/* include/corecg/SkTemplates.h ** ** Copyright 2006, Google Inc. ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef SkTemplates_DEFINED #define SkTemplates_DEFINED #include "SkTypes.h" /** \file SkTemplates.h This file contains light-weight template classes for type-safe and exception-safe resource management. */ /** \class SkAutoTCallVProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallVProc : SkNoncopyable { public: SkAutoTCallVProc(T* obj): fObj(obj) {} ~SkAutoTCallVProc() { if (fObj) P(fObj); } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; /** \class SkAutoTCallIProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallIProc : SkNoncopyable { public: SkAutoTCallIProc(T* obj): fObj(obj) {} ~SkAutoTCallIProc() { if (fObj) P(fObj); } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; template class SkAutoTDelete : SkNoncopyable { public: SkAutoTDelete(T* obj) : fObj(obj) {} ~SkAutoTDelete() { delete fObj; } T* get() const { return fObj; } void free() { delete fObj; fObj = NULL; } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; template class SkAutoTDeleteArray : SkNoncopyable { public: SkAutoTDeleteArray(T array[]) : fArray(array) {} ~SkAutoTDeleteArray() { delete[] fArray; } T* get() const { return fArray; } void free() { delete[] fArray; fArray = NULL; } T* detach() { T* array = fArray; fArray = NULL; return array; } private: T* fArray; }; template class SkAutoTArray : SkNoncopyable { public: SkAutoTArray(size_t count) { fArray = NULL; // init first in case we throw if (count) fArray = new T[count]; #ifdef SK_DEBUG fCount = count; #endif } ~SkAutoTArray() { delete[] fArray; } T* get() const { return fArray; } T& operator[](int index) const { SkASSERT((unsigned)index < fCount); return fArray[index]; } void reset() { if (fArray) { delete[] fArray; fArray = NULL; } } void replace(T* array) { if (fArray != array) { delete[] fArray; fArray = array; } } /** Call swap to exchange your pointer to an array of T with the SkAutoTArray object. After this call, the SkAutoTArray object will be responsible for deleting your array, and you will be responsible for deleting its. */ void swap(T*& other) { T* tmp = fArray; fArray = other; other = tmp; } private: #ifdef SK_DEBUG size_t fCount; #endif T* fArray; }; /** Allocate a temp array on the stack/heap. Does NOT call any constructors/destructors on T (i.e. T must be POD) */ template class SkAutoTMalloc : SkNoncopyable { public: SkAutoTMalloc(size_t count) { fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); } ~SkAutoTMalloc() { sk_free(fPtr); } T* get() const { return fPtr; } private: T* fPtr; }; template class SkAutoSTMalloc : SkNoncopyable { public: SkAutoSTMalloc(size_t count) { if (count <= N) fPtr = fTStorage; else fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); } ~SkAutoSTMalloc() { if (fPtr != fTStorage) sk_free(fPtr); } T* get() const { return fPtr; } private: T* fPtr; union { uint32_t fStorage32[(N*sizeof(T) + 3) >> 2]; T fTStorage[1]; // do NOT want to invoke T::T() }; }; #endif