// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #define _USE_MATH_DEFINES #include #include #include #include "skia/ext/image_operations.h" #include "base/gfx/rect.h" #include "base/gfx/size.h" #include "base/logging.h" #include "base/stack_container.h" #include "SkBitmap.h" #include "skia/ext/convolver.h" namespace skia { // TODO(brettw) remove this and put this file in the skia namespace. using namespace gfx; namespace { // Returns the ceiling/floor as an integer. inline int CeilInt(float val) { return static_cast(ceil(val)); } inline int FloorInt(float val) { return static_cast(floor(val)); } // Filter function computation ------------------------------------------------- // Evaluates the box filter, which goes from -0.5 to +0.5. float EvalBox(float x) { return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; } // Evaluates the Lanczos filter of the given filter size window for the given // position. // // |filter_size| is the width of the filter (the "window"), outside of which // the value of the function is 0. Inside of the window, the value is the // normalized sinc function: // lanczos(x) = sinc(x) * sinc(x / filter_size); // where // sinc(x) = sin(pi*x) / (pi*x); float EvalLanczos(int filter_size, float x) { if (x <= -filter_size || x >= filter_size) return 0.0f; // Outside of the window. if (x > -std::numeric_limits::epsilon() && x < std::numeric_limits::epsilon()) return 1.0f; // Special case the discontinuity at the origin. float xpi = x * static_cast(M_PI); return (sin(xpi) / xpi) * // sinc(x) sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) } // ResizeFilter ---------------------------------------------------------------- // Encapsulates computation and storage of the filters required for one complete // resize operation. class ResizeFilter { public: ResizeFilter(ImageOperations::ResizeMethod method, int src_full_width, int src_full_height, int dest_width, int dest_height, const gfx::Rect& dest_subset); // Returns the bounds in the input bitmap of data that is used in the output. // The filter offsets are within this rectangle. const gfx::Rect& src_depend() { return src_depend_; } // Returns the filled filter values. const ConvolusionFilter1D& x_filter() { return x_filter_; } const ConvolusionFilter1D& y_filter() { return y_filter_; } private: // Returns the number of pixels that the filer spans, in filter space (the // destination image). float GetFilterSupport(float scale) { switch (method_) { case ImageOperations::RESIZE_BOX: // The box filter just scales with the image scaling. return 0.5f; // Only want one side of the filter = /2. case ImageOperations::RESIZE_LANCZOS3: // The lanczos filter takes as much space in the source image in // each direction as the size of the window = 3 for Lanczos3. return 3.0f; default: NOTREACHED(); return 1.0f; } } // Computes one set of filters either horizontally or vertically. The caller // will specify the "min" and "max" rather than the bottom/top and // right/bottom so that the same code can be re-used in each dimension. // // |src_depend_lo| and |src_depend_size| gives the range for the source // depend rectangle (horizontally or vertically at the caller's discretion // -- see above for what this means). // // Likewise, the range of destination values to compute and the scale factor // for the transform is also specified. void ComputeFilters(int src_size, int dest_subset_lo, int dest_subset_size, float scale, float src_support, ConvolusionFilter1D* output); // Computes the filter value given the coordinate in filter space. inline float ComputeFilter(float pos) { switch (method_) { case ImageOperations::RESIZE_BOX: return EvalBox(pos); case ImageOperations::RESIZE_LANCZOS3: return EvalLanczos(3, pos); default: NOTREACHED(); return 0; } } ImageOperations::ResizeMethod method_; // Subset of source the filters will touch. gfx::Rect src_depend_; // Size of the filter support on one side only in the destination space. // See GetFilterSupport. float x_filter_support_; float y_filter_support_; // Subset of scaled destination bitmap to compute. gfx::Rect out_bounds_; ConvolusionFilter1D x_filter_; ConvolusionFilter1D y_filter_; DISALLOW_EVIL_CONSTRUCTORS(ResizeFilter); }; ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, int src_full_width, int src_full_height, int dest_width, int dest_height, const gfx::Rect& dest_subset) : method_(method), out_bounds_(dest_subset) { float scale_x = static_cast(dest_width) / static_cast(src_full_width); float scale_y = static_cast(dest_height) / static_cast(src_full_height); x_filter_support_ = GetFilterSupport(scale_x); y_filter_support_ = GetFilterSupport(scale_y); gfx::Rect src_full(0, 0, src_full_width, src_full_height); gfx::Rect dest_full(0, 0, static_cast(src_full_width * scale_x + 0.5), static_cast(src_full_height * scale_y + 0.5)); // Support of the filter in source space. float src_x_support = x_filter_support_ / scale_x; float src_y_support = y_filter_support_ / scale_y; ComputeFilters(src_full_width, dest_subset.x(), dest_subset.width(), scale_x, src_x_support, &x_filter_); ComputeFilters(src_full_height, dest_subset.y(), dest_subset.height(), scale_y, src_y_support, &y_filter_); } void ResizeFilter::ComputeFilters(int src_size, int dest_subset_lo, int dest_subset_size, float scale, float src_support, ConvolusionFilter1D* output) { int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) // When we're doing a magnification, the scale will be larger than one. This // means the destination pixels are much smaller than the source pixels, and // that the range covered by the filter won't necessarily cover any source // pixel boundaries. Therefore, we use these clamped values (max of 1) for // some computations. float clamped_scale = std::min(1.0f, scale); // Speed up the divisions below by turning them into multiplies. float inv_scale = 1.0f / scale; StackVector filter_values; StackVector fixed_filter_values; // Loop over all pixels in the output range. We will generate one set of // filter values for each one. Those values will tell us how to blend the // source pixels to compute the destination pixel. for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; dest_subset_i++) { // Reset the arrays. We don't declare them inside so they can re-use the // same malloc-ed buffer. filter_values->clear(); fixed_filter_values->clear(); // This is the pixel in the source directly under the pixel in the dest. float src_pixel = dest_subset_i * inv_scale; // Compute the (inclusive) range of source pixels the filter covers. int src_begin = std::max(0, FloorInt(src_pixel - src_support)); int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); // Compute the unnormalized filter value at each location of the source // it covers. float filter_sum = 0.0f; // Sub of the filter values for normalizing. for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; cur_filter_pixel++) { // Distance from the center of the filter, this is the filter coordinate // in source space. float src_filter_pos = cur_filter_pixel - src_pixel; // Since the filter really exists in dest space, map it there. float dest_filter_pos = src_filter_pos * clamped_scale; // Compute the filter value at that location. float filter_value = ComputeFilter(dest_filter_pos); filter_values->push_back(filter_value); filter_sum += filter_value; } DCHECK(!filter_values->empty()) << "We should always get a filter!"; // The filter must be normalized so that we don't affect the brightness of // the image. Convert to normalized fixed point. int16 fixed_sum = 0; for (size_t i = 0; i < filter_values->size(); i++) { int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); fixed_sum += cur_fixed; fixed_filter_values->push_back(cur_fixed); } // The conversion to fixed point will leave some rounding errors, which // we add back in to avoid affecting the brightness of the image. We // arbitrarily add this to the center of the filter array (this won't always // be the center of the filter function since it could get clipped on the // edges, but it doesn't matter enough to worry about that case). int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; // Now it's ready to go. output->AddFilter(src_begin, &fixed_filter_values[0], static_cast(fixed_filter_values->size())); } } } // namespace // Resize ---------------------------------------------------------------------- // static SkBitmap ImageOperations::Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, const gfx::Rect& dest_subset) { DCHECK(gfx::Rect(dest_width, dest_height).Contains(dest_subset)) << "The supplied subset does not fall within the destination image."; // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just // return empty if (source.width() < 1 || source.height() < 1 || dest_width < 1 || dest_height < 1) return SkBitmap(); SkAutoLockPixels locker(source); ResizeFilter filter(method, source.width(), source.height(), dest_width, dest_height, dest_subset); // Get a source bitmap encompassing this touched area. We construct the // offsets and row strides such that it looks like a new bitmap, while // referring to the old data. const uint8* source_subset = reinterpret_cast(source.getPixels()); // Convolve into the result. SkBitmap result; result.setConfig(SkBitmap::kARGB_8888_Config, dest_subset.width(), dest_subset.height()); result.allocPixels(); BGRAConvolve2D(source_subset, static_cast(source.rowBytes()), !source.isOpaque(), filter.x_filter(), filter.y_filter(), static_cast(result.getPixels())); // Preserve the "opaque" flag for use as an optimization later. result.setIsOpaque(source.isOpaque()); return result; } // static SkBitmap ImageOperations::Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height) { gfx::Rect dest_subset(0, 0, dest_width, dest_height); return Resize(source, method, dest_width, dest_height, dest_subset); } // static SkBitmap ImageOperations::CreateBlendedBitmap(const SkBitmap& first, const SkBitmap& second, double alpha) { DCHECK(alpha <= 1 && alpha >= 0); DCHECK(first.width() == second.width()); DCHECK(first.height() == second.height()); DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); DCHECK(first.config() == SkBitmap::kARGB_8888_Config); // Optimize for case where we won't need to blend anything. static const double alpha_min = 1.0 / 255; static const double alpha_max = 254.0 / 255; if (alpha < alpha_min) { return first; } else if (alpha > alpha_max) { return second; } SkAutoLockPixels lock_first(first); SkAutoLockPixels lock_second(second); SkBitmap blended; blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(), 0); blended.allocPixels(); blended.eraseARGB(0, 0, 0, 0); double first_alpha = 1 - alpha; for (int y = 0; y < first.height(); y++) { uint32* first_row = first.getAddr32(0, y); uint32* second_row = second.getAddr32(0, y); uint32* dst_row = blended.getAddr32(0, y); for (int x = 0; x < first.width(); x++) { uint32 first_pixel = first_row[x]; uint32 second_pixel = second_row[x]; int a = static_cast( SkColorGetA(first_pixel) * first_alpha + SkColorGetA(second_pixel) * alpha); int r = static_cast( SkColorGetR(first_pixel) * first_alpha + SkColorGetR(second_pixel) * alpha); int g = static_cast( SkColorGetG(first_pixel) * first_alpha + SkColorGetG(second_pixel) * alpha); int b = static_cast( SkColorGetB(first_pixel) * first_alpha + SkColorGetB(second_pixel) * alpha); dst_row[x] = SkColorSetARGB(a, r, g, b); } } return blended; } } // namespace skia