/* libs/graphics/sgl/SkString.cpp ** ** Copyright 2006, Google Inc. ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkString.h" #include "SkFixed.h" #include "SkUtils.h" #include bool SkStrStartsWith(const char string[], const char prefix[]) { SkASSERT(string); SkASSERT(prefix); return !strncmp(string, prefix, strlen(prefix)); } bool SkStrEndsWith(const char string[], const char suffix[]) { SkASSERT(string); SkASSERT(suffix); size_t strLen = strlen(string); size_t suffixLen = strlen(suffix); return strLen >= suffixLen && !strncmp(string + strLen - suffixLen, suffix, suffixLen); } int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { int index = 0; do { const char* limit = strchr(prefixes, '\0'); if (!strncmp(string, prefixes, limit - prefixes)) return index; prefixes = limit + 1; index++; } while (prefixes[0]); return -1; } char* SkStrAppendS32(char string[], int32_t dec) { SkDEBUGCODE(char* start = string;) char buffer[SkStrAppendS32_MaxSize]; char* p = buffer + sizeof(buffer); bool neg = false; if (dec < 0) { neg = true; dec = -dec; } do { *--p = SkToU8('0' + dec % 10); dec /= 10; } while (dec != 0); if (neg) *--p = '-'; SkASSERT(p >= buffer); char* stop = buffer + sizeof(buffer); while (p < stop) *string++ = *p++; SkASSERT(string - start <= SkStrAppendS32_MaxSize); return string; } char* SkStrAppendScalar(char string[], SkScalar value) { SkDEBUGCODE(char* start = string;) SkFixed x = SkScalarToFixed(value); if (x < 0) { *string++ = '-'; x = -x; } unsigned frac = x & 0xFFFF; x >>= 16; if (frac == 0xFFFF) // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999 { x += 1; frac = 0; } string = SkStrAppendS32(string, x); // now handle the fractional part (if any) if (frac) { static const uint16_t gTens[] = { 1000, 100, 10, 1 }; const uint16_t* tens = gTens; x = SkFixedRound(frac * 10000); SkASSERT(x < 10000); *string++ = '.'; do { unsigned powerOfTen = *tens++; *string++ = SkToU8('0' + x / powerOfTen); x %= powerOfTen; } while (x != 0); } SkASSERT(string - start <= SkStrAppendScalar_MaxSize); return string; } //////////////////////////////////////////////////////////////////////////////////// #define kMaxRefCnt_SkString SK_MaxU16 // the 3 values are [length] [refcnt] [terminating zero data] const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 }; #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) SkString::Rec* SkString::AllocRec(const char text[], U16CPU len) { Rec* rec; if (len == 0) rec = const_cast(&gEmptyRec); else { // add 1 for terminating 0, then align4 so we can have some slop when growing the string rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1)); rec->fLength = SkToU16(len); rec->fRefCnt = 1; if (text) memcpy(rec->data(), text, len); rec->data()[len] = 0; } return rec; } SkString::Rec* SkString::RefRec(Rec* src) { if (src != &gEmptyRec) { if (src->fRefCnt == kMaxRefCnt_SkString) { src = AllocRec(src->data(), src->fLength); } else src->fRefCnt += 1; } return src; } #ifdef SK_DEBUG void SkString::validate() const { // make sure know one has written over our global SkASSERT(gEmptyRec.fLength == 0); SkASSERT(gEmptyRec.fRefCnt == 0); SkASSERT(gEmptyRec.data()[0] == 0); if (fRec != &gEmptyRec) { SkASSERT(fRec->fLength > 0); SkASSERT(fRec->fRefCnt > 0); SkASSERT(fRec->data()[fRec->fLength] == 0); } SkASSERT(fStr == c_str()); } #endif /////////////////////////////////////////////////////////////////////// SkString::SkString() : fRec(const_cast(&gEmptyRec)) { #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(size_t len) { SkASSERT(SkToU16(len) == len); // can't handle larger than 64K fRec = AllocRec(NULL, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const char text[]) { size_t len = text ? strlen(text) : 0; fRec = AllocRec(text, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const char text[], size_t len) { fRec = AllocRec(text, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const SkString& src) { src.validate(); fRec = RefRec(src.fRec); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::~SkString() { this->validate(); if (fRec->fLength) { SkASSERT(fRec->fRefCnt > 0); if (--fRec->fRefCnt == 0) sk_free(fRec); } } bool SkString::equals(const SkString& src) const { return fRec == src.fRec || this->equals(src.c_str(), src.size()); } bool SkString::equals(const char text[]) const { return this->equals(text, text ? strlen(text) : 0); } bool SkString::equals(const char text[], size_t len) const { SkASSERT(len == 0 || text != NULL); return fRec->fLength == len && !memcmp(fRec->data(), text, len); } SkString& SkString::operator=(const SkString& src) { this->validate(); if (fRec != src.fRec) { SkString tmp(src); this->swap(tmp); } return *this; } void SkString::reset() { this->validate(); if (fRec->fLength) { SkASSERT(fRec->fRefCnt > 0); if (--fRec->fRefCnt == 0) sk_free(fRec); } fRec = const_cast(&gEmptyRec); #ifdef SK_DEBUG fStr = fRec->data(); #endif } char* SkString::writable_str() { this->validate(); if (fRec->fLength) { if (fRec->fRefCnt > 1) { fRec->fRefCnt -= 1; fRec = AllocRec(fRec->data(), fRec->fLength); #ifdef SK_DEBUG fStr = fRec->data(); #endif } } return fRec->data(); } void SkString::set(const char text[]) { this->set(text, text ? strlen(text) : 0); } void SkString::set(const char text[], size_t len) { if (len == 0) this->reset(); else if (fRec->fRefCnt == 1 && len <= fRec->fLength) // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1)) { // just use less of the buffer without allocating a smaller one char* p = this->writable_str(); if (text) memcpy(p, text, len); p[len] = 0; fRec->fLength = SkToU16(len); } else if (fRec->fRefCnt == 1 && ((unsigned)fRec->fLength >> 2) == (len >> 2)) { // we have spare room in the current allocation, so don't alloc a larger one char* p = this->writable_str(); if (text) memcpy(p, text, len); p[len] = 0; fRec->fLength = SkToU16(len); } else { SkString tmp(text, len); this->swap(tmp); } } void SkString::setUTF16(const uint16_t src[]) { int count = 0; while (src[count]) count += 1; setUTF16(src, count); } void SkString::setUTF16(const uint16_t src[], size_t count) { if (count == 0) this->reset(); else if (count <= fRec->fLength) // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1)) { if (count < fRec->fLength) this->resize(count); char* p = this->writable_str(); for (size_t i = 0; i < count; i++) p[i] = SkToU8(src[i]); p[count] = 0; } else { SkString tmp(count); // puts a null terminator at the end of the string char* p = tmp.writable_str(); for (size_t i = 0; i < count; i++) p[i] = SkToU8(src[i]); this->swap(tmp); } } void SkString::insert(size_t offset, const char text[]) { this->insert(offset, text, text ? strlen(text) : 0); } void SkString::insert(size_t offset, const char text[], size_t len) { if (len) { size_t length = fRec->fLength; if (offset > length) offset = length; /* If we're the only owner, and we have room in our allocation for the insert, do it in place, rather than allocating a new buffer. To know we have room, compare the allocated sizes beforeAlloc = SkAlign4(length + 1) afterAlloc = SkAligh4(length + 1 + len) but SkAlign4(x) is (x + 3) >> 2 << 2 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 and we can then eliminate the +1+3 since that doesn't affec the answer */ if (fRec->fRefCnt == 1 && (length >> 2) == ((length + len) >> 2)) { char* dst = this->writable_str(); if (offset < length) memmove(dst + offset + len, dst + offset, length - offset); memcpy(dst + offset, text, len); dst[length + len] = 0; fRec->fLength = SkToU16(length + len); } else { /* Seems we should use realloc here, since that is safe if it fails (we have the original data), and might be faster than alloc/copy/free. */ SkString tmp(fRec->fLength + len); char* dst = tmp.writable_str(); if (offset > 0) memcpy(dst, fRec->data(), offset); memcpy(dst + offset, text, len); if (offset < fRec->fLength) memcpy(dst + offset + len, fRec->data() + offset, fRec->fLength - offset); this->swap(tmp); } } } void SkString::insertUnichar(size_t offset, SkUnichar uni) { char buffer[kMaxBytesInUTF8Sequence]; size_t len = SkUTF8_FromUnichar(uni, buffer); if (len) this->insert(offset, buffer, len); } void SkString::insertS32(size_t offset, int32_t dec) { char buffer[SkStrAppendS32_MaxSize]; char* stop = SkStrAppendS32(buffer, dec); this->insert(offset, buffer, stop - buffer); } void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { minDigits = SkPin32(minDigits, 0, 8); static const char gHex[] = "0123456789ABCDEF"; char buffer[8]; char* p = buffer + sizeof(buffer); do { *--p = gHex[hex & 0xF]; hex >>= 4; minDigits -= 1; } while (hex != 0); while (--minDigits >= 0) *--p = '0'; SkASSERT(p >= buffer); this->insert(offset, p, buffer + sizeof(buffer) - p); } void SkString::insertScalar(size_t offset, SkScalar value) { char buffer[SkStrAppendScalar_MaxSize]; char* stop = SkStrAppendScalar(buffer, value); this->insert(offset, buffer, stop - buffer); } /////////////////////////////////////////////////////////////////////////// //#include #if defined(SK_BUILD_FOR_WIN) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_UNIX) #include #endif void SkString::printf(const char format[], ...) { static const size_t kBufferSize = 100; char buffer[kBufferSize + 1]; #ifdef SK_BUILD_FOR_WIN va_list args; va_start(args, format); _vsnprintf(buffer, kBufferSize, format, args); va_end(args); #elif defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_UNIX) va_list args; va_start(args, format); vsnprintf(buffer, kBufferSize, format, args); va_end(args); #else buffer[0] = 0; #endif this->set(buffer, strlen(buffer)); } /////////////////////////////////////////////////////////////////////////// void SkString::remove(size_t offset, size_t length) { size_t size = this->size(); if (offset < size) { if (offset + length > size) length = size - offset; if (length > 0) { SkASSERT(size > length); SkString tmp(size - length); char* dst = tmp.writable_str(); const char* src = this->c_str(); if (offset) { SkASSERT(offset <= tmp.size()); memcpy(dst, src, offset); } size_t tail = size - offset - length; SkASSERT((int32_t)tail >= 0); if (tail) { // SkASSERT(offset + length <= tmp.size()); memcpy(dst + offset, src + offset + length, tail); } SkASSERT(dst[tmp.size()] == 0); this->swap(tmp); } } } void SkString::swap(SkString& other) { this->validate(); other.validate(); SkTSwap(fRec, other.fRec); #ifdef SK_DEBUG SkTSwap(fStr, other.fStr); #endif } ///////////////////////////////////////////////////////////////////////////////// SkAutoUCS2::SkAutoUCS2(const char utf8[]) { size_t len = strlen(utf8); fUCS2 = (uint16_t*)sk_malloc_throw((len + 1) * sizeof(uint16_t)); uint16_t* dst = fUCS2; for (;;) { SkUnichar uni = SkUTF8_NextUnichar(&utf8); *dst++ = SkToU16(uni); if (uni == 0) break; } fCount = (int)(dst - fUCS2); } SkAutoUCS2::~SkAutoUCS2() { delete[] fUCS2; } ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkString::UnitTest() { #ifdef SK_SUPPORT_UNITTEST SkString a; SkString b((size_t)0); SkString c(""); SkString d(NULL, 0); SkASSERT(a.isEmpty()); SkASSERT(a == b && a == c && a == d); a.set("hello"); b.set("hellox", 5); c.set(a); d.resize(5); memcpy(d.writable_str(), "helloz", 5); SkASSERT(!a.isEmpty()); SkASSERT(a.size() == 5); SkASSERT(a == b && a == c && a == d); SkASSERT(a.equals("hello", 5)); SkASSERT(a.equals("hello")); SkASSERT(!a.equals("help")); SkString e(a); SkString f("hello"); SkString g("helloz", 5); SkASSERT(a == e && a == f && a == g); b.set("world"); c = b; SkASSERT(a != b && a != c && b == c); a.append(" world"); e.append("worldz", 5); e.insert(5, " "); f.set("world"); f.prepend("hello "); SkASSERT(a.equals("hello world") && a == e && a == f); a.reset(); b.resize(0); SkASSERT(a.isEmpty() && b.isEmpty() && a == b); a.set("a"); a.set("ab"); a.set("abc"); a.set("abcd"); #endif } #endif