VLOG(1) << "ratio:" << static_cast(c_us) / sse_us; // Comparing result. for (unsigned int i = 0; i < dest_height; i++) { for (unsigned int x = 0; x < dest_width * 4; x++) { // RGBA always. EXPECT_EQ(r1[x], r2[x]); } r1 += result_c.rowBytes(); r2 += result_sse.rowBytes(); } } } } } TEST(Convolver, SeparableSingleConvolution) { static const int kImgWidth = 1024; static const int kImgHeight = 1024; static const int kChannelCount = 3; static const int kStrideSlack = 22; ConvolutionFilter1D filter; const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; filter.AddFilter(0, box, 5); // Allocate a source image and set to 0. const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; int src_byte_count = src_row_stride * kImgHeight; std::vector input; const int signal_x = kImgWidth / 2; const int signal_y = kImgHeight / 2; input.resize(src_byte_count, 0); // The image has a single impulse pixel in channel 1, smack in the middle. const int non_zero_pixel_index = signal_y * src_row_stride + signal_x * kChannelCount + 1; input[non_zero_pixel_index] = 255; // Destination will be a single channel image with stide matching width. const int dest_row_stride = kImgWidth; const int dest_byte_count = dest_row_stride * kImgHeight; std::vector output; output.resize(dest_byte_count); // Apply convolution in X. SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, filter, SkISize::Make(kImgWidth, kImgHeight), &output[0], dest_row_stride, 0, 1, false); for (int x = signal_x - 2; x <= signal_x + 2; ++x) EXPECT_GT(output[signal_y * dest_row_stride + x], 0); EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0); EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0); // Apply convolution in Y. SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, filter, SkISize::Make(kImgWidth, kImgHeight), &output[0], dest_row_stride, 0, 1, false); for (int y = signal_y - 2; y <= signal_y + 2; ++y) EXPECT_GT(output[y * dest_row_stride + signal_x], 0); EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0); EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0); EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0); EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0); // The main point of calling this is to invoke the routine on input without // padding. std::vector output2; output2.resize(dest_byte_count); SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1, filter, SkISize::Make(kImgWidth, kImgHeight), &output2[0], dest_row_stride, 0, 1, false); // This should be a result of 2D convolution. for (int x = signal_x - 2; x <= signal_x + 2; ++x) { for (int y = signal_y - 2; y <= signal_y + 2; ++y) EXPECT_GT(output2[y * dest_row_stride + x], 0); } EXPECT_EQ(output2[0], 0); EXPECT_EQ(output2[dest_row_stride - 1], 0); EXPECT_EQ(output2[dest_byte_count - 1], 0); } TEST(Convolver, SeparableSingleConvolutionEdges) { // The purpose of this test is to check if the implementation treats correctly // edges of the image. static const int kImgWidth = 600; static const int kImgHeight = 800; static const int kChannelCount = 3; static const int kStrideSlack = 22; static const int kChannel = 1; ConvolutionFilter1D filter; const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; filter.AddFilter(0, box, 5); // Allocate a source image and set to 0. int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; int src_byte_count = src_row_stride * kImgHeight; std::vector input(src_byte_count); // Draw a frame around the image. for (int i = 0; i < src_byte_count; ++i) { int row = i / src_row_stride; int col = i % src_row_stride / kChannelCount; int channel = i % src_row_stride % kChannelCount; if (channel != kChannel || col > kImgWidth) { input[i] = 255; } else if (row == 0 || col == 0 || col == kImgWidth - 1 || row == kImgHeight - 1) { input[i] = 100; } else if (row == 1 || col == 1 || col == kImgWidth - 2 || row == kImgHeight - 2) { input[i] = 200; } else { input[i] = 0; } } // Destination will be a single channel image with stide matching width. int dest_row_stride = kImgWidth; int dest_byte_count = dest_row_stride * kImgHeight; std::vector output; output.resize(dest_byte_count); // Apply convolution in X. SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, filter, SkISize::Make(kImgWidth, kImgHeight), &output[0], dest_row_stride, 0, 1, false); // Sadly, comparison is not as simple as retaining all values. int invalid_values = 0; const unsigned char first_value = output[0]; EXPECT_NEAR(first_value, 100, 1); for (int i = 0; i < dest_row_stride; ++i) { if (output[i] != first_value) ++invalid_values; } EXPECT_EQ(0, invalid_values); int test_row = 22; EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1); EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1); EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1); EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1); EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1); EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1); EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1); EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1); SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, filter, SkISize::Make(kImgWidth, kImgHeight), &output[0], dest_row_stride, 0, 1, false); int test_column = 42; EXPECT_NEAR(output[test_column], 100, 1); EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1); EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1); EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1); EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1); EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1); EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1); EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1); } TEST(Convolver, SetUpGaussianConvolutionFilter) { ConvolutionFilter1D smoothing_filter; ConvolutionFilter1D gradient_filter; SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false); SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true); int specified_filter_length; int filter_offset; int filter_length; const ConvolutionFilter1D::Fixed* smoothing_kernel = smoothing_filter.GetSingleFilter( &specified_filter_length, &filter_offset, &filter_length); EXPECT_TRUE(smoothing_kernel); std::vector fp_smoothing_kernel(filter_length); std::transform(smoothing_kernel, smoothing_kernel + filter_length, fp_smoothing_kernel.begin(), ConvolutionFilter1D::FixedToFloat); // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[. EXPECT_NEAR(std::accumulate( fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f), 1.0f, 0.01f); EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(), fp_smoothing_kernel.end()), 0.0f); EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(), fp_smoothing_kernel.end()), 1.0f); const ConvolutionFilter1D::Fixed* gradient_kernel = gradient_filter.GetSingleFilter( &specified_filter_length, &filter_offset, &filter_length); EXPECT_TRUE(gradient_kernel); std::vector fp_gradient_kernel(filter_length); std::transform(gradient_kernel, gradient_kernel + filter_length, fp_gradient_kernel.begin(), ConvolutionFilter1D::FixedToFloat); // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[. EXPECT_NEAR(std::accumulate( fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f), 0.0f, 0.01f); EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()), -1.5f); EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()), 0.0f); EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()), 1.5f); EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()), 0.0f); } } // namespace skia