/* libs/graphics/sgl/SkBlitter.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkBlitter.h" #include "SkAntiRun.h" #include "SkColor.h" #include "SkColorFilter.h" #include "SkMask.h" #include "SkMaskFilter.h" #include "SkTemplatesPriv.h" #include "SkUtils.h" #include "SkXfermode.h" SkBlitter::~SkBlitter() { } const SkBitmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { return NULL; } void SkBlitter::blitH(int x, int y, int width) { SkASSERT(!"unimplemented"); } void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkASSERT(!"unimplemented"); } void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 255) this->blitRect(x, y, 1, height); else { int16_t runs[2]; runs[0] = 1; runs[1] = 0; while (--height >= 0) this->blitAntiH(x, y++, &alpha, runs); } } void SkBlitter::blitRect(int x, int y, int width, int height) { while (--height >= 0) this->blitH(x, y++, width); } ////////////////////////////////////////////////////////////////////////////// static inline void bits_to_runs(SkBlitter* blitter, int x, int y, const uint8_t bits[], U8CPU left_mask, int rowBytes, U8CPU right_mask) { int inFill = 0; int pos = 0; while (--rowBytes >= 0) { unsigned b = *bits++ & left_mask; if (rowBytes == 0) b &= right_mask; for (unsigned test = 0x80; test != 0; test >>= 1) { if (b & test) { if (!inFill) { pos = x; inFill = true; } } else { if (inFill) { blitter->blitH(pos, y, x - pos); inFill = false; } } x += 1; } left_mask = 0xFF; } // final cleanup if (inFill) blitter->blitH(pos, y, x - pos); } void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (mask.fFormat == SkMask::kBW_Format) { int cx = clip.fLeft; int cy = clip.fTop; int maskLeft = mask.fBounds.fLeft; int mask_rowBytes = mask.fRowBytes; int height = clip.height(); const uint8_t* bits = mask.getAddr1(cx, cy); if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { while (--height >= 0) { bits_to_runs(this, cx, cy, bits, 0xFF, mask_rowBytes, 0xFF); bits += mask_rowBytes; cy += 1; } } else { int left_edge = cx - maskLeft; SkASSERT(left_edge >= 0); int rite_edge = clip.fRight - maskLeft; SkASSERT(rite_edge > left_edge); int left_mask = 0xFF >> (left_edge & 7); int rite_mask = 0xFF << (8 - (rite_edge & 7)); int full_runs = (rite_edge >> 3) - ((left_edge + 7) >> 3); // check for empty right mask, so we don't read off the end (or go slower than we need to) if (rite_mask == 0) { SkASSERT(full_runs >= 0); full_runs -= 1; rite_mask = 0xFF; } if (left_mask == 0xFF) full_runs -= 1; // back up manually so we can keep in sync with our byte-aligned src // have cx reflect our actual starting x-coord cx -= left_edge & 7; if (full_runs < 0) { SkASSERT((left_mask & rite_mask) != 0); while (--height >= 0) { bits_to_runs(this, cx, cy, bits, left_mask, 1, rite_mask); bits += mask_rowBytes; cy += 1; } } else { while (--height >= 0) { bits_to_runs(this, cx, cy, bits, left_mask, full_runs + 2, rite_mask); bits += mask_rowBytes; cy += 1; } } } } else { int width = clip.width(); SkAutoSTMalloc<64, int16_t> runStorage(width + 1); int16_t* runs = runStorage.get(); const uint8_t* aa = mask.getAddr(clip.fLeft, clip.fTop); sk_memset16((uint16_t*)runs, 1, width); runs[width] = 0; int height = clip.height(); int y = clip.fTop; while (--height >= 0) { this->blitAntiH(clip.fLeft, y, aa, runs); aa += mask.fRowBytes; y += 1; } } } /////////////////////// these guys are not virtual, just a helpers void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { if (clip.quickReject(mask.fBounds)) { return; } SkRegion::Cliperator clipper(clip, mask.fBounds); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitMask(mask, cr); clipper.next(); } } void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { SkRegion::Cliperator clipper(clip, rect); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); clipper.next(); } } void SkBlitter::blitRegion(const SkRegion& clip) { SkRegion::Iterator iter(clip); while (!iter.done()) { const SkIRect& cr = iter.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); iter.next(); } } /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// void SkNullBlitter::blitH(int x, int y, int width) { } void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { } void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) { } void SkNullBlitter::blitRect(int x, int y, int width, int height) { } void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { } const SkBitmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { return NULL; } /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// static int compute_anti_width(const int16_t runs[]) { int width = 0; for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count == 0) break; width += count; runs += count; SkASSERT(width < 20000); } return width; } static inline bool y_in_rect(int y, const SkIRect& rect) { return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); } static inline bool x_in_rect(int x, const SkIRect& rect) { return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); } void SkRectClipBlitter::blitH(int left, int y, int width) { SkASSERT(width > 0); if (!y_in_rect(y, fClipRect)) return; int right = left + width; if (left < fClipRect.fLeft) left = fClipRect.fLeft; if (right > fClipRect.fRight) right = fClipRect.fRight; width = right - left; if (width > 0) fBlitter->blitH(left, y, width); } void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], const int16_t runs[]) { if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) return; int x0 = left; int x1 = left + compute_anti_width(runs); if (x1 <= fClipRect.fLeft) return; SkASSERT(x0 < x1); if (x0 < fClipRect.fLeft) { int dx = fClipRect.fLeft - x0; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); runs += dx; aa += dx; x0 = fClipRect.fLeft; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); if (x1 > fClipRect.fRight) { x1 = fClipRect.fRight; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); ((int16_t*)runs)[x1 - x0] = 0; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); SkASSERT(compute_anti_width(runs) == x1 - x0); fBlitter->blitAntiH(x0, y, aa, runs); } void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(height > 0); if (!x_in_rect(x, fClipRect)) return; int y0 = y; int y1 = y + height; if (y0 < fClipRect.fTop) y0 = fClipRect.fTop; if (y1 > fClipRect.fBottom) y1 = fClipRect.fBottom; if (y0 < y1) fBlitter->blitV(x, y0, y1 - y0, alpha); } void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { SkIRect r; r.set(left, y, left + width, y + height); if (r.intersect(fClipRect)) fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkIRect r = clip; if (r.intersect(fClipRect)) fBlitter->blitMask(mask, r); } const SkBitmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// void SkRgnClipBlitter::blitH(int x, int y, int width) { SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; while (span.next(&left, &right)) { SkASSERT(left < right); fBlitter->blitH(left, y, right - left); } } void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { int width = compute_anti_width(runs); SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) int prevRite = x; while (span.next(&left, &right)) { SkASSERT(x <= left); SkASSERT(left < right); SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); // now zero before left if (left > prevRite) { int index = prevRite - x; ((uint8_t*)aa)[index] = 0; // skip runs after right ((int16_t*)runs)[index] = SkToS16(left - prevRite); } prevRite = right; } if (prevRite > x) { ((int16_t*)runs)[prevRite - x] = 0; if (x < 0) { int skip = runs[0]; SkASSERT(skip >= -x); aa += skip; runs += skip; x += skip; } fBlitter->blitAntiH(x, y, aa, runs); } } void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkIRect bounds; bounds.set(x, y, x + 1, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitV(x, r.fTop, r.height(), alpha); iter.next(); } } void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { SkIRect bounds; bounds.set(x, y, x + width, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); iter.next(); } } void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkRegion::Cliperator iter(*fRgn, clip); const SkIRect& r = iter.rect(); SkBlitter* blitter = fBlitter; while (!iter.done()) { blitter->blitMask(mask, r); iter.next(); } } const SkBitmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, const SkIRect* ir) { if (clip) { const SkIRect& clipR = clip->getBounds(); if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) blitter = &fNullBlitter; else if (clip->isRect()) { if (ir == NULL || !clipR.contains(*ir)) { fRectBlitter.init(blitter, clipR); blitter = &fRectBlitter; } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } return blitter; } /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// #include "SkColorShader.h" #include "SkColorPriv.h" class Sk3DShader : public SkShader { public: Sk3DShader(SkShader* proxy) : fProxy(proxy) { proxy->safeRef(); fMask = NULL; } virtual ~Sk3DShader() { fProxy->safeUnref(); } void setMask(const SkMask* mask) { fMask = mask; } virtual bool setContext(const SkBitmap& device, const SkPaint& paint, const SkMatrix& matrix) { if (fProxy) return fProxy->setContext(device, paint, matrix); else { fPMColor = SkPreMultiplyColor(paint.getColor()); return this->INHERITED::setContext(device, paint, matrix); } } virtual void shadeSpan(int x, int y, SkPMColor span[], int count) { if (fProxy) fProxy->shadeSpan(x, y, span, count); if (fMask == NULL) { if (fProxy == NULL) sk_memset32(span, fPMColor, count); return; } SkASSERT(fMask->fBounds.contains(x, y)); SkASSERT(fMask->fBounds.contains(x + count - 1, y)); size_t size = fMask->computeImageSize(); const uint8_t* alpha = fMask->getAddr(x, y); const uint8_t* mulp = alpha + size; const uint8_t* addp = mulp + size; if (fProxy) { for (int i = 0; i < count; i++) { if (alpha[i]) { SkPMColor c = span[i]; if (c) { unsigned a = SkGetPackedA32(c); unsigned r = SkGetPackedR32(c); unsigned g = SkGetPackedG32(c); unsigned b = SkGetPackedB32(c); unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; r = SkFastMin32(SkAlphaMul(r, mul) + add, a); g = SkFastMin32(SkAlphaMul(g, mul) + add, a); b = SkFastMin32(SkAlphaMul(b, mul) + add, a); span[i] = SkPackARGB32(a, r, g, b); } } else span[i] = 0; } } else // color { unsigned a = SkGetPackedA32(fPMColor); unsigned r = SkGetPackedR32(fPMColor); unsigned g = SkGetPackedG32(fPMColor); unsigned b = SkGetPackedB32(fPMColor); for (int i = 0; i < count; i++) { if (alpha[i]) { unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; span[i] = SkPackARGB32( a, SkFastMin32(SkAlphaMul(r, mul) + add, a), SkFastMin32(SkAlphaMul(g, mul) + add, a), SkFastMin32(SkAlphaMul(b, mul) + add, a)); } else span[i] = 0; } } } virtual void beginSession() { this->INHERITED::beginSession(); if (fProxy) fProxy->beginSession(); } virtual void endSession() { if (fProxy) fProxy->endSession(); this->INHERITED::endSession(); } protected: Sk3DShader(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fProxy = static_cast(buffer.readFlattenable()); fPMColor = buffer.readU32(); fMask = NULL; } virtual void flatten(SkFlattenableWriteBuffer& buffer) { this->INHERITED::flatten(buffer); buffer.writeFlattenable(fProxy); buffer.write32(fPMColor); } virtual Factory getFactory() { return CreateProc; } private: static SkFlattenable* CreateProc(SkFlattenableReadBuffer& buffer) { return SkNEW_ARGS(Sk3DShader, (buffer)); } SkShader* fProxy; SkPMColor fPMColor; const SkMask* fMask; typedef SkShader INHERITED; }; class Sk3DBlitter : public SkBlitter { public: Sk3DBlitter(SkBlitter* proxy, Sk3DShader* shader, void (*killProc)(void*)) : fProxy(proxy), f3DShader(shader), fKillProc(killProc) { shader->ref(); } virtual ~Sk3DBlitter() { f3DShader->unref(); fKillProc(fProxy); } virtual void blitH(int x, int y, int width) { fProxy->blitH(x, y, width); } virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { fProxy->blitAntiH(x, y, antialias, runs); } virtual void blitV(int x, int y, int height, SkAlpha alpha) { fProxy->blitV(x, y, height, alpha); } virtual void blitRect(int x, int y, int width, int height) { fProxy->blitRect(x, y, width, height); } virtual void blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::k3D_Format) { f3DShader->setMask(&mask); ((SkMask*)&mask)->fFormat = SkMask::kA8_Format; fProxy->blitMask(mask, clip); ((SkMask*)&mask)->fFormat = SkMask::k3D_Format; f3DShader->setMask(NULL); } else fProxy->blitMask(mask, clip); } private: SkBlitter* fProxy; Sk3DShader* f3DShader; void (*fKillProc)(void*); }; /////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// #include "SkCoreBlitters.h" class SkAutoRestoreShader { public: SkAutoRestoreShader(const SkPaint& p) : fPaint((SkPaint*)&p) { fShader = fPaint->getShader(); fShader->safeRef(); } ~SkAutoRestoreShader() { fPaint->setShader(fShader); fShader->safeUnref(); } private: SkPaint* fPaint; SkShader* fShader; }; class SkAutoCallProc { public: typedef void (*Proc)(void*); SkAutoCallProc(void* obj, Proc proc) : fObj(obj), fProc(proc) { } ~SkAutoCallProc() { if (fObj && fProc) fProc(fObj); } void* get() const { return fObj; } void* detach() { void* obj = fObj; fObj = NULL; return obj; } private: void* fObj; Proc fProc; }; static void destroy_blitter(void* blitter) { ((SkBlitter*)blitter)->~SkBlitter(); } static void delete_blitter(void* blitter) { SkDELETE((SkBlitter*)blitter); } SkBlitter* SkBlitter::Choose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint, void* storage, size_t storageSize) { SkASSERT(storageSize == 0 || storage != NULL); SkBlitter* blitter = NULL; // which check, in case we're being called by a client with a dummy device // (e.g. they have a bounder that always aborts the draw) if (SkBitmap::kNo_Config == device.getConfig()) { SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); return blitter; } SkAutoRestoreShader restore(paint); SkShader* shader = paint.getShader(); Sk3DShader* shader3D = NULL; if (paint.getMaskFilter() != NULL && paint.getMaskFilter()->getFormat() == SkMask::k3D_Format) { shader3D = SkNEW_ARGS(Sk3DShader, (shader)); ((SkPaint*)&paint)->setShader(shader3D)->unref(); shader = shader3D; } SkXfermode* mode = paint.getXfermode(); if (NULL == shader && (NULL != mode || paint.getColorFilter() != NULL)) { // xfermodes require shaders for our current set of blitters shader = SkNEW(SkColorShader); ((SkPaint*)&paint)->setShader(shader)->unref(); } if (paint.getColorFilter() != NULL) { SkASSERT(shader); shader = SkNEW_ARGS(SkFilterShader, (shader, paint.getColorFilter())); ((SkPaint*)&paint)->setShader(shader)->unref(); } bool doDither = paint.isDither(); if (shader) { if (!shader->setContext(device, paint, matrix)) return SkNEW(SkNullBlitter); // disable dither if our shader is natively 16bit (no need to upsample) if (shader->getFlags() & SkShader::kIntrinsicly16_Flag) doDither = false; } switch (device.getConfig()) { case SkBitmap::kA1_Config: SK_PLACEMENT_NEW_ARGS(blitter, SkA1_Blitter, storage, storageSize, (device, paint)); break; case SkBitmap::kA8_Config: if (shader) SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Shader_Blitter, storage, storageSize, (device, paint)); else SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Blitter, storage, storageSize, (device, paint)); break; case SkBitmap::kARGB_4444_Config: blitter = SkBlitter_ChooseD4444(device, paint, storage, storageSize); break; case SkBitmap::kRGB_565_Config: if (shader) { if (mode) SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Xfermode_Blitter, storage, storageSize, (device, paint)); else if (SkShader::CanCallShadeSpan16(shader->getFlags()) && !doDither) SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader16_Blitter, storage, storageSize, (device, paint)); else SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Blitter, storage, storageSize, (device, paint)); } else if (paint.getColor() == SK_ColorBLACK) SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Black_Blitter, storage, storageSize, (device, paint)); else SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Blitter, storage, storageSize, (device, paint)); break; case SkBitmap::kARGB_8888_Config: if (shader) SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Shader_Blitter, storage, storageSize, (device, paint)); else if (paint.getColor() == SK_ColorBLACK) SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Black_Blitter, storage, storageSize, (device, paint)); else if (paint.getAlpha() == 0xFF) SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Opaque_Blitter, storage, storageSize, (device, paint)); else SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Blitter, storage, storageSize, (device, paint)); break; default: SkASSERT(!"unsupported device config"); SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); } if (shader3D) { void (*proc)(void*) = ((void*)storage == (void*)blitter) ? destroy_blitter : delete_blitter; SkAutoCallProc tmp(blitter, proc); blitter = SkNEW_ARGS(Sk3DBlitter, (blitter, shader3D, proc)); (void)tmp.detach(); } return blitter; } ////////////////////////////////////////////////////////////////////////////////////////////////////// const uint16_t gMask_0F0F = 0xF0F; const uint32_t gMask_00FF00FF = 0xFF00FF; ////////////////////////////////////////////////////////////////////////////////////////////////////// SkShaderBlitter::SkShaderBlitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device) { fShader = paint.getShader(); SkASSERT(fShader); fShader->ref(); fShader->beginSession(); } SkShaderBlitter::~SkShaderBlitter() { fShader->endSession(); fShader->unref(); }