/* libs/graphics/sgl/SkUtils.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkUtils.h" #if 0 #define assign_16_longs(dst, value) \ do { \ (dst)[0] = value; (dst)[1] = value; \ (dst)[2] = value; (dst)[3] = value; \ (dst)[4] = value; (dst)[5] = value; \ (dst)[6] = value; (dst)[7] = value; \ (dst)[8] = value; (dst)[9] = value; \ (dst)[10] = value; (dst)[11] = value; \ (dst)[12] = value; (dst)[13] = value; \ (dst)[14] = value; (dst)[15] = value; \ } while (0) #else #define assign_16_longs(dst, value) \ do { \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ *(dst)++ = value; *(dst)++ = value; \ } while (0) #endif /////////////////////////////////////////////////////////////////////////// void sk_memset16_portable(uint16_t dst[], uint16_t value, int count) { SkASSERT(dst != NULL && count >= 0); if (count <= 0) return; // not sure if this helps to short-circuit on small values of count if (count < 8) { do { *dst++ = (uint16_t)value; } while (--count != 0); return; } // ensure we're on a long boundary if ((size_t)dst & 2) { *dst++ = (uint16_t)value; count -= 1; } uint32_t value32 = ((uint32_t)value << 16) | value; // handle the bulk with our unrolled macro { int sixteenlongs = count >> 5; if (sixteenlongs) { uint32_t* dst32 = (uint32_t*)dst; do { assign_16_longs(dst32, value32); } while (--sixteenlongs != 0); dst = (uint16_t*)dst32; count &= 31; } } // handle (most) of the rest { int longs = count >> 1; if (longs) { do { *(uint32_t*)dst = value32; dst += 2; } while (--longs != 0); } } // cleanup a possible trailing short if (count & 1) *dst = (uint16_t)value; } void sk_memset32_portable(uint32_t dst[], uint32_t value, int count) { SkASSERT(dst != NULL && count >= 0); { int sixteenlongs = count >> 4; if (sixteenlongs) { do { assign_16_longs(dst, value); } while (--sixteenlongs != 0); count &= 15; } } if (count) { do { *dst++ = value; } while (--count != 0); } } ////////////////////////////////////////////////////////////////////////////// /* 0xxxxxxx 1 total 10xxxxxx // never a leading byte 110xxxxx 2 total 1110xxxx 3 total 11110xxx 4 total 11 10 01 01 xx xx xx xx 0... 0xE5XX0000 0xE5 << 24 */ #ifdef SK_DEBUG static void assert_utf8_leadingbyte(unsigned c) { SkASSERT(c <= 0xF7); // otherwise leading byte is too big (more than 4 bytes) SkASSERT((c & 0xC0) != 0x80); // can't begin with a middle char } int SkUTF8_LeadByteToCount(unsigned c) { assert_utf8_leadingbyte(c); return (((0xE5 << 24) >> (c >> 4 << 1)) & 3) + 1; } #else #define assert_utf8_leadingbyte(c) #endif int SkUTF8_CountUnichars(const char utf8[]) { SkASSERT(utf8); int count = 0; for (;;) { int c = *(const uint8_t*)utf8; if (c == 0) break; utf8 += SkUTF8_LeadByteToCount(c); count += 1; } return count; } int SkUTF8_CountUnichars(const char utf8[], size_t byteLength) { SkASSERT(NULL != utf8 || 0 == byteLength); int count = 0; const char* stop = utf8 + byteLength; while (utf8 < stop) { utf8 += SkUTF8_LeadByteToCount(*(const uint8_t*)utf8); count += 1; } return count; } SkUnichar SkUTF8_ToUnichar(const char utf8[]) { SkASSERT(NULL != utf8); const uint8_t* p = (const uint8_t*)utf8; int c = *p; int hic = c << 24; assert_utf8_leadingbyte(c); if (hic < 0) { uint32_t mask = (uint32_t)~0x3F; hic <<= 1; do { c = (c << 6) | (*++p & 0x3F); mask <<= 5; } while ((hic <<= 1) < 0); c &= ~mask; } return c; } SkUnichar SkUTF8_NextUnichar(const char** ptr) { SkASSERT(NULL != ptr && NULL != *ptr); const uint8_t* p = (const uint8_t*)*ptr; int c = *p; int hic = c << 24; assert_utf8_leadingbyte(c); if (hic < 0) { uint32_t mask = (uint32_t)~0x3F; hic <<= 1; do { c = (c << 6) | (*++p & 0x3F); mask <<= 5; } while ((hic <<= 1) < 0); c &= ~mask; } *ptr = (char*)p + 1; return c; } SkUnichar SkUTF8_PrevUnichar(const char** ptr) { SkASSERT(NULL != ptr && NULL != *ptr); const char* p = *ptr; if (*--p & 0x80) while (*--p & 0x40) ; *ptr = (char*)p; return SkUTF8_NextUnichar(&p); } size_t SkUTF8_FromUnichar(SkUnichar uni, char utf8[]) { if ((uint32_t)uni > 0x10FFFF) { SkASSERT(!"bad unichar"); return 0; } if (uni <= 127) { if (utf8) *utf8 = (char)uni; return 1; } char tmp[4]; char* p = tmp; size_t count = 1; SkDEBUGCODE(SkUnichar orig = uni;) while (uni > 0x3F) { *p++ = (char)(0x80 | (uni & 0x3F)); uni >>= 6; count += 1; } if (utf8) { p = tmp; utf8 += count; while (p < tmp + count - 1) *--utf8 = *p++; *--utf8 = (char)(~(0xFF >> count) | uni); } SkASSERT(utf8 == NULL || orig == SkUTF8_ToUnichar(utf8)); return count; } //////////////////////////////////////////////////////////////////////////////////// int SkUTF16_CountUnichars(const uint16_t src[]) { SkASSERT(src); int count = 0; unsigned c; while ((c = *src++) != 0) { SkASSERT(!SkUTF16_IsLowSurrogate(c)); if (SkUTF16_IsHighSurrogate(c)) { c = *src++; SkASSERT(SkUTF16_IsLowSurrogate(c)); } count += 1; } return count; } int SkUTF16_CountUnichars(const uint16_t src[], int numberOf16BitValues) { SkASSERT(src); const uint16_t* stop = src + numberOf16BitValues; int count = 0; while (src < stop) { unsigned c = *src++; SkASSERT(!SkUTF16_IsLowSurrogate(c)); if (SkUTF16_IsHighSurrogate(c)) { SkASSERT(src < stop); c = *src++; SkASSERT(SkUTF16_IsLowSurrogate(c)); } count += 1; } return count; } SkUnichar SkUTF16_NextUnichar(const uint16_t** srcPtr) { SkASSERT(srcPtr && *srcPtr); const uint16_t* src = *srcPtr; SkUnichar c = *src++; SkASSERT(!SkUTF16_IsLowSurrogate(c)); if (SkUTF16_IsHighSurrogate(c)) { unsigned c2 = *src++; SkASSERT(SkUTF16_IsLowSurrogate(c2)); // c = ((c & 0x3FF) << 10) + (c2 & 0x3FF) + 0x10000 // c = (((c & 0x3FF) + 64) << 10) + (c2 & 0x3FF) c = (c << 10) + c2 + (0x10000 - (0xD800 << 10) - 0xDC00); } *srcPtr = src; return c; } SkUnichar SkUTF16_PrevUnichar(const uint16_t** srcPtr) { SkASSERT(srcPtr && *srcPtr); const uint16_t* src = *srcPtr; SkUnichar c = *--src; SkASSERT(!SkUTF16_IsHighSurrogate(c)); if (SkUTF16_IsLowSurrogate(c)) { unsigned c2 = *--src; SkASSERT(SkUTF16_IsHighSurrogate(c2)); c = (c2 << 10) + c + (0x10000 - (0xD800 << 10) - 0xDC00); } *srcPtr = src; return c; } size_t SkUTF16_FromUnichar(SkUnichar uni, uint16_t dst[]) { SkASSERT((unsigned)uni <= 0x10FFFF); int extra = (uni > 0xFFFF); if (dst) { if (extra) { // dst[0] = SkToU16(0xD800 | ((uni - 0x10000) >> 10)); // dst[0] = SkToU16(0xD800 | ((uni >> 10) - 64)); dst[0] = SkToU16((0xD800 - 64) + (uni >> 10)); dst[1] = SkToU16(0xDC00 | (uni & 0x3FF)); SkASSERT(SkUTF16_IsHighSurrogate(dst[0])); SkASSERT(SkUTF16_IsLowSurrogate(dst[1])); } else { dst[0] = SkToU16(uni); SkASSERT(!SkUTF16_IsHighSurrogate(dst[0])); SkASSERT(!SkUTF16_IsLowSurrogate(dst[0])); } } return 1 + extra; } size_t SkUTF16_ToUTF8(const uint16_t utf16[], int numberOf16BitValues, char utf8[]) { SkASSERT(numberOf16BitValues >= 0); if (numberOf16BitValues <= 0) return 0; SkASSERT(utf16 != NULL); const uint16_t* stop = utf16 + numberOf16BitValues; size_t size = 0; if (utf8 == NULL) // just count { while (utf16 < stop) size += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), NULL); } else { char* start = utf8; while (utf16 < stop) utf8 += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), utf8); size = utf8 - start; } return size; } //////////////////////////////////////////////////////////////////////////////////// #include static int round_to_K(size_t bytes) { return (bytes + 512) >> 10; } SkAutoMemoryUsageProbe::SkAutoMemoryUsageProbe(const char label[]) : fLabel(label) { #if 0 struct mallinfo mi = mallinfo(); fBytesAllocated = mi.uordblks; #endif } SkAutoMemoryUsageProbe::~SkAutoMemoryUsageProbe() { #if 0 struct mallinfo mi = mallinfo(); printf("SkAutoMemoryUsageProbe "); if (fLabel) printf("<%s> ", fLabel); printf("delta %dK, current total allocated %dK\n", round_to_K(mi.uordblks - fBytesAllocated), round_to_K(mi.uordblks)); #endif } //////////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG #include "SkRandom.h" #include "SkTSearch.h" #include "SkTSort.h" #define kSEARCH_COUNT 91 #ifdef SK_SUPPORT_UNITTEST static void test_search() { int i, array[kSEARCH_COUNT]; SkRandom rand; for (i = 0; i < kSEARCH_COUNT; i++) array[i] = rand.nextS(); SkTHeapSort(array, kSEARCH_COUNT); // make sure we got sorted properly for (i = 1; i < kSEARCH_COUNT; i++) SkASSERT(array[i-1] <= array[i]); // make sure we can find all of our values for (i = 0; i < kSEARCH_COUNT; i++) { int index = SkTSearch(array, kSEARCH_COUNT, array[i], sizeof(int)); SkASSERT(index == i); } // make sure that random values are either found, or the correct // insertion index is returned for (i = 0; i < 10000; i++) { int value = rand.nextS(); int index = SkTSearch(array, kSEARCH_COUNT, value, sizeof(int)); if (index >= 0) SkASSERT(index < kSEARCH_COUNT && array[index] == value); else { index = ~index; SkASSERT(index <= kSEARCH_COUNT); if (index < kSEARCH_COUNT) { SkASSERT(value < array[index]); if (index > 0) SkASSERT(value > array[index - 1]); } else // we should append the new value { SkASSERT(value > array[kSEARCH_COUNT - 1]); } } } } static void test_utf16() { static const SkUnichar gUni[] = { 0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234 }; uint16_t buf[2]; for (unsigned i = 0; i < SK_ARRAY_COUNT(gUni); i++) { size_t count = SkUTF16_FromUnichar(gUni[i], buf); SkASSERT(count == 2); size_t count2 = SkUTF16_CountUnichars(buf, 2); SkASSERT(count2 == 1); const uint16_t* ptr = buf; SkUnichar c = SkUTF16_NextUnichar(&ptr); SkASSERT(c == gUni[i]); SkASSERT(ptr - buf == 2); } } #endif void SkUtils::UnitTest() { #ifdef SK_SUPPORT_UNITTEST static const struct { const char* fUtf8; SkUnichar fUni; } gTest[] = { { "a", 'a' }, { "\xC3\x83", (3 << 6) | 3 }, { "\xE3\x83\x83", (3 << 12) | (3 << 6) | 3 }, { "\xF3\x83\x83\x83", (3 << 18) | (3 << 12) | (3 << 6) | 3 } }; for (unsigned i = 0; i < SK_ARRAY_COUNT(gTest); i++) { const char* p = gTest[i].fUtf8; int n = SkUTF8_CountUnichars(p); SkUnichar u0 = SkUTF8_ToUnichar(gTest[i].fUtf8); SkUnichar u1 = SkUTF8_NextUnichar(&p); SkASSERT(n == 1); SkASSERT(u0 == u1); SkASSERT(u0 == gTest[i].fUni); SkASSERT(p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8)); } test_utf16(); test_search(); #endif } #endif